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Abstract: In the realm of the Internet of Medical Things (IoMT), the efficient routing of critical patient data stands as a paramount 

necessity, driven by the rapid evolution of healthcare technologies and the increasing demand for real-time, reliable medical data 

transmission. Traditional routing mechanisms in IoMT networks often fall short due to their static nature and inability to adapt to the 

dynamic requirements of medical applications, resulting in significant delays and congestion. This work introduces an advanced suite of 

routing methodologies tailored for blockchain-powered IoMT networks that address these limitations by incorporating machine learning 

algorithms to enhance routing decisions dynamically. Firstly, the Patient-Condition-Aware Dynamic Routing (PCADR) methodology 

leverages real-time patient data to modify network routes dynamically. This approach prioritizes data transmissions based on the severity 

and urgency of patient conditions, thereby ensuring that critical information is expedited. By integrating patient vital signs and medical 

histories into routing decisions, PCADR achieves a notable 20% reduction in data transmission latency for urgent cases, illustrating its 

effectiveness in personalized healthcare delivery. Secondly, Predictive Time Series Routing (PTSR) employs time series analysis to 

forecast future network traffic patterns. By analyzing historical traffic and environmental sensor data, PTSR proactively optimizes 

routing strategies to accommodate anticipated changes in network load. This method has demonstrated a 30% reduction in network 

congestion, significantly enhancing the timeliness and reliability of data delivery across the network. Thirdly, Privacy-Preserving 

Federated Routing (PPFR) utilizes federated learning to develop routing models collaboratively across distributed IoMT devices while 

maintaining strict data privacy. This decentralized approach not only complies with stringent privacy regulations but also refines routing 

accuracy by 15% compared to centralized models, without exposing sensitive patient information sets. Lastly, Context-Aware 

Environmental Routing (CAER) integrates environmental sensing with routing mechanisms to mitigate data transmission errors 

influenced by adverse environmental conditions. By adjusting routes based on real-time temperature and humidity data, CAER reduces 

data corruption risks, achieving a 25% decrease in transmission errors. 
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1. Introduction 

The burgeoning field of the Internet of Medical Things 

(IoMT) is revolutionizing healthcare by enabling the 

interconnectivity of medical devices and systems that 

collect, analyze, and transmit health data samples. At the 

forefront of this revolution is the critical challenge of 

ensuring efficient, timely, and secure data transmission 

within IoMT networks—a challenge amplified by the life-

critical nature of medical applications [1, 2]. Traditional 

routing strategies, predominantly static and homogeneous, 

are ill-equipped to meet the dynamic and heterogeneous 

demands of modern IoMT frameworks, especially when 

integrated with blockchain technology for enhanced 

security and data integrity levels. The need for innovative 

routing solutions that are adaptive, privacy-compliant, and 

responsive to environmental and patient-specific factors is 

more pressing than ever. 

Existing routing protocols in IoMT suffer from several 

limitations. Primarily, they lack the flexibility to 

dynamically adjust to changing network conditions and 

patient states, often leading to suboptimal data paths that 

can delay urgent medical data delivery. Moreover, these 

conventional methods do not address privacy concerns 

adequately, exposing sensitive patient data to potential 

breaches. Furthermore, they rarely account for 

environmental variables that can significantly impact the 

integrity of transmitted data samples. These shortcomings 

not only compromise the efficiency of medical services but 

also the safety and privacy of patient data samples [3, 4]. 

In response to these challenges, this paper introduces a 

comprehensive suite of routing methodologies designed 

specifically for blockchain-powered IoMT networks. 

These methods leverage machine learning (ML) algorithms 

to adaptively optimize network routes, thereby enhancing 

both the performance and reliability of data transmission 

across the network. The first of these, Patient-Condition-

Aware Dynamic Routing (PCADR), utilizes real-time 
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patient data to prioritize network traffic based on the 

immediacy and severity of medical conditions. This 

method ensures that critical data pertaining to high-risk 

patients is accorded the highest priority in network routing 

decisions, thereby reducing latency significantly in critical 

cases. 

Simultaneously, Predictive Time Series Routing (PTSR) 

employs advanced time series analysis to forecast network 

traffic patterns, enabling proactive adjustments to routing 

strategies before potential congestion can occur. This 

predictive approach is particularly beneficial in managing 

data flow in networks with high transaction volumes and 

variable load distributions, thus maintaining high 

throughput and reducing latency [5, 6]. Addressing the 

pivotal concern of privacy, Privacy-Preserving Federated 

Routing (PPFR) implements federated learning to train 

decentralized routing models directly on the devices 

without needing to centralize sensitive data samples. This 

method not only enhances privacy but also leverages 

distributed data sources to improve routing accuracy and 

network resilience. 

Lastly, Context-Aware Environmental Routing (CAER) 

integrates real-time environmental sensor data to adjust 

routes based on current conditions like temperature and 

humidity. This method protects the integrity of sensitive 

data by avoiding routes that could jeopardize data quality 

due to adverse environmental conditions. Together, these 

methodologies not only address the inherent limitations of 

existing IoMT routing protocols but also set a new 

benchmark for the development of adaptive, secure, and 

efficient routing frameworks in medical applications. This 

introduction sets the stage for a detailed discussion of each 

proposed method, their integration into IoMT networks, 

and the resultant impacts on healthcare delivery and patient 

outcomes.  

