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Abstract: This research proposes using causality models to analyse and infer student placement data. It demonstrates the distinctions 

between applications of Causal Machine Learning and Machine Learning for resolving different education-related processes. Association 

does not equal Causation. In traditional machine learning, the focus is often on predicting outcomes or patterns based on input data. 

However, causal machine learning goes beyond prediction by aiming to uncover cause-and-effect relationships between variables. The 

review of causal inference in the presence of massive data sets is a rich and expanding field of contemporary research. The goal of causal 

inference is to understand how changes in one variable affect another, and to identify the underlying mechanisms that lead to certain 

outcomes. The causal Inferencing which is the key concept for causal machine learning can be implemented using the DAG (Directed 

Acyclic graph). Through this paper we aim to provide some useful insights using 3 causal discovery tools (PC, GES, LiNGAM) to produce 

the DAGs. We proposed a novel 3D framework (Data correlation, Discovery tool using Causal ML, Domain knowledge) which combines 

the merits of both manual and causal discovery tools. The causal graph obtained is checked for falsification i.e. the correctness of the graph. 

The obtained graph needs to be informative and significance level (p-value < 0.05) so that the DAG would be accepted. Thus, a final Causal 

Model is formed that represents relationships between the variables to understand and predict the effects of interventions or changes in the 

system.  

Keywords: Causal relationships, Causal discovery techniques, Directed Acyclic Graph (DAG), 3D Framework, Treatments, Confounders, 

Falsification, Causal Modelling. 

1. Introduction 

Despite all the hype surrounding AI, the majority of ML 

initiatives prioritise outcome prediction over causality 

analysis. Indeed, after several AI projects, It is realized that 

ML is great at finding correlations in data, but not causation. 

This problem severely restricts our ability to use Machine 

Learning for Decision Making.  

Machine learning is a powerful tool to find patterns and to 

examine associations and correlations, particularly in large 

data sets [1]. Although the use of machine learning has led 

to the emergence of numerous productive sectors for 

research in social science, public health, economics, 

education and medicine, these disciplines still need 

approaches that can address causal issues rather than just 

correlational analysis. Various tools can be used manage the 

student projects, placements[14]. ML algorithms in their 

current state can be biased, suffer from a relative lack of 

explainability, and are limited in their ability to generalize 

the patterns they find in a training dataset for multiple 

applications. Exploration is done on how to combine the 

different parameters that affect the accuracy of the machine-

learning algorithms with respect to different  products[15]. 

It is reasonable to assume that considering causality in a 

world model will be a critical component of intelligent 

systems in future. In traditional machine learning, the focus 

is often on predicting outcomes or patterns based on input 

data. However, causal machine learning goes beyond 

prediction by aiming to uncover cause-and-effect 

relationships between variables. 

The commonly held belief that "correlation does not imply 

causation" refers to the fact that a causal relationship 

between the variables cannot be inferred just from 

correlation. It is important to remember that correlations do 

not always imply the presence of potential causal 

relationships. On the other hand, strong correlations also 

overlap with identity relations (tautologies), where no 

causal process is present, and the factors underlying the 

correlation, if any, may be indirect and unknown. As a 

result, establishing a causal relationship (in either direction) 

requires more than just a correlation between two variables. 

The review of causal inference in the presence of massive 

data sets is a rich and expanding field of contemporary 

research. Understanding how changes in one variable 

impact another and figuring out the underlying mechanisms 

that produce particular results are the two main objectives 

of causal inference. This is important in various fields such 

as healthcare, economics, social sciences, and more, where 

understanding causality can be crucial for making informed 

decisions and interventions.  
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The difference between the prediction and causal inference 

can be described as follows. 

 

Fig .1. Difference between the prediction and causal 

inference 

Making well-informed decisions requires the use of causal 

inference, which goes beyond the simple connections found 

in predictive models to reveal the actual processes that 

generate data. Even in the lack of interventional data, it 

allows us to estimate the impacts of treatments and 

counterfactual outcomes. To truly comprehend linkages in 

the actual world and generalise knowledge, it is imperative 

to go beyond correlation-based research. For example, it is 

crucial to accurately forecast and comprehend the causal 

impacts of computing systems that actively intervene in 

societally significant domains like healthcare, education, 

and governance.  

