
a

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2373

Sorting Algorithms Demystified: A Comprehensive Guide with the ISort

Visualizer

Vandana Gandotra1, Sakshi Taaresh Khanna2*, Rishabh Jain3, Rishabh Chopra4

Submitted: 08/03/2024 Revised: 23/04/2024 Accepted: 05/05/2024

Abstract: Sorting algorithms are essential elements of computer science and data processing, and their comprehension is vital for

programmers at all levels of expertise. This article aims to provide 'ISort,' an innovative and interactive sorting visualizer created to

enhance understanding and study of different sorting algorithms."ISort" offers a unique approach to visualizing sorting algorithms,

allowing users to gain a deeper understanding of how these algorithms function and how effective they are, all through an easy-to-use

and intuitive interface. The 'ISort' visualizer employs diverse sorting algorithms, including bubble, insertion, selection, merge, quicksort,

and others, to demonstrate their contrasting execution and performance characteristics. A visualizer tool allows users to modify the sizes

of the input data, the speed at which the sorting occurs, and the visual signals to observe the process in a step-by-step manner and gain a

fundamental understanding of the workings of any algorithm. The application also provides users real-time performance indicators, such

as comparison count and time complexity, to help them accurately evaluate and compare different sorting methods. This paper not only

discusses the technical features of 'ISort,' including its architecture and implementation but also emphasizes its pedagogical and practical

importance. 'ISort' endeavors to be a beneficial resource for educators, students, and developers who wish to increase their

comprehension of sorting algorithms. Additionally, it provides a platform for the exploration and experimentation of novel algorithms.

'ISort' enhances the accessibility and engagement of sorting algorithms for a wider audience by integrating an informative and user-

friendly interface with extensive algorithm coverage.

Keywords: Sorting algorithms, analysis

1. Introduction

Sorting algorithms play a crucial role in computer science by

facilitating efficient organization, retrieval, and data processing.

Sorting is a key concept in the field of algorithms, encompassing

tasks ranging from organizing files by date to sorting playlists by

song title. It is applicable in various domains, including databases

and search engines. Algorithms play a fundamental role in

computer science education, as they impart crucial concepts,

problem-solving techniques, and algorithmic reasoning. Although

sorting algorithms are typically uncomplicated, comprehending

and visualizing them can prove challenging.

The authors present 'ISort', a cutting-edge and interactive sorting

visualizer that serves as a dynamic and instructional tool for

examining a wide range of sorting algorithms, bridging the divide

between abstract ideas and practical comprehension. 'ISort'

allows users to acquire knowledge and study sorting algorithms

in a captivating and enlightening fashion.

1.1. Key Features of 'ISort'

Customizable Input: A fundamental aspect of 'ISort' is its

capacity to enable users to choose the number of bars to be

sorted. By allowing users to customize, this feature allows for

experimentation with sorting algorithms on datasets of varying

sizes, facilitating a deeper understanding of the algorithms'

performance in varied contexts.

Best-Case and Worst-Case Scenarios: 'ISort' allows users to

generate scenarios representing the best and worst-case possible

outcomes. Through observation of sorting algorithms operating in

ideal and difficult conditions, users can better understand the

algorithms' efficiency and flexibility.

Visual Speed Control: Sorting algorithms frequently manifest as

a jumble of motion. This is remedied by 'ISort's' visual speed

adjustment feature, which grants users command over the sorting

procedure's velocity. This functionality enables a more

comprehensive examination of algorithmic procedures.

Pause and Play Functionality: Functionality for Pausing and

Playing: To optimize the learning experience, 'ISort' incorporates

pause and play controls that allow users to suspend the

visualization while sorting temporarily. The inclusion of the

pause-and-play feature allows users to analyze sorting steps in

detail and acquire a more profound comprehension of their

mechanisms.

Pseudo Code Highlighting: The depiction of pseudocode makes

it easier to comprehend sorting algorithms. This is accomplished

through the use of pseudocode highlighting. The 'ISort' program

not only displays the code of the algorithm, but it also highlights

the line that is now being executed. This makes it much simpler

for users to comprehend the reasoning behind the calculation.

Performance Metrics: The sorting process provides real-time

data on the number of comparisons conducted, which gives

1 Department of Computer Science, Ram Lal Anand College,

University of Delhi – 110021, INDIA.

e-mail: vandanagandotra17@gmail.com

2*Department of Computer Science, Ram Lal Anand College,

University of Delhi – 110021, INDIA.