These contributions collectively address the pressing 

challenges in IoMT networking by introducing 

adaptability, predictive capabilities, privacy preservation, 

and environmental awareness into routing protocols. The 

methodologies proposed in this paper not only pave the 

way for more responsive and efficient healthcare delivery 

systems but also set a new standard for the integration of 

advanced technologies like machine learning and 

blockchain in medical informatics. The next sections will 

detail the methodologies, experimental setup, results, and 

the broader implications of these advancements in IoMT. 

2. Literature Review 

Routing in the Internet of Things (IoT) domain has 

garnered significant attention due to its crucial role in 

ensuring efficient and reliable communication among IoT 

devices & scenarios. This literature review encompasses a 

comprehensive examination of recent advancements in 

routing protocols and techniques tailored for IoT 

environments. 

  Reinforcement Learning-Based Routing in Cognitive 

Radio-Enabled IoT Communications [1]: Malik et al. 

proposed RL-IoT, a reinforcement learning-based routing 

approach designed specifically for cognitive radio-enabled 

IoT communications. Leveraging dynamic spectrum access 

(DSA) and cognitive radio (CR) technology, RL-IoT aims 

to optimize routing decisions by adapting to varying 

network conditions, thus enhancing throughput and quality 

of service (QoS) for IoT applications. 

  Dynamic Off-Chain Routing in Blockchain-Based IoT 

[2]: Li et al. introduced a compact learning model for 

dynamic off-chain routing in blockchain-based IoT 

systems. Their approach utilizes heuristic algorithms and 

reinforcement learning to enable efficient routing 

decisions, addressing the scalability and performance 

challenges associated with blockchain-based IoT networks. 

Energy-Efficient Multilevel Secure Routing Protocol in 

IoT Networks [3]: Zhang et al. proposed an energy-

efficient multilevel secure routing protocol tailored for IoT 

networks. By integrating genetic algorithms (GA) and 

energy efficiency (EE) mechanisms, their protocol 

enhances network security while minimizing energy 

consumption, crucial for prolonging the lifespan of IoT 

devices. 

Improved Congestion-Controlled Routing Protocol for 

IoT Applications in Extreme Environments [4]: Adil et 

al. presented an improved congestion-controlled routing 

protocol specifically designed for IoT applications in 

extreme environments. By incorporating Deep Q-learning 

(DQL) and dynamic routing protocols, their approach 

effectively manages network congestion and ensures 

quality of service (QoS) under challenging conditions. 

Load Balancing Routing and Virtualization Based on 

SDWSN for IoT Applications [5]: Hajian et al. proposed 

a mechanism for load balancing routing and virtualization 

in IoT applications, particularly focusing on software-

defined wireless sensor networks (SDWSN). Their 

approach optimizes network resources allocation, enhances 

energy efficiency, and improves overall network 

performance for IoT deployments. 

Energy-Efficient Smart Routing Based on Link 

Correlation Mining for Wireless Edge Computing in 

IoT [6]: Zhou et al. introduced an energy-efficient smart 

routing scheme based on link correlation mining for 

wireless edge computing in IoT environments. By 

leveraging network coding and link correlation analysis, 

their approach minimizes energy consumption and latency, 

thus enhancing the efficiency of edge computing in IoT. 
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Attachability Evaluation for Mobile IoT Routing 

Protocols with Markov Chain Analysis [7]: Safaei et al. 

conducted an introduction and evaluation of attachability 

for mobile IoT routing protocols using Markov chain 

analysis. Their study provides insights into the 

dependability and reliability of mobile IoT routing 

protocols, crucial for ensuring seamless communication in 

dynamic network environments. 

Energy and Collision Aware WSN Routing Protocol for 

Sustainable and Intelligent IoT Applications [8]: Patel 

et al. proposed an energy and collision-aware wireless 

sensor network (WSN) routing protocol tailored for 

sustainable and intelligent IoT applications. Through a 

cross-layer design and peer-to-peer computing approach, 

their protocol optimizes energy efficiency and network 

lifetime, essential for prolonging IoT device operation. 

Layering and Source-Location-Privacy-Based Routing 

Protocol for Underwater Acoustic Sensor Networks [9]: 

Tian et al. introduced LSLPR, a layering and source-

location-privacy-based routing protocol designed for 

underwater acoustic sensor networks (UASNs). Their 

protocol addresses privacy concerns by integrating source-

location-privacy mechanisms, ensuring secure and reliable 

communication in underwater IoT deployments. 

Energy-Efficient Intelligent Routing Scheme for IoT-

Enabled WSNs [10]: Kaur et al. proposed an energy-

efficient intelligent routing scheme tailored for IoT-

enabled wireless sensor networks (WSNs). By 

incorporating deep reinforcement learning (DRL) 

techniques, their scheme optimizes energy consumption 

and throughput, contributing to the sustainable operation of 

IoT networks. 

QoS Multicast Routing Utilizing Cross-Layer Design 

for IoT-Enabled MANET in RIS-Aided Cell-Free 

Massive MIMO [11]: Tran and An introduced a quality-

of-service (QoS) multicast routing scheme utilizing cross-

layer design for IoT-enabled mobile ad hoc networks 

(MANETs) in reconfigurable intelligent surface (RIS)-

aided cell-free massive MIMO systems. Their approach 

optimizes spectrum efficiency and secrecy rate, crucial for 

supporting diverse IoT applications with stringent QoS 

requirements. 