1.1 Machine Learning Applications 

• Personalized Learning:  

 Adaptive Learning Systems use different Platforms using 

ML to adapt educational content to individual student needs 

based on their learning pace and style. 

 Intelligent Tutoring Systems (ITS) like Carnegie Learning 

provide personalized tutoring by analyzing student 

performance data to adapt instructional strategies in real-

time. 

• Predictive Analytics: 

 Student Performance Prediction is carried out using ML 

models by predicting student outcomes, such as grades and 

graduation rates, enabling early intervention for at-risk 

students[17]. 

Dropout Prevention can be done by analyzing historical 

data, ML models identify students at risk of dropping out 

and suggest interventions[18]. 

• Natural Language Processing (NLP): 

Automated Essay Scoring can be done using tools like 

Grammarly to evaluate and score essays, providing 

immediate feedback on writing quality. 

Chatbots and Virtual Assistants are used to answer student 

queries, offer homework help, and provide administrative 

support. 

• Content Recommendation: 

Recommender systems suggest the next best course or 

module based on a student's performance and interests 

for Learning Path Optimization. ML helps in 

recommending textbooks, research papers, and 

supplementary materials tailored to individual learning 

needs. 

• Classroom Analytics:  

Attendance Monitoring can be done using computer 

vision and ML by tracking student attendance and 

engagement during classes. Behavioral Analysis can be 

done using ML models by analyzing classroom 

behavior to understand engagement levels and identify 

disruptive patterns. 

1.2 Causal Machine Learning Applications 

• Impact Evaluation of Educational Interventions: 

 Causal ML models, such as causal forests or double 

machine learning, evaluate the effectiveness of educational 

programs and policies by isolating causal effects from 

confounding variables. These models help in understanding 

the impact of policy changes, such as changes in curriculum 

or teaching methods, on student outcomes. 

• Personalized Education Plans: 

Causal ML can identify which educational interventions 

work best for which students, allowing for more precise and 

effective personalized education plans. By understanding 

how different students respond to different interventions, 

educators can design strategies that maximize overall 

educational outcomes. 

• Resource Allocation: 

Causal ML helps in determining the most effective 

allocation of educational resources, such as funding, 

teachers, and technology, to maximize student success. 

These models evaluate how different student demographics 

are affected by resource distribution, ensuring more 

equitable educational opportunities. By leveraging ML and 

Causal ML, the education sector can significantly enhance 

its ability to deliver personalized, effective, and equitable 

learning experiences. 

1.3 Causal ML Models 

Our data contains patterns, which machine learning lets us 

identify and use to inform decisions. Our decision-making 

process is being revolutionised by machine learning. Its 

foundational premise is that the data it sees during training 

is indicative of the data it sees in production and the data we 

used for testing. Errors occur when this assumption is 

violated. Thus, once the model has been implemented, it is 

crucial to monitor its performance as well as the distribution 

of the variables. We must retrain the model and teach it the 
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correlation patterns found in the new data set whenever 

there is a noticeable drift in any of the important variables. 

Thus, this basic premise and this assumption is what 

machine learning is based on. 

Causal machine learning refers to the application of 

machine learning techniques to infer and understand causal 

relationships between variables. Causal machine learning 

faces unique challenges because establishing causation 

requires more than just observing correlations. It often 

involves dealing with confounding variables, selection bias, 

and other factors that can influence both the treatment and 

outcome. Researchers and practitioners use various 

methods, such as randomized controlled trials, 

observational studies, and causal modeling techniques, to 

provoke causal relationships from observational data. So, 

for good decision making we just not only need predicting 

the target variable but also to find the variables that caused 

the outcome. We also need to estimate how the outcome 

would change if we changed these variables. This is called 

causal inference. 