* Corresponding Author Email: sakshitaareshkhanna@gmail.com

ORCID ID:0009-0006-2936-8708

ORCID ID: 0009-0003-0206-9220

3 Department of Computer Science, Ram Lal Anand College,

University of Delhi – 110021, INDIA.

e-mail: rishabh4124@rla.du.ac.in

ORCID ID: 0009-0003-8312-9781

4Department of Computer Science, Ram Lal Anand College,

University of Delhi – 110021, INDIA.

e-mail: rishabh4087@rla.du.ac.in

ORCID ID: 0009-0008-3084-7495

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2374

significant insights into the efficiency and complexity of the

selected method.

Algorithms Overview: The 'ISort' repository is a comprehensive

collection of sorting algorithms that includes a wide range of

algorithms such as bubble sort, insertion sort, selection sort,

merge sort, quicksort, and many more. Every algorithm is

accompanied by a concise explanation, making it suitable for

students of all skill levels, from novices to seasoned

programmers.The integration of these characteristics in 'ISort'

successfully closes the gap between academic comprehension and

the practical application of sorting algorithms. 'ISort' is a

powerful tool that provides an intuitive, educational, and

immersive approach to visualizing sorting algorithms. It is

suitable for educators looking to demonstrate sorting algorithms

engagingly, students seeking to understand the complexities of

these algorithms, and developers interested in experimenting with

and evaluating different sorting methods.This paper explores the

technical architecture, design, and instructional importance of

'ISort,' offering profound insights into its development and its

transformational potential for computer science education,

research, and practical implementation. The 'ISort' algorithm not

only enhances the ease of use and understanding of sorting

algorithms, but also motivates a new cohort of algorithm

aficionados to delve into the captivating realm of data

management and algorithmic problem-solving.

The subsequent sections of this research paper explore sorting

algorithms and the development of "ISort - The Sorting

Visualizer." The literature review provides an overview of

existing research on sorting algorithms and visualization tools.

The structure of ISort is outlined, followed by a comparison with

other tools. The implementation details of ISort are discussed,

along with code snippets for clarity. Performance evaluation

analyzes sorting algorithms using ISort, offering empirical

insights. Finally, the paper concludes with findings, implications,

and references.

2. Literature Survey

In the course of the literature evaluation, a scarcity of pertinent

online resources and applications was observed. The Sorting

Visualiser and Sorting Algorithm Visualiser websites, which are

accessible via Google, have the functionality to efficiently

represent and sort data or bar values using different sorting

algorithms like bubble sort, insertion sort, and many more. It uses

a basic base page to show the desired output.Sort Visualiser is a

website that has been registered bymahfuzarifat7on GitHub. It

offers users the ability to pause and lay the Sorting algorithm at

their discretion, as well as the capability to adjust the speed of the

visualization either in starting of the process or after the ending of

the desired output [7].Sorting Visualization, an additional website

created by Clement Mihail is characterized by a convoluted

structure and an interface that is not intuitive; it permits the user

to enter the number of bar values, albeit in a laborious fashion.

[12].

The alternative visualization tool, which sorts the algorithm and

is also accessible on YouTube, employs sound effects to

encourage user interaction. However, users may become

confused by the noises associated with bar position adjustments,

merging, and swapping.The remaining two sorting visualizers

include “sorting visualizers using javascript by Abhishek

Prakash”[10] and “visualizing sorter by Code Drifter”[13]

exclusively available on YouTube. They employ an inverted axis

format to deterministically sort the bars of value and use limited

color to differentiate between them during sorting, swapping, and

merging.Upon reviewing the literature, it was discovered that

there are no existing applications or websites that have all the

necessary elements to qualify as a comprehensive tool for

visualizing sorting algorithms. The authors' primary goal was to

create a sorting tool called "Isort - The Sorting Visualizer."

3. Structure of “Isort - The Sorting Visualizer”

3.1. Software and Hardware Requirements

Hardware Prerequisites - A laptop or desktop computer equipped

with a reliable internet connection.The software utilized during

the development of the application included:Operating System:

Windows 11 Platform: Visual Studio Programming instructions

or commands written in a specific language.

Programming Language: JavaScript. User Interface - HTML,

CSS, and Javascript.

3.2 Understanding the structure with following diagram

Fig.1.Use Case for ISort

The "Isort - The Sorting Visualizer" website starts with an

impressive homepage that provides information about the website

and highlights the benefits of sorting in the computer and

algorithms fields. The website has a side panel and a feedback

form, as well as the email address of the authors in the footers.

