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Abstract: The flow and heat transfer properties of a nanofluid in a thin layer over stretched heat have keen applications in several 
contemporary processes. Indisputably, the thin film's heat transfer rate affects how the coating process is presented as well as the chemical 
makeup of the final result. The research presented in this article is based on the "Homotopy analysis method," a series solution for an 
unsteady magnetohydrodynamic thin film's unstable boundary value issue. When there is an uneven heat source or sink present, there is a 
nanofluid flow over the flat surface. The Homotopy research speeds up the process of ensuring that any strong nonlinearity problem's series 
solution will converge. 
Owing to wide variety of industrial applications, we have investigated impacts of factors such as magnetic field, temperature- and space- 
dependent (𝐴∗) and (𝐵∗) across a stretched sheet in current study with flow property and displayed same visually. Furthermore, it was 
shown that increasing heat source/sink's non-uniform parameter decreased local Nusselt number while increasing the thermal boundary 
layer's thickness. The study shows that temperature field, velocity field, Nusselt number, and thin film thickness are all significantly 
impacted by magnetic field, thermal conductivity, and non-uniform heat source/sink characteristic. Additionally, it is evident that a rise in 
magnetic field parameter results in an increase in temperature profile, whereas wall friction, fluid's velocity field, and pace at which heat 
transfer occurs have the opposite impact. 

 
Keywords: Stretching surface, Non-uniform heat source/sink, Magnetohydrodynamics, Nanofluid, Homotopy analysis method. 

1. Introduction 

several uses in a variety of technological domains, such as 
heat exchangers and solid surface coatings, food stuff 
striating, elastic sheet drawing, device fluidization, and 
polymer and metal extraction processes, has piqued the 
interest of researchers in studying nanofluidflow problems 
in recent times. . Wang [1, 2] conducted an analytical 
study to ascertain hydro dynamical essence of a flux's thin 
liquid film over a unstable stretching sheet. 

For further information on the issue, see Andersson et al. 
[3, 4]. Further research on liquid film is considered 
crucial, considering its wide variety of industrial uses. As 
a consequence, a number of scholars [5, 6] have 
sometimes created important geometry constructions.In 
addition, a number of authors [7-22] have taken into 
consideration the fundamental issue raised by Wang [1, 2] 
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and of the same Anderson et al [3, 4]. Furthermore, 
various intriguing occurrences are acknowledged. 

Heat transfer within nanofluids has drawn attention 
recently from researchers in preparation for a range of 
industrial uses. Numerous methods exist for enhancing 
base fluid characteristics. For this reason, nanofluid is 
more advantageous in fuel cells, hybrid powered engines, 
microelectronic chip cooling, and many medicinal 
applications. According to Choi et al. [23,24], a 1% 
increase in nanoparticle volume yields a nearly twofold 
increase in thermal conductivity properties. Thin layer 
nanofluid heat transfer phenomena were also shown by 
the writers [25–31]. 

For a variety of non-Newtonian fluids, authors have 
recently examined flow across horizontal sheets. 
Referencing homotopy analytic technique (HAM) (Refs. 
[40-42]), researchers [32–39] have shown a keen interest 
in convergence of thin film flow issues. The boundary 
value problem solutions produced by HAM are superior 
than the current findings. 

The objective of the present study is to analyse an 
analytical investigation for electrically conducting flow 
and heat transfer of a nanofluid fluid over a flat stretched 
surface with non-uniform heat source/sink in two- 
dimensional models. Because of their practical 
significance and extensive industrial use, the graphical 
and analytical results of the skin friction and Nusselt 
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number are also assessed. In present studies for initial 
estimates, consistency, quick convergence, 
dependability, and correctness in outcomes, the 
homotopy analysis approach is used and discussed with 
help of graphics. The contributions of recently 
discovered physical factors are investigated, including 

skin friction, magnetic field, Nusselt number, and non-
uniform sink/heat source. Findings indicate that thermal 
boundary layer thickness has increased in heat 
production and absorption, which is significant for heat 
management operations. 

.  