 

Fig .2. Causal Graph where T is the Treatment, Y is the 

outcome, X is the Confounder 

1.4 Causal Effect  

Causality can be defined as follows. We state that a 

treatment T (which may also refer to a decision or an action) 

results in an outcome Y if and only if altering T modifies Y 

while maintaining all other parameters constant. 

 

 

Fig .3. Causal graph representing the real world(left) & 

counterfactual world(right) 

There are two main obstacles to causal inference: 

1. We never see the counterfactual reality; We can't compute 

the causal effect directly; We have to estimate the 

counterfactuals; and There are validation issues.  

 

2. A single data distribution can be fitted with many causal 

mechanisms.  

Causal inference requires assumptions and domain 

expertise; data alone is insufficient.  

2. Literature Review 

One of the study tells about experimental designs for 

educational systems are introduced with DAGs and 

graphical models. Sequential interventions and confounding 

model control are especially emphasized. Comparing the 

effectiveness of g-formula and (Inverse Probability of 

Treatment Weighting) IPTW for obtaining unbiased causal 

estimates in educational contexts, it shows how important it 

is to account for confounders in order to provide causal 

estimates that are reliable. A popular experimental design in 

education is the Randomised Controlled Trial (RCT), which 

assigns participants at random to treatment and control 

groups with the goal of removing confounding variables. 

Sequentially Multiple Assignment Randomized Trial 

(SMART) is another design that uses randomization at 

every stage to enable several interventions and assessments 

over time. This suggests more clever experimental designs 

by gathering more comprehensive student data, which 

includes possible confounders in diagnostic exams, and 

modelling the educational system with time-varying 

interventions and feedback from confounders. There is a 

need for more sophisticated methods because traditional 

assessments of educational systems do not account for 

confounding variables, provide feedback to students, or 

account for real-world study variances. This study addresses 

the sequential character of learning and the significance of 

several interventions in educational systems. It also 

emphasises how large amounts of educational data are 

available for the development of intelligent modelling and 

inference algorithms. Time-varying confounders may not be 

captured by several frameworks used in education, such as 

Intelligent Tutoring Systems (ITS), Hidden Markov Models 

(HMM), Dynamic Bayesian Networks (DBN), and others. 

The implementation and assessment of these suggested 

models and methods in actual educational environments 

may be the main focus of future study in order to gauge their 

efficacy in raising student performance and enhancing 

educational outcomes. The paper emphasizes the 

importance of modeling educational systems using 

graphical causal models and directed acyclic graphs (DAGs) 

to quantify interventions and confounders accurately, 

enabling the derivation of unbiased causal estimates of joint 

interventions on outcomes. It discusses the limitations of 

traditional cross-sectional studies in educational research 

and highlights the need for experimental and quasi-

experimental designs that consider confounding variables, 

feedback mechanisms, and real-world deviations from ideal 

conditions [1]. One research work describes about the 

Mathematical foundations of machine learning with various 
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examples. An empirical study of supervised learning 

algorithms like Naïve Bayes, KNN and semi-supervised 

learning algorithms viz. S3VM, Graph-Based, Multiview 

are also explained in the view of Machine learning 

algorithms[16]. 

A research work explains to uncover and analyse the 

correlations between the important student traits associated 

with low performance, the research applies machine 

learning and causal discovery algorithms. It uses a variety 

of machine learning and causal discovery techniques to 

predict and explain correlations between children who score 

poorly in reading, emphasising patterns and data insights 

already in place. The introduction places a strong emphasis 

on the value of education in society and the necessity of 

comprehending the connection between academic 

achievement and student characteristics. Gradient Boosting, 

K-nearest neighbours, SVM, Random Forest, and Decision 

Tree are the  machine learning algorithms used in this work 

to analyse student data and performance. The impact of 

variables on low-performing students was inferred and 

causal linkages were found using four different causal 

discovery algorithms: PC, GES, LinGAM, and GOLEM. 