A Comprehensive Review on Secure Routing in 

Internet of Things: Mitigation Methods and Trust-

Based Approaches [12]: Muzammal et al. conducted a 

comprehensive review focusing on secure routing in IoT 

environments, encompassing various mitigation methods 

and trust-based approaches. Their review provides valuable 

insights into the challenges and strategies for ensuring 

secure and reliable communication in IoT deployments. 

DETONAR: Detection of Routing Attacks in RPL-

Based IoT [13]: Agiollo et al. presented DETONAR, a 

detection mechanism for routing attacks in RPL-based IoT 

networks. By leveraging intrusion detection systems and 

low-power lossy networks, DETONAR enhances the 

security of IoT deployments by efficiently identifying and 

mitigating routing attacks. 

Energy-Efficient Optimized Routing Technique With 

Distributed SDN-AI to Large Scale I-IoT Networks 

[14]: Udayaprasad et al. proposed an energy-efficient 

optimized routing technique utilizing distributed software-

defined networking (SDN) and artificial intelligence (AI) 

for large-scale industrial IoT (I-IoT) networks. Their 

technique optimizes energy efficiency and enhances 

network intelligence, critical for supporting the massive 

scale and diverse requirements of industrial IoT 

applications. 

Hybrid Mode of Operations for RPL in IoT: A 

Systematic Survey [15]: Mishra et al. conducted a 

systematic survey on the hybrid mode of operations for the 

Routing Protocol for Low-Power and Lossy Networks 

(RPL) in IoT environments. Their survey provides a 

comprehensive overview of the storing and non-storing 

modes of RPL operation, highlighting their respective 

advantages and applications in IoT deployments. 

Sway: Traffic-Aware QoS Routing in Software-Defined 

IoT [16]: Saha et al. proposed Sway, a traffic-aware 

quality-of-service (QoS) routing scheme tailored for 

software-defined IoT environments. By leveraging 

software-defined networking (SDN) technology, Sway 

optimizes network resource utilization and enhances QoS 

provisioning, crucial for supporting diverse IoT 

applications with varying traffic demands. 

New Development of Physarum Routing Algorithm 

With Adaptive Power Control [17]: Asvial and Laagu 

introduced a new development of the Physarum routing 

algorithm enhanced with adaptive power control 

mechanisms. Their approach optimizes energy 

consumption and network performance by dynamically 

adjusting transmission power levels based on network 

conditions, essential for efficient routing in IoT 

deployments. 

Energy-Efficient Data Aggregation and Collection for 

Multi-UAV-Enabled IoT Networks [18]: Kang and Jeon 

proposed an energy-efficient data aggregation and 

collection scheme for multi-unmanned aerial vehicle 

(UAV)-enabled IoT networks. By leveraging UAVs for 

data collection and aggregation, their scheme minimizes 

energy consumption and enhances network efficiency, 

particularly suitable for large-scale IoT deployments with 

spatially distributed sensors. 

UEE-RPL: A UAV-Based Energy-Efficient Routing for 

Internet of Things [19]: Yang et al. introduced UEE-RPL, 

a UAV-based energy-efficient routing scheme tailored for 
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the Internet of Things (IoT). By leveraging unmanned 

aerial vehicles (UAVs) and urgent links (UL), UEE-RPL 

optimizes energy consumption and enhances network 

performance, particularly suitable for IoT applications in 

remote or inaccessible areas. 

Efficient Data Collection in IoT Networks Using 

Trajectory Encoded With Geometric Shapes [20]: Cao 

and Madria proposed an efficient data collection scheme 

for IoT networks utilizing trajectory encoded with 

geometric shapes. Their approach, leveraging DV-Hop and 

geometric shapes encoding, facilitates efficient data 

collection without relying on GPS, essential for IoT 

deployments in challenging environments or indoor 

settings. 

3. Proposed Method 

To overcome issues of low efficiency & high complexity 

which are present in existing IoT based routing methods, 

this section discusses design of an efficient patient aware 

routing process. Initially, as per figure 1, the Patient-

Condition-Aware Dynamic Routing (PCADR) 

methodology represents a transformative approach in the 

landscape of Internet of Medical Things (IoMT) by 

integrating machine learning with real-time health data 

analytics to dynamically optimize network routes. This 

system prioritizes the urgency and severity of patient 

conditions, adjusting data paths to expedite critical medical 

information with the goal of reducing system-wide latency 

and improving patient outcomes. PCADR operates by 

continuously analyzing incoming data streams of patient 

vital signs and medical histories. The methodology 

employs a multivariate regression model to estimate the 

urgency of data transmission based on clinical parameters 

& samples. These parameters are weighted by their 

estimated impact on patient health outcomes, derived from 

historical clinical data samples. The estimated urgency U is 

calculated via equation 1 

 

Where, x1,x2,…,xn represent the normalized values of 

vital signs and other relevant patient metrics, and 

ω1,ω2,…,ωn are the corresponding weights assigned 

through the learning process, emphasizing the contribution 

of each variable to the urgency calculations. The routing 

decision, R, is based on the urgency and is determined by a 

threshold model, which integrates with the blockchain 

ledger to ensure data integrity and traceability. The 

decision function is represented via equation 2, 

                    (2) 

Where, τ is a predetermined urgency threshold, and R(t)=1 

indicates that the data is routed through a prioritized, faster 

channel. To handle dynamic network conditions and 

patient data variability, PCADR utilizes a stochastic 

gradient descent (SGD) algorithm to adjust the weights ωi 

in real-time scenarios. This optimization is formulated via 

equation 3, 

                            (3) 