Schematic diagram of the flow problem 

2. PROBLEM FORMULATION 

In unstable 2-D flow, the continuity, momentum, and energy 

equations (Ref.fig.1) are 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 … … … … … … . . (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜇௡௙

𝜌௡௙

𝜕ଶ𝑢

𝜕𝑦ଶ
− 𝜎

𝐵ଶ𝑢

𝜌
… … … . (2) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼௡௙

𝜕ଶ𝑇

𝜕𝑦ଶ
+

𝑞ᇱᇱᇱ

𝜌𝐶௣

… … … . (3) 

Where 

𝑞ᇱᇱᇱ =
𝑘𝑢௪(𝑥)

𝑥𝜐
[𝐴∗(𝑇ௌ − 𝑇଴)𝑓ᇱ + (𝑇 − 𝑇଴)𝐵∗]. . (4) 

 Heat generated internally is shown by A* and B* > 
0, whereas heat absorbed internally is indicated by A* and 
B* < 0. Using the symbols u and v, respectively, denote 
velocity components that are parallel and perpendicular$ to 
the horizontal axis. Noting that there is no liquid movement 
for t≤0 is necessary at this point. 
In order to solve equations (1) through (3), the required 
conditions are Equations (1) through (3) may be solved with 
the following initial and boundary conditions: 2.1. Initial 
and boundary conditions  

𝑢 = 0, 𝑣 = 0, 𝑇 = 𝑇௪𝑓𝑜𝑟𝑡 ≤ 0 … . (5) 
For  𝑡 > 0 and  𝑥 ≥ 0 , boundary conditions are as 

below: 

𝑢 = 𝑈, 𝑣 = 0, 𝑇 = 𝑇௪𝑎𝑡𝑦 = 0 … … … (6) 
𝜕𝑢

𝜕𝑦
=

𝜕𝑇

𝜕𝑦
= 0,

𝜕ℎ

𝜕𝑡
= 𝑣𝑎𝑡𝑦 = ℎ … … … (7) 

Here, we must observe that the heat flow and 

viscous shear stress vanish at the adiabatic plane.  

2.2. Formulation 

The relevant similarity transformations that we will 
present are as follows:𝜓(𝑥, 𝑦, 𝑡) =

ቀ
జ೑௕

ଵିఈ௧
ቁ

భ

మ
𝑥𝑓(𝜂) … … (8) 

𝑇(𝑥, 𝑦, 𝑡) = 𝑇଴ − 𝑇௥௘௙ ቈ
𝑏𝑥ଶ

2𝜐௙

቉ (1 − 𝛼𝑡)ି
ଵ
ଶ𝜃(𝜂). . (9) 

𝜂 = ቈ
𝑏

𝜐௙(1 − 𝛼𝑡)
቉

ଵ
ଶ

𝑦 … … … … … (10) 

In this instance, u and v, the velocity components of 

ψ(x,y,t) are defined as      

𝑢 =
∂𝜓

∂𝑦
= ൬

𝑏𝑥

1 − 𝛼𝑡
൰ 𝑓'(𝜂)  … … … . . (11) 

𝑣 = −
∂𝜓

∂𝑥
= − ቆ

𝑣௙𝑏

1 − 𝛼𝑡
ቇ

ଵ
ଶ

𝑓(𝜂) … … … . (12) 

In this case, the derivative is with. respect to η, and 
thickness of the dimensionless film, denoted by γ, 
is derived by using equation (10).  

𝛾 = ℎ(1 − 𝛼𝑡)ି
ଵ
ଶ ቆ

𝑏

𝑣௙
ቇ

ଵ
ଶ

, … … . . (13) 

whichis given by 

𝑑ℎ

𝑑𝑡
= −(1 − 𝛼𝑡)ି

ଵ
ଶ ቀ

𝑣௙

𝑏
ቁ

ଵ
ଶ 𝛼𝛾

2
… … (14) 

From  governing equations (2)–(3), the 
following differential equations, which are of an 
ordinary type, may be constructed with the 
assistance of similarity transformation (see 
equations (8) to (10)). 
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𝑓ᇱᇱᇱ + 𝜑ଵ𝛾 ൬𝑓𝑓ᇱᇱ −
𝑆

2
𝜂𝑓ᇱᇱ − (𝑓ᇱ)ଶ − (𝑆 + 𝑀)𝑓ᇱ൰

= 0            … … … … … … … (15) 

𝜃ᇱᇱ + 𝜑ଶ ቆ
𝑘௙

𝑘௡௙
ቇ 𝛾 𝑃𝑟 𝑃𝑟 ൜൬𝑓𝜃ᇱ −

𝑆

2
𝜂𝜃ᇱ൰

+ (𝐴∗𝑓ᇱ + 𝐵∗𝜃)ൠ  = 0 … … (16) 