The study report made use of information from the PISA 

2018 database[2]. Causal discovery algorithms were 

evaluated for their effectiveness in characterising the 

relationships among at-risk students using evaluation 

criteria such as FDR, Recall, Precision, F1 score, and SHD 

score. To study the correlations between student 

performance and attributes in greater detail, future research 

may require investigating novel causality models. 

Researchers can gain more understanding of the variables 

impacting students' academic performance by utilising 

various causal discovery algorithms or combinations of 

algorithms.  

3. Methodology  

In this section the proposed work is implemented using the 

various causal discovery algorithms using the Placement 

Dataset to draw a causal graph which talks about the 

treatments, outcomes, confounders and instrument variables 

which are discussed in the above sections. A novel 

framework called 3D Framework is proposed and utilised to 

consolidate the aspects of the different causal discovery 

algorithms with the help of Domain knowledge which is 

necessary for Causal Modelling. 

3.1 Python Libraries 

DoWhy is a Python library designed to encourage causal 

analysis and thought, similar to what machine learning 

libraries have done for prediction. DoWhy offers an 

extensive range of algorithms for root cause analysis, 

interventions, effect estimation, prediction, quantification of 

causal influences, learning causal structures, diagnostics of 

causal structures, and counterfactuals. DoWhy's response 

API, which can verify causal assumptions for any estimation 

method, is a crucial component that improves inference's 

robustness and makes it more understandable for non-

experts. 

Modelling causal relations as a causal graph is the first step 

in carrying out a causal job in DoWhy. The "cause-effect-

relationships," found in a system domain are modelled by a 

causal graph. This helps to clarify each causal presumption. 

We need the causal graph to be a directed acyclic graph 

(DAG), with an edge X→Y signifying that X is the cause of 

Y. A causal graph represents the conditional independence 

relationships between variables statistically. 

Causal Inference Libraries: 

DoWhy: A library that provides a unified interface for 

causal inference methods. It is built on top of popular 

libraries like Pandas, NumPy, and scikit-learn. 

CausalML: A library that offers a suite of methods for causal 

inference and machine learning, including methods for 

estimating treatment effects and dealing with confounding. 

EconML (Econometric Machine Learning): Developed by 

Microsoft Research, this library focuses on providing tools 

for estimating treatment effects using machine learning 

methods. 

3.2 Data Preprocessing 

The dataset is loaded, and different preprocessing 

techniques are performed to remove the unwanted data and 

clean the data by encoding, removing the missing values. 

Causal modelling, also known as causal discovery, is the 

initial stage. This involves encoding our assumptions in a 

causal graph. Our subject expertise will be added to our 

observational dataset. This step focuses on discovering the 

network of influences that exist between the features. The 

directed acyclic graphs (DAGs) are used to quantify the 

experimental design for the educational system that is 

proposed. Moreover, we propose to represent the 

educational system as a mixture of confounders, time-

varying treatments, and feedback between the former two. 

Modelling and assessment take up most of the time in the 

early stages, while feature engineering can take much longer 

as the system ages [1]. 

3.3 Causal Discovery Algorithms 

A widely used causality framework is the graphical model 

that use Directed Acyclic Graphs (DAGs).  

• Directed edges are used in the graphical model to 

indicate the cause and effect.  

•  

Simple to show the outcome, treatment/intervention, 

and confounding.  

•  

 It depicts the procedure used to generate data. 
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•  

 It is simple to show d-separation and 

data independence.  

3.3.1 Peter – Clark (PC) algorithm   

PC stands for the Peter and Clark algorithm, used for 

learning the structure of Bayesian networks from data. It is 

a constraint based causal discovery method. 

_________________________________________ 

Algorithm steps: 

_________________________________________ 

1. Graph Initialization: Form a complete undirected 

graph on the vertex set V. 

2. Edge Deletion: Iteratively select pairs of variables 

X and Y that are adjacent in the graph, test for d-

separation, and delete edges based on conditional 

independence tests. 