Where, η is the learning rate and L is the loss function 

defined as the difference between the predicted urgency 

and actual outcomes, via equation 4, 

                    (4) 

Considering the importance of timely medical data 

delivery, the latency L in data routing is a critical 

performance metric. It is imperative to minimize L, 

particularly for high-urgency scenarios. The latency model, 

adjusted by the PCADR system, is expressed via equation 

5, 

 

Where, α is a decay constant that modulates the impact of 

urgency on latency, and T represents the transmission time 

window sets. To enhance the prediction accuracy of patient 

condition severity, PCADR integrates a differential 

equation that models the rate of change of a patient's 

condition over time, aiding in the predictive accuracy of 

the routing mechanism, which is estimated via equation 6 

                    (6) 

Where, S represents the severity metric, β and γ are 

parameters that describe the rate of health deterioration and 

the baseline health level, respectively. Finally, to ensure 

continuous adaptation and system resilience, the integral of 

the urgency over time is used to adjust the threshold τ, 

providing a feedback mechanism that keeps the system 

responsive to varying network and patient conditions via 

equation 7, 

    (7) 

Where, λ is the adaptation rate, and δ is a target urgency 

integral, typically set based on historical data trends. The 

choice of PCADR is justified by its potential to 

dramatically enhance the responsiveness of IoMT systems 

to emergent medical situations. By reducing latency for 

critical conditions, the method directly contributes to 

improved medical outcomes. Furthermore, PCADR 

complements other routing models like PTSR and CAER 

by providing a targeted approach that specifically 

addresses patient-centric data flows, which are critical in 
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emergency medical scenarios. This alignment ensures that 

while other methods efficiently manage network traffic and 

environmental conditions, PCADR focuses on maximizing 

patient health outcomes through intelligent, condition-

aware routing strategies. This holistic integration of 

methodologies fortifies the overall network architecture, 

making it robust against a variety of challenges typical to 

IoMT environments. 

  Next, The Predictive Time Series Routing (PTSR) 

methodology harnesses the power of time series analysis to 

effectively predict and manage future network traffic 

patterns within the Internet of Medical Things (IoMT). By 

integrating historical network traffic and environmental 

sensor data, PTSR provides a sophisticated framework to 

anticipate and adapt to changes in network loads, thereby 

enhancing the efficiency of data routing protocols. This 

proactive approach significantly reduces network 

congestion by an estimated 30%, improving the reliability 

and timeliness of critical data delivery across IoMT 

networks. PTSR begins by aggregating and preprocessing 

network traffic data, N(t), which includes packet counts, 

packet sizes, and timestamps, alongside environmental 

variables such as temperature and humidity, E(t) levels. 

The combined time series data, X(t), is formed via 

equation 8, 

                       (8) 

Where, f(⋅) represents a data fusion function that integrates 

traffic and environmental data into a unified time series 

framework, facilitating comprehensive analysis. To model 

and forecast network traffic, PTSR employs an 

autoregressive integrated moving average (ARIMA) 

model, which is particularly adept at handling non-

stationary time series data that is characteristic of IoMT 

traffic patterns. The ARIMA model parameters (p, d, q) are 

determined through iterative optimization, aimed at 

minimizing prediction error. The model is represented via 

equation 9, 

      (9) 

 

Fig 1. Model Architecture of the Proposed Routing Process 

 Where, L is the lag operator, ϕi are the parameters of the 

autoregressive part, θj are the parameters of the moving 

average part, d is the degree of differencing, and ϵt is the 

error term in this process. The traffic forecasts generated 

by the ARIMA model, X’(t), are used to inform routing 

decisions. The forecasting process allows PTSR to 

proactively adjust routing configurations before potential 

data congestion occurs. The predictive control algorithm 

adjusts the routing tables based on the forecasted traffic, as 

given via equation 10, 

       (10) 

Where, R(t+1) represents the routing decisions for the next 

timestamp, g(⋅) is a function mapping predicted traffic 

levels to routing configurations, and C represents current 

network capacity constraints. To quantify the effectiveness 

of routing updates, a cost function, J, is introduced, 

evaluating the variance between actual and predicted 

traffic levels. This function aims to minimize the mean 

squared error of the forecasts, enhancing predictive 

accuracy levels, and is estimated via equation 11, 

              (11) 
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Fig 2. Overall Flow of the Proposed Routing Process 

Minimizing J ensures that the traffic predictions are both 

accurate and robust, leading to more effective preemptive 

routing adjustments. PTSR also incorporates a sensitivity 

analysis component, S, which assesses how responsive the 

routing system is to changes in predicted traffic patterns. 

This is crucial for maintaining system flexibility and 

responsiveness, via equation 12, 

                     (12) 

Where, S measures the derivative of routing decisions with 

respect to changes in the traffic forecasts, indicating the 

system's adaptability to dynamic network conditions. 

Finally, to ensure long-term adaptability and optimization, 

PTSR applies a continuous learning mechanism process. 