Fig. 2. ISort sorting visualizer home page

The website's side panel displays many sorting algorithms that

the user can select. Each sorting algorithm is accompanied by

detailed information, including its functionality, applications, and

drawbacks. This information is presented in a well-organized

manner under the functioning section of the website.

Fig. 3.ISort sorting visualizer side navigation

https://mahfuzrifat7.github.io/SortingVisualizer/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2375

Fig. 4.ISort sorting visualizer sorting algorithm page

Fig. 5. ISort sorting visualizer sort description provided with each sort

included

Additionally, developers offer a feedback form tha allows users

to provide input, enabling them to make necessary modifications

to enhance the user-friendliness and convenience of the website.

The feedback includes-

1. User’s name

2. Age

3. Email address

4. Rating (in form of emojis)

5. Message .

Fig. 6. ISort sorting visualizer feedback form

3.2. Comparing “ Isort - The Sorting Visualizer ''with existing

websites and tools

The “Isort - The Sorting Visualizer”is compared with other

freely available Websites and sorting visualizers on Google,

chrome, YouTube etc, on the basis of different parameters is

presented in Table 1.

Name: This column simply lists the names of the sorting

algorithm visualizer tools.

Complexity: This column indicates the complexity level of each

tool. Tools are categorized as "Simple," "Moderately simple," or

"Very simple" based on their user interface and features.

UI (User Interface): This column specifies whether the tool has

a user interface. Tools marked "Yes" have a user interface, while

those marked "No" do not.

Visual Speed Change option: This column indicates whether the

tool allows users to adjust the speed of the visualization. If "Yes,"

users can typically speed up or slow down the sorting process

visually.

Pause Play Button: This column denotes whether the tool

provides a pause/play button, allowing users to pause and resume

the sorting visualization.

Input number of Bars: Indicates whether users can input the

number of bars (elements) to be sorted.

Random bars generation: Specifies if the tool offers the

functionality to generate random bars for sorting.

Input bar values: This column indicates whether users can

manually input values for the bars to be sorted.

Code showcase: Specifies whether the tool showcases the sorting

algorithm's code.

Highlight Code line being executed: Indicates whether the tool

highlights the line of code currently being executed during the

sorting process.

Showcase number of comparisons: Specifies if the tool displays

the number of comparisons made during the sorting process.

Termination button: Denotes whether the tool provides a button

or option to terminate the sorting process prematurely.

Time complexity: Indicates whether the tool provides

information about the time complexity of the sorting algorithm

being visualized.

Best case and worst case: Specifies whether the tool showcases

information about the best and worst-case scenarios for the

sorting algorithm's performance.

User friendly: This column evaluates the overall user-

friendliness of the tool.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2376

Table 1. Detailed comparison of ISORT with other existing models

Name UI

Visual

Speed

Change

option

Pause

Play

Button

Input

the

number

of Bars

Random

bars

generation

Input

bar

values

Code

showcase

Highlight

the Code

line being

executed

Showcase

the number

of

comparisons

Termination

button

Time

complexity

Best-case

and worst-

case

User

friendly

Visualgo.net Complex Yes Yes No Yes Yes Yes Yes No No No Yes No

Sorting algorithms visualized by

Kyle Smith
Simple Yes No Yes Yes No No No No No No No No

Sorting Algorithm Visualizer Simple Yes No Yes Yes No No No No No No No No

clement mihaile sorting

visualizer
Simple Yes No Yes Yes No No No No No No No No

mahfuzrifar7 's sorting

visualizer
Simple Yes No Yes Yes No No No No No No No Yes

ramizrahman sorting-

algorithms
Simple Yes Yes Yes Yes No No No No No Yes No Yes

coder stool
Moderately

simple
Yes No Yes Yes No No No No No No Yes Yes

Radu mariescu sorting

visualizer
very simple No No No Yes No No No No Yes No No Yes

coder drift's sorting visualizer
Moderately

simple
Yes No Yes Yes No No No No No No No No

Abhishek Prakash sorting

visualizer
Simple Yes No No Yes No No No No No No No Less

Isort Visualizer Simple Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes

https://visualgo.net/en/sorting
https://sorting-algorithm-jet.vercel.app/
https://sorting-algorithm-jet.vercel.app/
https://sortingvisualizerx.netlify.app/
https://clementmihailescu.github.io/Sorting-Visualizer/
https://clementmihailescu.github.io/Sorting-Visualizer/
https://mahfuzrifat7.github.io/SortingVisualizer/
https://mahfuzrifat7.github.io/SortingVisualizer/
https://sort-visualizer.ramizrahman.com/
https://sort-visualizer.ramizrahman.com/
https://www.coderstool.com/sorting-algorithms/
https://youtu.be/_AwSlHlpFuc?feature=shared
https://youtu.be/_AwSlHlpFuc?feature=shared
https://youtu.be/JMnZ3VoWinY?feature=shared
https://youtu.be/cW16SGqr_Lg?feature=shared
https://youtu.be/cW16SGqr_Lg?feature=shared
https://rishabhjain-6.github.io/iSort/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2377