3. Graph Refinement: Update the graph structure by 

recording subsets of adjacent variables that lead to 

d-separation, ensuring accurate representation of 

conditional independence relationships. 

4. Efficiency and Reliability: The PC algorithm is 

computationally efficient and asymptotically 

reliable but may take unnecessary risks on sample 

data, impacting edge elimination decisions. 

3.3.2 Greedy Equivalence Search (GES) 

algorithm 

The Greedy Equivalence Search (GES) algorithm with the 

Bayesian Information Criterion (BIC) score is a method 

used for score-based causal discovery in graphical models. 

Here's a step-by-step explanation of how this algorithm 

works: 

_________________________________________ 

Algorithm steps: 

_________________________________________ 

1.Graph Initialization: Begin with an empty graph where no 

edges are present. 

2. Initialize Possible Edges: Specify the possible directions 

for edges between variables (e.g., A → B, A ← B, A ↔ B). 

3. Iterative Edge Addition and Deletion: For each pair of 

variables X and Y, consider adding an edge X→Y, X←Y, 

or X↔Y (bidirectional). Also, consider deleting existing 

edges to explore different graph structures. 

4. Score Computation: For each proposed graph (with added 

or deleted edges), compute the BIC score. The BIC score 

balances model fit and complexity. The BIC score for a 

graph G given data D is calculated as:  

BIC(G)=log(P(D∣G))−2dlog(n) ,where P(D∣G) is the 

likelihood of the data given the graph G where d is the 

number of parameters in the model and n is the sample size. 

5. Model Selection: Choose the graph structure that 

maximizes the BIC score among all considered structures. 

6. Repeat and Refine: Continue the process of adding or 

removing edges, re-computing the BIC scores, and selecting 

the best-scoring model until convergence or a predefined 

stopping criterion (e.g., maximum iterations) is met. 

7. Final Model: The resulting graph with the highest BIC 

score represents the inferred causal relationships among 

variables based on the given data. 

3.3.3 Linear, Non- Gaussian Acyclic Model 

(LiNGAM) 

Constrained functional causal discovery using LiNGAM 

(Linear Non-Gaussian Acyclic Model) involves a 

methodology for inferring causal relationships among 

variables from observational data while incorporating 

specific constraints or assumptions about the underlying 

causal structure. 

LiNGAM is a model used for causal discovery that assumes 

a linear causal relationship between variables but allows for 

non-Gaussian (non-normally distributed) noise. The 

fundamental assumption of LiNGAM is that the causal 

relationships among variables can be represented by a 

directed acyclic graph (DAG), where nodes represent 

variables and edges represent causal relationships. 

_________________________________________ 

Algorithm steps: 

_________________________________________ 

1. Model Specification: Define the LiNGAM model 

and its assumptions, including linearity of causal 

relationships and non-Gaussian noise. 

2. Data Preprocessing: Prepare the data, ensuring that 

it meets the assumptions of the LiNGAM model 

(e.g., linearity, non-Gaussian noise). 

3. Causal Discovery: Use the LiNGAM algorithm to 

infer the causal structure from the data. This 

involves estimating the parameters of the model 

that best explain the observed data. 

4. Incorporating Constraints: Apply constraints to the 

causal discovery process. These constraints might 

include: 

• Variable Subset Constraints: Limit the 

 search for causal relationships to a specific 

 subset of variables. 

• Structural Constraints: Enforce specific structures 

in the causal graph (e.g., acyclicity, sparsity). 

• Interventional Constraints: Incorporate known 

interventions or causal relationships based on prior 

knowledge. 
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5. Evaluation and Validation: Assess the quality and 

validity of the inferred causal model. This may 

involve cross-validation, testing against 

independent datasets, or comparison with ground 

truth if available. 

In summary, constrained functional causal discovery using 

LiNGAM-based algorithms provides a principled approach 

to uncovering causal relationships while incorporating 

domain knowledge and respecting specific constraints on 

the causal structure. This methodology is particularly useful 

in fields such as economics, genetics, and neuroscience, 

where understanding causal relationships is critical for 

making informed decisions and drawing meaningful 

conclusions from data. 