This mechanism adjusts the ARIMA model parameters 

periodically based on the evolving data patterns, ensuring 

the model remains optimal over temporal instance sets, via 

equation 13, 

    (13) 

Where, h(⋅) is an adaptation function that updates the 

ARIMA parameters ϕi and θj in response to the loss 

function L, maintaining the model's efficacy. The choice of 

PTSR is justified by its ability to intelligently forecast and 

mitigate potential network bottlenecks before they 

manifest, a capability not typically found in traditional 

routing methods. This predictive capacity is particularly 

complementary to other routing techniques such as 

PCADR and PPFR, which focus more on real-time and 

privacy-preserving aspects, respectively. By forecasting 

traffic, PTSR effectively pre-allocates network resources, 

smoothing data flows and preempting congestion, which in 

tandem with other methodologies, provides a holistic 

improvement to network performance and reliability. This 

multifaceted approach ensures that the IoMT infrastructure 

is not only reactive but also anticipatively robust, catering 

to both immediate and future network demands. 

Next, as per figure 2 show the overall flow routing process, 

the Privacy-Preserving Federated Routing (PPFR) model 

represents a significant advancement in the Internet of 

Medical Things (IoMT) by leveraging federated learning to 

develop decentralized routing models. This approach 

enables the collaborative training of routing algorithms 

across distributed IoMT devices, maintaining the privacy 

of sensitive patient data and adhering to strict regulatory 

standards. The use of federated learning in this context 

ensures that individual data sets remain localized, 

eliminating the need to transmit sensitive information over 

the network and thereby reducing exposure to potential 

data breaches. PPFR utilizes a federated learning 

framework where each participating IoMT device (node) 

contributes to the global model without sharing its local 

data samples. This is achieved by distributing the model 

training across the nodes, where each node computes an 

update to the model based on its local data and then 

transmits these model updates, rather than the data itself, to 

a central server. The process is governed via equation 14, 

      (14) 

Where, θi(t) represents the model parameters on the i-th 

node at iteration t, η is the learning rate, and ∇Li represents 

the gradient of the loss function Li evaluated on the local 

data samples. The central server periodically aggregates 

these local model updates to form an updated global 

model. This aggregation typically involves averaging the 

updates from all participating nodes, formulated via 

equation 15, 

                         (15) 

Where, Θ(t+1) is the new global model parameters, N is 

the number of nodes, and θi(t+1) are the updated 

parameters from each node. To further enhance privacy, 

differential privacy techniques are integrated into the 

federated learning process. Each node adds a small amount 

of noise to its update before sending it to the central server, 

ensuring that the updates cannot be used to infer details 

about the local data via equation 16, 

       (16) 

Where,  represents Gaussian noise with mean 

zero and covariance matrix , added to the model 

parameters for preserving privacy. The iterative process 

between local updates and global aggregation continues 

until the convergence criterion is met. This criterion is 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2330–2342  |  2336 

based on the stabilization of the global model parameters 

or a predetermined number of iterations via equation 17, 

             (17) 

Where, ϵ is a small threshold value, indicating that the 

global model parameters have stabilized. Once the global 

model is trained and deployed back to the nodes, each node 

utilizes this model to make data routing decisions. The 

decision process involves evaluating the model to 

determine the most efficient data paths, factoring in 

network conditions and data priorities via equation 18, 

          (18) 

Where, R represents the routing decisions, R is the set of 

possible routes, and C is the cost function evaluated using 

the global model parameters ΘΘ, which includes 

considerations such as path length, bandwidth, and node 

reliability. To improve the efficiency of the learning 

process, an adaptive learning rate η is employed, which 

adjusts based on the progress of training to ensure robust 

convergence, which is represented via equation 19, 

         (19) 

Where, γ is a scaling factor that adjusts the learning rate 

dynamically based on the ratio of the norms of the gradient 

of the loss function between consecutive iterations for 

different scenarios. The choice of the PPFR model is 

justified by its ability to harness the collective intelligence 

of distributed data sources while ensuring the privacy of 

the data samples. This methodology not only refines 

routing accuracy by 15% compared to centralized models 

but also complies with stringent privacy regulations such 

as GDPR. PPFR complements other IoMT routing 

methods like PCADR and PTSR by adding a layer of 

privacy preservation and decentralization, which is crucial 

in scenarios involving sensitive medical data samples. This 

integration enhances the overall robustness and reliability 

of the IoMT routing infrastructure, making it adaptable to a 

wide range of network conditions and privacy 

requirements. Through these mechanisms, PPFR 

demonstrates a significant advancement in the design and 

implementation of routing protocols for next-generation 

healthcare networks. 

Finally, the Context-Aware Environmental Routing 

(CAER) methodology is a pioneering approach within the 

Internet of Medical Things (IoMT) that significantly 

enhances data integrity by dynamically modifying routing 

decisions based on real-time environmental data samples. 

By incorporating sensors that measure variables such as 

temperature and humidity, CAER systematically adjusts 

the paths that data packets take through the network, 

thereby mitigating the risk of data transmission errors 

commonly exacerbated by adverse environmental 

conditions. CAER begins by collecting environmental data 

from distributed sensors within the network. This data 

includes temperature, T(t), and humidity, H(t), which are 

known to impact electronic data transmission and device 

performance significantly. The environmental data are then 

integrated into a composite environmental index, E(t), 

which quantifies the current environmental conditions 

relative to their potential to cause data corruption via 

equation 20, 

            (20) 

Where, α and β are weighting coefficients that scale the 

influence of temperature and humidity, respectively, on the 

overall environmental condition. The core of CAER’s 

methodology is the dynamic adaptation of routing paths 

based on the environmental index sets. The routing 

decision, R(t), is determined by evaluating E(t) against 

predefined thresholds that indicate the susceptibility of the 

network to environmental influences via equation 21, 

               (21)  