Subject to  boundary conditions  

𝑓(0) = 0, 𝑓ᇱ(0) = 𝜃(0) = 1 … … … … … … (17) 
𝑓ᇱᇱ(𝛾) = 𝜃ᇱ(𝛾) = 0        … … … … … … … . (18) 

𝑓(𝛾) =
𝑆𝛾

2
… … … … … … … … … … … … … (19) 

Here, γ  represents the film thickness, 𝑃𝑟 = 𝑘௙/

൫𝜇𝐶௣൯
௡௙

stands for  Prandtl number, and S=α/b for an 

unsteadiness parameter on  base fluid. The volume fractions 
𝜙ଵ𝑎𝑛𝑑 𝜙ଶare defined as follows: 

𝜑ଵ = (1 − 𝜑)
ହ
ଶ ቈ(1 − 𝜑) + 𝜑 ቆ

𝜌௦

𝜌௙
ቇ቉ , 

𝜑ଶ = (1 − 𝜑)𝜑 ൝
൫𝜌𝐶௣൯

௦

൫𝜌𝐶௣൯
௙

ൡ 

 

Heat transfer rate was defined by the Nusselt number 𝑁𝑢௫ 
whereas surface drag was characterized by the skin friction 
coefficients Cf. The following are the formulae for 𝜏௪, or 
shear stress, and for𝑞௪, or surface heat flux. 

 

𝜏௪ = −𝜇௡௙ ቂ  
డ௨

డ௬
  ቃ

௬ୀ଴
,       𝑞௪ =

−𝑘௡௙ ቂ
డ்

డ௬
ቃ

௬ୀ଴
 

 

𝐶௙ =
𝜏௪

1
2

𝜌𝑈ଶ
=

2

(1 − 𝜑)
ହ
ଶ

𝑅𝑒ିଵ/ଶ{−𝑓''(0)} … (20) 

𝑁𝑢௫ =
𝑥𝑞௪

𝑘௙(𝑇௪ − 𝑇଴)

= ቆ
𝑘௙

𝑘௡௙
ቇ 𝑅𝑒ିଵ/ଶ{−𝜃'(0)} (21) 

3. HOMOTOPY ANALYSIS METHOD(HAM) 

SOLUTION 

In order to obtain homotopy analysis solution of equations 
(15) to (16) with necessary boundary conditions (Ref. (17)-
(19)), we go with initial guess approximations as  

𝑓଴(𝜂) = 1 − 𝑒ିఎ … … … . (22) 

𝜃଴(𝜂) = 𝑒ିఎ … . (23) 

and the auxiliary linear operators as 

𝐿௙ =
𝜕ଷ

𝜕𝜂ଷ
−

𝜕

𝜕𝜂
… (24) 

𝐿ఏ =
𝜕ଶ

𝜕𝜂ଶ
− 1 … (25) 

The above linear operators satisfy  

𝐿௙[𝐶ଵ + 𝑒ఎ𝐶ଶ + 𝑒ିఎ𝐶ଷ] = 0 … (26) 

𝐿ఏ[𝑒ఎ𝐶ସ + 𝑒ିఎ𝐶ହ] = 0 … . (27) 

Here𝐶௜ is an arbitrary constant ( for𝑖 = 1, 2, … . , 5). 

 Zeroth order deformation equations are constructed 
by selecting q as the embedding parameter, as 
shown below. 

(1 − 𝑞)𝐿௙ൣ𝑓 ෡ (𝜂, 𝑞) − 𝑓଴(𝜂)൧ = 𝑞 ℏ௙𝑁௙ൣ𝑓 ෡ (𝜂, 𝑞)൧                               

 ………………………………………(28) 

(1 − 𝑞)𝐿ఏൣ𝜃 ෡ (𝜂, 𝑞) − 𝜃଴(𝜂)൧ = 𝑞 ℏఏ𝑁ఏൣ𝜃 ෡ (𝜂, 𝑞)൧

   …………………(29) 

 

With boundary condition 

𝑓 ෡ (0, 𝑞) = 0, 𝑓 ෡ ᇱ(0, 𝑞) = 1, 𝑓 ෡ ᇱ(∞, 𝑞) = 0

   …………….(30) 

𝜃 ෡ (0, 𝑞) = 1, 𝜃 ෡ ᇱ(∞, 𝑞) = 0  

    …..(31)  

In the above equations, prime stands for 
the partial derivatives with respect to η, andℏ௙and 

ℏఏstand for the non-zero auxiliary factors.It is also 
said that the nonlinear differential operators 𝑁௙and 