3.4 Manually determining the DAG based on the 

Domain Knowledge (using MCMD Generalization) 

The predominant outcomes in the educational field are 

imperatively & evidently comparative in real time 

execution.  

• For instance, selection of a student in placements 

is a comparative selection, based on an entry 

criterion common for all students and a selection 

criterion where their performance is compared 

with other students.  

• Another instance, the institute ranking is a 

comparative scale among other institutes offering 

same academic functions.  

• Similarly, student performance even though is 

absolute in nature, but its applied usage is done 

comparatively. 

Considering this very nature of Education field, its 

important and will be effective if the decisions are taken 

based on the attributes/factors which serve as 

differentiators. For example, the number of Internships, 

communication skills, might have greater influence on the 

selection of a student in placements, however only after 

meeting the minimum criteria of entry eligibility.  

Minimum Criteria and Maximum Differentiators 

(MCMD), a technique that can be used when using the 

Domain Knowledge in determining the Causal Graph. 

Proposing a generalization for identifying the treatments in 

a DAG model of a given use case.  Using the technique of 

Minimum Criteria and Maximum Differentiators (MCMD), 

decisions in Education domain can be taken effectively, 

based on two factors. 

1. The features that must meet a minimum criterion in-

order to be eligible for pursuing an aspired outcome – 

Treatments. 

2. The features that influence to maximize the chances of 

outcome by aiding to generate differentiating attributes 

that favors the interest of an outcome – Instrument 

Variables. 

This theorem can be used in deciding the datasets, 

determining to model the causal graphs, identifying the 

treatments that can used in decision models.  

Framework for deriving the Causal Graph - 3D 

Framework (Data Correlation, Discovery by Causal 

ML, Domain Knowledge) 

This name is picked from the perspective that the analysis is 

done from 3 dimensions to determine a graph which can be 

approximated to the best possibility of the interested 

outcome. It illustrates a hybrid Approach combining the 

merits of both manual and causal discovery tools. 

1. Based on the Data Correlation, by running the 

correlation on the given dataset, from the Correlation 

Matrix, pick the most related (+ve and -ve) features onto the 

interested outcome. This will give the relationship between 

the features, offcourse mathematically (statistical 

association). Significantly correlated/related (both +ve / -

ve) features are noted as the 

Treatments/Interventions/Causes, and their corresponding 

related features are considered as the Treatment Variables. 

Also, the moderately correlated features are also considered 

as Instrument Variables.  

From the correlation matrix:  

a. Treatments/Interventions/Causes: those with strong 

correlation coefficient to the interested outcome (i.e 

more than 0.5), or the very -vely correlated ones. 

b. Instrument variables: those with moderate 

correlation coefficient to the interested outcome (i.e 

more than 0.2).  

c. Confounders: those with correlation to both 

Treatment and Outcome features.  

  

2. By using the Causal Discovery algorithms (PC, 

GES, LiNGAM), we will use the DoWhy 

package’s CausalLearn (CDT-Causal Discovery 

Toolset) library. By this step, we will have causal 

model identified CPDAG (completed partial 

DAG), from which, the nodes which are directly 

associated to the outcome node will be picked as 

the Treatments and the indirectly related nodes are 

noted as the Instrument Variables and the ones 

which are directly related to both the outcome and 

treatment variables as Confounders.  

3. By using the Domain Knowledge, we use the 

MCMD approach (Minimal Criteria and Maximum 

Differentiators). Based on this, the features which 

are factored for meeting a minimal required criteria 

are noted as Treatments, and the features that can 

enhance / maximize the chances of the outcome in 

a desired/targeted way are noted as Instrument 
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Variables. Typically used technique for gathering 

the inputs from multiple people is called Event-

Storming.  

Combining the above 3 steps, the framework is used to 

determine the Causal Graph. This results in a causal model 

which can be effective for decision making towards the 

interested target outcome factoring the ML techniques 

validated by the domain expertise.  