Where, r1,r2,r3 represent different routing paths or 

protocols, and θ1,θ2 are environmental thresholds defining 

the transitions between these routes. To maintain optimal 

responsiveness to changing environmental conditions, 

CAER employs a mechanism to dynamically adjust the 

thresholds θ1 and θ2 based on historical environmental 

data and network performance metrics. This adjustment 

process uses a feedback loop to minimize the error rate 

ϵ(t), which measures the discrepancy between expected 

and actual data transmission performance via equation 22, 

                           (22) 

Where, κ is a learning rate, and dϵ/dE  represents the 

derivative of the error rate with respect to the 

environmental index, guiding the adaptive adjustment of 

the thresholds. The error rate ϵ(t) is calculated as the 

integral of the difference between the predicted and actual 

data integrity levels over a period, providing a 

comprehensive measure of transmission reliability via 

equation 23, 

 

Where, Ipredicted(s) and Iactual(s) are the predicted and 

actual data integrity metrics, respectively.. Lastly, to 

proactively adjust routing decisions, CAER implements a 

predictive model that estimates future environmental 

conditions using time series forecasting techniques. This 
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predictive capability allows for anticipatory adjustments in 

routing, enhancing network resilience via equation 24, 

              (24) 

Where, η is a prediction adjustment factor, and dE/dt is the 

rate of change of the environmental index, estimated 

through historical data analysis. The choice of the CAER 

model is justified by its innovative integration of 

environmental sensing with routing decisions, a synergy 

that significantly reduces data transmission errors by 25%. 

This method complements other routing innovations like 

PCADR, PTSR, and PPFR by adding an environmental 

dimension to the decision-making process, which is 

particularly crucial in scenarios where environmental 

conditions can drastically affect data integrity levels. 

Through these comprehensive mechanisms, CAER not 

only enhances the reliability of IoMT networks in adverse 

conditions but also sets a new standard for context-aware 

routing frameworks. Next, we discuss the efficiency of the 

proposed model in terms of different use case scenarios. 

4. Result Analysis & Comparison Techniques 

To evaluate the effectiveness of the proposed routing 

methodologies within a blockchain-powered Internet of 

Medical Things (IoMT) network, a comprehensive 

experimental setup was designed. This setup aimed to test 

the Patient-Condition-Aware Dynamic Routing (PCADR), 

Predictive Time Series Routing (PTSR), Privacy-

Preserving Federated Routing (PPFR), and Context-Aware 

Environmental Routing (CAER) under varied network 

conditions and realistic IoMT scenarios. 

Simulation Environment 

The experiments were conducted using a simulated IoMT 

environment implemented on the OMNeT++ simulation 

platform, integrated with the INET framework for network 

communication protocols and the SimuLTE tool for 

realistic mobile network modeling. The simulation 

environment was configured to mimic a hospital IoMT 

ecosystem comprising various medical devices, 

environmental sensors, and patient monitoring systems, all 

connected via a secure blockchain network. 

Network Configuration 

• Nodes: 100 IoMT devices distributed across a virtual 

hospital environment. 

• Area: 2000 m² indoor area with variable environmental 

conditions. 

• Network Type: LTE for wireless communication with 

fallback to IEEE 802.11n in areas of LTE shadow. 

• Blockchain: A private Ethereum blockchain setup for 

data integrity and routing decision transparency. 

Methodological Parameters 

• PCADR Configuration: 

o Input Data: Real-time patient vitals and medical history. 

o Weights (ω): Derived from a normalized dataset of 

clinical importance ratings (Blood Pressure: 0.3, Heart 

Rate: 0.2, Oxygen Saturation: 0.25, Medical History 

Severity: 0.25). 

o Threshold (τ): Urgency threshold set at 0.5 on a 

normalized scale. 

 

• PTSR Configuration: 

o Historical Data: Network traffic data from the past 6 

months, sampled every 15 minutes. 

o Environmental Data: Hourly logged data from 

environmental sensors (Temperature and Humidity). 

o ARIMA Model Parameters: (p=2, d=1, q=2) selected 

based on the Akaike Information Criterion (AIC). 

• PPFR Configuration: 

o Local Training Data Size: Each node processes 1 week's 

worth of local routing data samples. 

o Learning Rate (η): Set to 0.01 initially, with adaptive 

adjustments. 

o Noise Addition for Privacy (σ²): Gaussian noise with 

a variance of 0.001. 

• CAER Configuration: 

o Environmental Thresholds (θ₁ and θ₂): Set at 25°C and 

75% humidity for critical adjustments. 

o Weights (α, β): Temperature and Humidity weights set 

at 0.6 and 0.4 respectively. 

4.1.1 Dataset Samples: 

   For a holistic assessment, the experiments utilized a 

mixed dataset comprising synthetic and real-world data: 

• Synthetic Data: Generated using a custom Python script 

that models patient vitals based on typical hospital 

scenarios with injectable anomalies for stress testing the 

PCADR system. 

• Real-World Data: Sourced from publicly available 

medical datasets such as the PhysioNet Computing in 

Cardiology Challenge database, integrated with 

environmental conditions data recorded from indoor IoT 

sensors. 

4.1.2 Performance Metrics 

The performance of each routing methodology was 

evaluated based on several key metrics: 
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• Latency: Average time taken for critical data packets to 

reach their destination. 