𝑁ఏ are 

𝑁௙ൣ𝑓 ෡ (𝜂, 𝑞)൧ =
డయ௙ ෡ (ఎ,௤)

డఎయ +

𝜙ଵ𝛾 ൦
𝑓 ෡ (𝜂, 𝑞)

డమ௙ ෡ (ఎ,௤)

డఎమ −
ௌఎ

ଶ

డమ௙ ෡ (ఎ,௤)

డఎమ −

ቀ
డ௙ ෡ (ఎ,௤)

డఎ
ቁ

ଶ

− (𝑆 + 𝑀)
డ௙ ෡ (ఎ,௤)

డఎ

൪………………(32) 

𝑁ఏൣ𝑓 ෡ (𝜂, 𝑞)൧ =
𝜕ଶ𝜃 ෡ (𝜂, 𝑞)

𝜕𝜂ଶ  

+𝜙ଶ

𝑘௙

𝑘௡௙
𝛾 𝑃𝑟

⎣
⎢
⎢
⎢
⎡ቊ𝑓 ෡ (𝜂, 𝑞)

𝜕𝜃 ෡ (𝜂, 𝑞)

𝜕𝜂
−

𝑆𝜂

2

𝜕𝜃 ෡ (𝜂, 𝑞)

𝜕𝜂
ቋ

+ ቊ𝐴∗
𝜕𝑓 ෡ (𝜂, 𝑞)

𝜕𝜂
+ 𝐵∗𝜃ቋ

⎦
⎥
⎥
⎥
⎤

 (33) 

 

Clearly, we have for 𝑞 = 0and 𝑞 = 1 

𝑓 ෡ (𝜂, 0) = 𝑓଴(𝜂), 𝑓 ෡ ᇱ(𝜂, 1) = 𝑓(𝜂) … (34) )

𝜃 ෡ (𝜂, 0) = 𝜃଴(𝜂), 𝜃 ෡ ᇱ(𝜂, 1) = 𝜃(𝜂)…(35) )

 

 using Taylor’s series, and equations (34) & (35), we have 

𝑓 ෡ (𝜂, 𝑞) = 𝑓଴(𝜂) + ෍ ⬚

ஶ

௠ୀଵ

𝑓௠(𝜂)𝑞௠ … (36) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1356–1366 | 1359  

𝜃 ෡ (𝜂, 𝑞) = 𝜃଴(𝜂) + ෍ ⬚

ஶ

௠ୀଵ

𝜃௠(𝜂)𝑞௠ … . (37) 

 

and 

𝑓௠(𝜂) =  
1

𝑚!

𝜕௠𝑓 ෡ (𝜂, 𝑞)

𝜕𝜂௠
|௤ୀ଴ … (38) 

𝜃௠(𝜂) =  
1

𝑚!

𝜕௠𝜃 ෡ (𝜂, 𝑞)

𝜕𝜂௠
|௤ୀ଴ … (39) 

Both ℏ௙ and ℏఏ are thought to be properly chosen so that 

equations (36) and (37) both converge at q=1. Then, because 

of equations (34) & (35),, we get 

𝑓(𝜂) = 𝑓଴(𝜂) + ෍ 𝑓௠(𝜂)

ஶ

௠ୀଵ

 (40) 

𝜃(𝜂) = 𝜃଴(𝜂) + ∑ 𝜃௠(𝜂)ஶ
௠ୀଵ   

 … . . (41) 

and respectively. 
 m-th order deformation equation is generated by taking 
derivative of deformation equations (28) and (29) that are in 
the zeroth order m-times with respect to q.  Derivative is then 
divided by the factorial of m to establish the value for q=0. 

𝐿௙[𝑓௠(𝜂) − 𝜒௠𝑓௠ିଵ(𝜂)] = ℏ௙𝑅௠,௙(𝜂). . (42) 

𝐿ఏ[𝜃௠(𝜂) − 𝜒௠𝜃௠ିଵ(𝜂)] = ℏఏ𝑅௠,ఏ(𝜂) … (43) 

With the chosen BCs are 

𝑓௠(0) = 𝑓௠
ᇱ (0) = 𝑓௠

ᇱ (∞) = 0 … (44)  

𝜃௠(0) = 𝜃௠(∞) = 0 … (45) 