The table that captures the Treatments, Instrument 

Variables, Confounders from the above 3 approaches is 

called the 3D decision table. It’s a composite and tabular 

layout to pick up the features which are identified by the 3 

approaches commonly.  

Table 1. 3D Table 

Outcome: D#1 
Causal Discovery 

Toolset 
D#3 

<<>>  

Data 

Correlati

on 

P

C 

GE

S 

LiNGA

M 

Domain 

Knowled

ge 

Treatment

s 
          

Instrumen

t 

Variables 

          

Confound

ers 
          

 

3.5 Falsifying or validating the identified Causal graph 

for the correctness 

An informative causal graph is one that captures the true 

causal structure to some extent. It aligns with the actual 

dependencies and causal mechanisms present in the 

observed data. In other words, the graph is not purely 

random or arbitrary. It reflects meaningful relationships. 

During falsification process, we evaluate whether the given 

causal graph (DAG) is consistent with the observed data. 

We test whether the graph adheres to certain statistical 

properties (such as conditional independence relationships) 

that are expected based on causal assumptions. The concept 

of Markov equivalence class is crucial here. Two DAGs are 

in the same Markov equivalence class if they imply the same 

set of conditional independence relations. If a given DAG is 

informative, it means that it lies within the same Markov 

equivalence class as the true causal graph. When the 

falsification tests are performed, we compare the given 

DAG against permuted (randomized) versions of the graph. 

If the given DAG is significantly better (in terms of adhering 

to LMCs) than most permuted DAGs, we do not reject it. 

The p-value associated with the Markov equivalence class 

informs us about the informativeness of the graph. In 

summary, an informative causal graph provides 

meaningful insights into the causal relationships, and during 

falsification, we assess whether it aligns well with the 

observed data.  

3.6 Creating the Causal Model 

A causal model is a conceptual or mathematical framework 

that represents relationships between variables to 

understand and predict the effects of interventions or 

changes in the system. It describes how variables are 

interconnected and how one variable can influence another, 

often through a series of direct and indirect paths. Causal 

models help in identifying the cause-and-effect 

relationships rather than just associations or correlations. 

 

Fig .4. Code Snippet to create Causal Model 

Causal models provide the structure and framework for 

causal inference, enabling researchers to uncover and 

quantify causal relationships from data. 

4. Results and Discussion 

The Proposed Model is explored with various stages like the 

Preprocessing, applying the Correlation model, Causal 

Discovery techniques and 3D Framework which uses the 

principle of Minimum Criteria and Maximum 

Differentiators (MCMD) on the student placement data to 

form the Directed Acyclic Graph (DAG). The robustness of 

the graph is checked by falsification process which assesses 

and tells whether the graph is informative and aligns well 

with the observed data. 

4.1 Dataset/Usecase/ Tools 

The dataset used in the research work is Placement of the 

student by the end of their graduation which is extracted 

from Kaggle[7]. The dimensions of the dataset are 2967x8 

meaning there are 2967 records of students and 8 features 

in total. The features include age, gender, stream, 

internships, cgpa, hostel facility,HistoryofBacklogs, 

PlacedorNot. All the data is numerical and not 

categorical. In the fields where the values are just 0’s and 

1’s, 0 stands for no, and 1 is for yes.  

4.2 Identifying the correlated features using the 

Correlation matrix  

Here, as per the correlation matrix , the highly positively 

correlated features with the outcome variable PlacedOrNot 

are CGPA with 0.59 and Internships with 0.18. 
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Fig .5. Correlation Matrix showing the Positively and 

negatively correlated features 

4.3 Identifying the treatments and producing the DAG 

using PC (Peter Clark Algorithm), GES (Greedy 

Equivalence Search Algorithm), LiNGAM (Non -

gaussian Linear causal model Algorithm) for 

causal discovery 

The directed acyclic graphs (DAGs) are used to quantify the 

experimental design for the educational system that is 

proposed. Causality attempts to describe the relationship 

that can exist between two variables [2]. Causality can be 

usually divided into two main subjects: 

• Causal Inference which designates a branch of 

knowledge that examines the presumptions, 

research plans, and estimating techniques that 

enable researchers to infer causal relationships 

from data. 