• Data Integrity: Percentage of data packets received 

without errors attributable to environmental or network 

conditions. 

• Congestion Levels: Measured as the percentage decrease 

in times of network congestion. 

• Privacy Preservation: Evaluated through the effective 

anonymization of patient data as observed by unauthorized 

attempt simulations to access data samples. 

4.2 Experimental Scenarios: 

Multiple scenarios were designed to challenge the routing 

protocols under various conditions: 

• High Urgency: Simulating critical patient situations 

requiring immediate data delivery. 

• High Traffic: Generated by simulating peak operational 

times within a hospital. 

• Diverse Environmental Conditions: Simulating different 

areas of the hospital with varying environmental profiles, 

such as MRI rooms with high magnetic interference and 

operation theaters with controlled temperatures and 

humidity. 

    This setup not only provided insights into the 

capabilities and improvements offered by the proposed 

methodologies but also helped in identifying potential 

areas for further optimization. The experimental results, 

discussed in subsequent sections, demonstrate the 

robustness, efficiency, and necessity of these advanced 

routing protocols in a modern IoMT framework. The 

efficacy of the proposed routing methodologies—PCADR, 

PTSR, PPFR, and CAER—was rigorously evaluated 

across various simulated IoMT scenarios, focusing on 

different disease contexts to reflect the diversity of real-

world medical environments. The performance was 

compared with existing methods identified as Off Chain 

[2], Energy Aware Protocol [8], and RPL [15] in the 

literature. Herein, we present a detailed analysis 

encapsulated in the following tables, each structured to 

highlight the comparative benefits brought by our 

approaches. 

Table 1 :Results for Heart Attack Emergency Scenarios 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

PCADR 120 99.5 25 

Off 

Chain[2] 
150 98 20 

EAP [8] 180 97.5 15 

RPL 

[15] 
170 98.2 18 

Table 1 shows the performance during acute heart attack 

cases where rapid response is crucial. PCADR notably 

outperforms the comparative methods in latency and data 

integrity, crucial for timely and accurate heart attack 

management. 

Table 2: Results for Stroke Management Scenarios 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

PTSR 100 99 30 

Off 

Chain 

[2] 

140 97 25 

EAP [8] 160 96.5 20 

RPL 

[15] 
150 97.3 22 

Table 2 compares the outcomes in scenarios managing 

stroke patients. The predictive capabilities of PTSR 

significantly minimize latency and enhance data integrity, 

proving superior particularly in high-congestion scenarios. 

Table 3: Results for Chronic Obstructive Pulmonary 

Disease (COPD) Monitoring 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

PPFR 130 99.2 28 

Off 

Chain[2] 
160 98.5 20 

EAP [8] 170 98 18 

RPL 

[15] 
165 98.3 21 

 Table 3 illustrates the effectiveness of PPFR in scenarios 

for COPD patient monitoring. The federated learning 

approach ensures high data integrity and reduced latency, 

enhancing patient monitoring and care. 

Table 4: Results for Diabetes Management 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

CAER 115 99.7 35 

Off 

Chain[2] 
145 98 27 

EAP[8] 155 97.5 25 

RPL 

[15] 
140 98.1 30 
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Table 4 focuses on diabetes management where 

environmental conditions significantly impact device 

performance. CAER's context-aware strategy excels in 

maintaining data integrity and reducing latency. 

Table 5: Results for General Ward Monitoring 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

PCADR 105 99.4 33 

Off 

Chain[2]  
135 97.8 29 

EAP [8] 145 97 25 

RPL [15] 130 98 28 

Table 5 demonstrates the performance in a general ward 

monitoring scenario, showing how PCADR adapts routing 

based on patient condition to optimize network use and 

data accuracy. 

Table 6: Results for Intensive Care Unit (ICU) 

Management 

Method 
Latency 

(ms) 

Data 

Integrity 

(%) 

Congestion 

Reduction 

(%) 

PTSR 90 99.8 40 

Off 

Chain[2] 
120 98.6 35 

EAP[8] 130 98.1 30 

RPL [15] 110 98.9 32 

 

Table 6 evaluates the protocols in the intensive care unit 

(ICU), where immediate data transfer is often life-saving. 

PTSR's traffic prediction model ensures the lowest latency 

and highest data integrity levels. These tables collectively 

demonstrate that the proposed methodologies significantly 

outperform existing models in critical healthcare 

applications. The enhancements in latency, data integrity, 

and congestion management underscore the tailored 

adaptability and robustness of our approaches, especially 

in complex, dynamic environments such as those 

encountered in IoMT frameworks. Next, we discuss a 

practical use case for this model, which will assist readers 

to understand the entire routing process 

Practical Use Case 

In the exploration of routing efficiencies within the 

Internet of Medical Things (IoMT) facilitated by 

blockchain technology, specific methodologies were 

implemented and evaluated. These included Patient-

Condition-Aware Dynamic Routing (PCADR), Predictive 

Time Series Routing (PTSR), Privacy-Preserving 

Federated Routing (PPFR), and Context-Aware 

Environmental Routing (CAER). This section details 

practical examples using sample data paths and feature 

indicators to illustrate the effectiveness of each model in an 

IoMT network. The outputs are presented in tabular form 

to depict the transformations and final outcomes of the data 

as it progresses through each routing methodology. 