Where𝜒௠ = {0 , 𝑚 ≤ 1 1 , 𝑚 > 1 … (46) 

and 

𝑅௠,௙(𝜂) = 𝑓௠ିଵ
ᇱᇱᇱ − 𝜙ଵ𝛾

𝑆𝜂

2
𝑓௠ିଵ

ᇱᇱ − 𝜙ଵ𝛾(𝑆 + 𝑀)𝑓௠ିଵ
ᇱ

+ 𝜙ଵ𝛾 ෍ ⬚

௠ିଵ

௞ୀ଴

[𝑓௠ିଵି௞𝑓௞
ᇱᇱ − 𝑓௠ିଵି௞

ᇱ 𝑓௞
ᇱ] 

……….(47) 
 

𝑅௠,ఏ(𝜂) = 𝜃௠ିଵ
ᇱᇱ − 𝜙ଶ

𝑘௙

𝑘௡௙

𝛾 𝑃𝑟
𝑆𝜂

2
𝜃௠ିଵ

ᇱ + 𝜙ଶ

𝑘௙

𝑘௡௙

𝛾

𝑃𝑟 𝑃𝑟 (𝐴∗𝑓௠ିଵ
ᇱ + 𝐵∗𝜃௠ିଵ)

+ 𝜙ଶ

𝑘௙

𝑘௡௙

𝛾 𝑃𝑟 ෍ 𝑓௠ିଵି௞𝜃௞
ᇱ  

௠ିଵ

௞ୀ଴

. 

………..(48) 

Here, to solve the eqs. (42) - (43) one after the other 

(for  𝑚 = 1 ,2, 3, … ), a tool MATHEMATICA is 

used. 

4. ANALYTICAL SOLUTION SHOWING THE 

CONVERGENCE 

As suggested by Liao [40], the auxiliary parameters 
ℏ௙ and ℏఏplay an important part in preventing the 

[41-42]. Liao [40] introducedℏ -curve that provides 

for an appropriate selection inℏ௙ and ℏఏvalues in 

order to make certain the convergences solutions in 
the infinite series 𝑓(𝜂) and 𝜃(𝜂)form, respectively. 
In the present analysis, we have plotted 𝑓ᇱᇱ(0) 
versus ℏ௙for various values of  𝜙ଵ shown in figs. 

5. RESULTS AND DISCUSSION 

          Homotopy analysis method (HAM) is a 
analytical method which is influential mathematical 
tool for solving nonlinear equations.  This approach 
enables to obtain a power series solution that may 
usually converge to the exact solution. In the current 
paper, an unsteady magnetohydrodynamic (MHD) 

considered for volume fraction. Governing PDEs 

solved by HAM. By solving (19), we have found𝛾. 
Equation (15) is decoupled from (16). The two 
parameters S and 𝜙haveaffected the flow and heat 
transfer within the boundary layer by keeping fixed 

 
It is observed that as 𝑆 → 0  film thickness 𝛾 → ∞. 
Furthermore, as 𝑆 → 0, we obtain the convergent 
solution analytically. While𝑆 → 2corresponds to an 
infinitesimal thickness𝛾 → 0. Here, a HAM 
solution has been achieved for 0 ≤ 𝜙 ≤

𝑆 ≤ 2. 
 Effects of magnetic field M on  axial velocity 
profile f'(𝜂).   for various values of an unsteadiness 
parameter S are shown in Figs. (1)–(2).  It is 
determined that as the magnetic field parameter 
values rise,  fluid's velocity profile decreases. 
 Space-dependent effects A* on  free surface 
temperature θ(η) are shown in Figs. (3)–(4) for 
S=0.8 and 1.2, respectively.  Graphs show that as 
A*values rise, 𝜃(𝜂) increases. 
Figs.(5)-(6) illustrates the effects non temperature 
dependent effects 𝐵∗ on  free surface 

transformed into ODEs by similarity

rate of approximation and convergence by HAM

a tolerable range known as the convergence region,

(13) and (14).

been examined analytically using HAM. Effects of
temperature profile for nanofluid have been

transformations. Result an t BVPs, which are

nonlinear in nature (refer eqns. (15)-(19)), are

value of Pr as 6.2 throughout the study.

0.2 𝑎𝑛𝑑 0 ≤

laminar boundary layer thin film nanofluid flow has
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temperature𝜃(𝜂) for 𝑆 = 0.8 𝑎𝑛𝑑 1.2, respectively. 
The graphs reveal that the temperature profile 𝜃(𝜂) 
enhances with a increase in 𝐵∗  values. 
Figures (7)–(8) illustrate how the dimensionless 
free surface temperature is affected by  magnetic 
field M for S=0.8 and 1.2, respectively. These 
graphs show how the fluid's surface temperature  
rises as the magnetic field M value of  fluid 
increases. 
It is evident from fig. (9), that as M increases, wall 
shear stress −f″(0) increases but wall heat flux -θ'(0) 
decreases (see fig. (10).  