• Causal Discovery which is related to the process 

of discovering causal relationships by analysing 

the statistical properties of observational data. 

The different Causal discovery methods are 

• constraint based causal discovery – It aims to infer 

causal structure from data by leveraging 

independence structure between the variables. The 

known algorithms is PC 

• Score based causal discovery – It generates 

candidate graphs iteratively, then chooses the best 

one after assessing how well each one describes the 

data. GES belong to this family. 

• constrained functional causal discovery – Based on 

structural equations that define the causal 

relationships . LiNGAM- based models 

Considering the results of PC, GES, LiNGAM methods for 

the causal discovery in the proposed work. 

 

 Peter – Clark(PC) Algorithm 

 

Fig .6. Snapshot of Final Causal graph using PC Algorithm 

The above graph gives a CPDAG (Completed Partially 

Directed Acyclic Graph). From the features of the placement 

dataset, the PlacedOrNot (outcome) is caused by CGPA 

(Treatment). Instrument variables & confounders are not 

present. 

 Greedy Equivalence Search (GES) algorithm 

 

Fig .7.  Snapshot of Final Causal graph using GES 

Algorithm 

From the Graph, Treatments – CGPA, 

 Internships  Outcome – PlacedOrNot,   

Confounder – Age, 

 Instrument Variable – Gender 

 Linear, Non- Gaussian Acyclic Model (LiNGAM) 

Fig .8.  Snapshot of Final Causal graph using LiNGAM 

Algorithm 
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From the Graph,  

Treatments – CGPA, Internships,  

 Outcome – PlacedOrNot 

  Confounder – Nil,   

 Instrument Variable – Gender, Age 

4.4 3D Framework – Hybrid Approach 

Determining the DAG involves 3 ways to execute. It uses a 

hybrid approach, a composite render of ML correlation-

based relations + Causal ML based causal discovery + 

application of Domain knowledge to determine the DAG. 

Table 2. Example 3D from the implementation 

The method for discussing and determining the variables by 

the domain experts is called as Event-Storming. 

From the above table:  

Treatments: CGPA 

Instrument Variables: Internships, Gender 

Confounders: HistoryOfBacklogs 

 

Fig. 9. Snapshot of Final Causal graph using the 

Hybrid(3D) Approach 

4.5 The falsify_graph function is part of the DoWhy 

library, which provides tools for causal inference. 

Specifically, it focuses on falsifying causal graphs 

(Directed Acyclic Graphs or DAGs) using 

observational data. 

 

 

Fig. 10.  Output after the Falsifying or validating the 

identified Causal graph for the correctness 

Here considering the placements in an educational 

institution after analysing the correlations and establishing 

the causation produces the following Causal Model. The 

Causal Model or framework reveals that the PlacedOrNot 

feature can be influenced by the changes made to the CGPA, 

Internships features directly which are called as Treatments 

and can be influenced by the HistoryOfBacklogs indirectly 

which are called as Confounders. 

 

Fig .11. Causal Model 

5. Conclusion & Future Work 

In this work, the various Causal Discovery Algorithms are 

implemented, and the resultant causal graphs are analysed 

with the Minimum Criteria and Maximum Differentiator 

(MCMD) concept of Domain Knowledge to form the final 

validated Causal Graph (DAG). The Treatments, outcome, 

Confounders are Identified, and the robust Causal Model is 

built. The Future work would involve taking the causal 

model as input for the estimation of effect of Treatments on 
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the outcomes for this placement use case. It is based on the 

mean value and the p-value (significance Level) 

calculations, So that we can quantify that the estimated 

treatment effect on the outcome. The refutation of the effect 

estimate is also done for robust results. Ultimately, a strong 

decision-making model is formed through the 

communication of the treatments as decisions are chosen for 

the desired outcomes. 
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