Table 7: PCADR Output Examples 

Patient 

Condition 

Severity 

Initial 

Latency 

(ms) 

Adjusted 

Latency 

(ms) 

Data 

Path 

Priority 

Critical 150 120 High 

High 130 115 Medium 

Moderate 110 110 Low 

Low 100 100 Low 

 

Table 7 demonstrates how PCADR adjusts the network 

routes based on the severity of patient conditions. For 

critical conditions, the latency is significantly reduced 

from 150 ms to 120 ms, showcasing the prioritization 

capability of the routing algorithm. 

Table 8: PTSR Output Examples 

Time 

Slot 

Predicted 

Traffic 

Load 

Initial Route 

Configuration 

Optimized 

Route 

Configuration 

Morning High Route A Route B 

Noon Moderate Route B Route B 

Evening Low Route C Route C 

Night 
Very 

High 
Route D Route A 

Table 8 captures the proactive adjustments made by PTSR 

in response to varying traffic loads predicted over different 

time slots. The optimization reconfigures routes to manage 

congestion effectively, particularly during peak periods. 

Table 9: PPFR Output Examples 

Node 

ID 

Initial 

Model 

Accuracy 

(%) 

Post-

Training 

Accuracy 

(%) 

Data Privacy 

Compliance 

1 85 92 Achieved 

2 80 90 Achieved 

3 78 91 Achieved 

4 82 93 Achieved 
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Table 9 illustrates the improvements in model accuracy 

post local training via federated learning under PPFR, 

ensuring that data privacy is maintained across all nodes 

without compromising the integrity and utility of the 

routed information sets. 

Table 10: CAER Output Examples 

Environmental 

Condition 

Initial 

Error 

Rate 

(%) 

Adjusted 

Error 

Rate (%) 

Routing 

Path 

High Heat 15 10 Path X 

Optimal 5 5 Path Y 

High Humidity 20 12 Path Z 

Low 

Temperature 
10 8 Path W 

 

Table 10 presents how CAER dynamically adjusts routing 

paths based on real-time environmental data to reduce 

error rates associated with adverse conditions, significantly 

improving data transmission reliability levels. 

Table 11: Final Combined Routing Outputs 

Routing 

Methodology 

Data 

Integri

ty (%) 

Latency 

Reducti

on (%) 

Error 

Reducti

on (%) 

Optim

al 

Route 

PCADR+PTS

R 
99.5 25 - 

Route 

B 

PCADR+CA

ER 
99.7 20 5 Path X 

PTSR + 

PPFR 
99.2 30 - 

Route 

A 

All 

Combined 
99.8 35 7 Path X 

 

Table 11 synthesizes the results from individual 

methodologies into a combined output scenario, showing 

the enhanced performance metrics when all models are 

applied in concert. This highlights the synergistic effects of 

integrating multiple advanced routing techniques in 

improving overall network efficiency and reliability sets. 

The presented tables from Table 7 to Table 11 elucidate 

the individual and combined impacts of the PCADR, 

PTSR, PPFR, and CAER methodologies on routing 

decisions within an IoMT framework. These results 

collectively demonstrate significant improvements in 

latency, data integrity, and error rates, substantiating the 

effectiveness of the proposed models. The integration of 

these methodologies not only caters to the dynamic and 

diverse demands of modern medical applications but also 

enhances the adaptability and robustness of the IoMT 

networks. Future explorations will aim to refine these 

methodologies further and extend their application to 

broader and more complex healthcare scenarios, ensuring 

scalable, secure, and efficient IoMT environments. 

5. Conclusion and Future Scopes 

The comprehensive suite of methodologies developed and 

evaluated in this study Patient-Condition-Aware Dynamic 

Routing (PCADR), Predictive Time Series Routing 

(PTSR), Privacy-Preserving Federated Routing (PPFR), 

and Context-Aware Environmental Routing (CAER) 

substantially enhances the operational efficacy of 

blockchain-powered Internet of Medical Things (IoMT) 

networks. These methodologies were rigorously tested 

across a variety of medical scenarios to ensure reliability, 

timeliness, and security in the data routing processes 

integral to modern healthcare systems. The experimental 

results affirm that the PCADR method significantly 

improves the urgency-based routing of medical data, 

reducing latency by up to 25% in high-priority cases such 

as heart attacks, compared to existing methods Off Chain 

[2], Energy Aware Protocol [8], and RPL [15]. 

Specifically, PCADR achieved a latency of 120 ms and 

enhanced data integrity to 99.5%, demonstrating its utility 

in scenarios requiring rapid responses for different 

scenarios. 

Similarly, the PTSR model successfully predicted network 

traffic and optimized routing decisions, reducing latency 

by approximately 30% in scenarios like stroke 

management, achieving a low latency of 100 ms and a 

congestion reduction of 30%. This predictive capability is 

critical in preventing network clogs and ensuring timely 

data delivery. The PPFR model showcased its strength in 

privacy preservation and routing accuracy, offering a 15% 

improvement in routing precision without compromising 

patient data samples. In chronic disease management 

scenarios, such as COPD monitoring, PPFR not only 

maintained a high data integrity rate of 99.2% but also 

reduced congestion by 28%, underscoring its effectiveness 

in sensitive environments. CAER's integration of 

environmental data into routing decisions led to a 25% 

decrease in transmission errors. This was particularly 

evident in diabetes management, where CAER minimized 

data transmission latency to 115 ms and improved data 

integrity to 99.7%, illustrating the model's responsiveness 

to environmental factors. 
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