Plots (11)–(12) show that  value of −θ′(0) in  border 
area declines with increases in A* and B* for S=0.8 
and 1.2, respectively. 
Figures (13) through (14) show the curves of  f '' (0) 
for known values of 𝜙ଵand, by utilizing  11th-order 
HAM approximation. Comparative findings 
produced by  analytic solution for normal fluid (for 
φ = 0) are shown in Table 1.  results obtained exhibit 
great agreement with those of Wang (2006) and 
Aziz et al. (2018). 

 

 
Table-1: Comparison for the case of regular fluids (i.e. at Pr =1 and φ = 0) 

S Wang [2] Aziz et al [27] Present result 

 −𝑓ᇱᇱ(0) 𝜃(1) −𝜃′(1) 𝑓ᇱᇱ(0) 𝜃(1) −𝜃′(1) – 𝑓ᇱᇱ(0) 𝜃(1) −𝜃′(1) 

0.8 2.68094 0.097884 3.595970 2.680943 0.097956 3.591125 2.680940 0.097955 3.591130 

1.0 1.97238 - - 1.972384 0.266422 2.533515 1.972384 0.266422 2.533515 

1.2 1.442631 0.286717 1.999590 1.442625 0.286717 1.999590 1.442623 0.286717 1.999590 

1.4 1.012784 - - 1.012784 0.821032 1.012784 1.012784 0.821032 1.012783 

1.6 0.642397 - - 0.642397 0.567173 1.012784 0.642397 0.567173 1.012784 

1.8 0.309137 - - 0.309137 0.356389 0.309137 0.309137 0.356389 0.309137 

 

The ℏ-curve for  𝜃′(0) is shown in the fig.(15). 

 

 

                                             Fig.(1) 

 

                                            Fig.(2) 

Figs. (1 & 2) represents M effects on the velocity profile 𝑓ᇱ(𝜂) 
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                                               Fig.(3) 

 

                                               Fig.(4) 

Figs. (3 & 4) represents Space-dependent 𝐴∗effects on the free surface temperature 𝜃(𝜂) 

 

                                                Fig.(5) 

 

                                                   Fig.(6) 

Figs. (5 & 6) represents Temperature-dependent 𝐵∗effects on free surface temperature 𝜃(𝜂) 
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                                                    Fig.(7) 

 

                                                  Fig.(8) 

Figs. (7 & 8) represents M effects on free surface temperature 𝜃(𝜂) 

 

 

Fig.(9). Wall shear stress  −𝑓 ′′(0)  𝑣𝑠.  𝑀  for special values of  𝑆 

 

 

Fig.(10). Gradient of wall temperature–θ'(η) vs. M for certain values of S 
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Fig.(11). Wall temperature gradient – 𝜃ᇱ(0)  𝑣𝑠.  𝐴∗  for special values of 𝑆 

 

 

 

Fig.(12). Gradient of wall temperature −𝜃ᇱ(0)  𝑣𝑠.  𝐵∗ for certain values of S 

 

 

Fig. (13). 𝑓ᇱᇱ(0) curve for special values of volume fraction 𝜙ଵfor 𝑆 = 0.8 using 11th-order HAM approximation 
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Fig.(14).  𝑓 ′′0) curve for special values of volume fraction using 11th-order HAM approximation 

 

 

 

Fig.(15).  ℏ-curve for the HAM approximation solution over −𝜃′(0) 

 

6. CONCLUSION 

    Following are  key findings from HAM's current study. 
Dimensionless film thickness γ decreases as volume 
fraction parameter υ increases. Due to varying levels of S, 
the velocity boundary layer thickens as the nanofluid 
boundary layer approaches thinning.  

i. An increase in 𝜙enhances 𝜃(𝜂)thereby increases 
the thicknessof thermal boundary layer. 

ii. – 𝑓ᇱᇱ(0), the skin friction, enriches the volume 
fraction 𝜙 

iii. – 𝜃ᇱ(0),the dimensionlesswall temperature 
gradient, declines the volume fraction 𝜙 

iv. Thickness of thermal boundary layer enhances by 
heat generation/ absorption coefficients. 
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