4. Implementation of ISort - The Sorting
Visualizer

The development of 'iSort' is driven by a user-centric approach,

prioritizing interactivity, customization, and educational

significance. Users can provide the desired number of data

components to be sorted, and 'iSort' will dynamically generate a

visual dataset that corresponds to this input. 'iSort' possesses a

notable characteristic of being capable of producing optimal and

suboptimal situations. This is accomplished by adjusting the

original data distribution and utilizing a collection of pre-

established datasets. The program has a customizable visual

speed slider, enabling users to modify the animation speed in

real-time. This allows users to freely explore sorting algorithms at

their preferred pace. The pause and play functionality is smoothly

incorporated, enabling users to halt the sorting animation at any

moment, thus providing a detailed examination of the algorithm's

execution in a step-by-step manner. Moreover, 'iSort' ensures that

the pseudo code of the algorithm is synchronized with the

ongoing execution and emphasizes the currently executing line,

hence improving user understanding. Users are provided with

useful insights on algorithm efficiency during the sorting process

through rigorous tracking of real-time performance measures,

including comparison counts. The extensive use of 'iSort'

distinguishes it as a versatile and user-friendly platform for the

investigation and comprehension of sorting algorithms.

Compared to competing programs, 'iSort' distinguishes itself with

its unique combination of proven skills. The 'iSort' application

offers a range of user-driven capabilities, such as the ability to

customize input, design scenarios, manage the speed visually, and

smoothly pause and play. Additionally, it incorporates proven

elements such as highlighting pseudo code and providing real-

time performance data. The utilization of this technology ensures

that 'iSort' delivers a dynamic and all-encompassing user

experience, setting it apart from other visualization tools designed

for sorting algorithms. The meticulous design of 'iSort' renders it

an appealing and informative tool suitable for a diverse audience,

including students, educators, programmers, and algorithm

enthusiasts.

4.1Glimpse of implementation of the application

Fig. 7. Home Page

Fig. 8. Bubble Sort

Fig. 9. Sort in process

Fig. 10. Completed sort

Fig. 2 displays the Home page of the iSort website, which allows

the user to select a sorting option. Fig. 3 displays the user

interface (UI) of Bubble sort, showcasing the control panel,

pseudocode, comparison table, and bars with their respective

values.

Fig.4 depicts an ongoing sorting process, with the highlighted

pseudocode indicating the current line of code being executed.

Fig. 5 displays a fully sorted arrangement.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2378

Fig. 11. Brief of a sort

Fig. 12. Feedback Form

Fig. 13. Sidebar showing sorts

Fig.6 depicts a concise overview of a sorting algorithm. Fig.7

displays the user interface (UI) of the feedback form.Fig. 8

displays the side navigation bar that exhibits several types of sorts

implemented by ISort.

4.2 Application Flow

Upon initiation of ISort, the user will be promptly redirected to

the platform's homepage. Users have two primary navigation

choices: they may either scroll down to find the "Let's Sort

Away!" button at the bottom of the page, or they can access the

side navigation bar by touching the three-line symbol at the top-

left corner of the interface. The side navigation bar offers

customers an extensive selection of sorting algorithms, enabling

them to choose the particular method they want to investigate.

Once the user chooses a specific sorting method, they are

automatically redirected to a specialized page specifically

designed for that algorithm.A conspicuous control panel is

prominently showcased on the page dedicated to a specific

sorting algorithm. This control panel offers a background with a

distinctive skin color and houses all the essential tools for altering

the array of data and regulating the sorting process itself. To

begin the sorting process, users can tap on the button labeled with

the name of the chosen sorting method. This will trigger a

dynamic visualization where bars are sorted. After the sorting

process is finished, the algorithm's execution updates and

displays the number of comparisons made. This information is

located right below the portion that contains the algorithm's

pseudocode, giving users useful information about the algorithm's

efficiency. Additionally, visitors are encouraged to submit

feedback and suggestions via a readily accessible link situated at

the bottom of the page, generating a sense of user engagement

and continual progress.

Fig. 14. Sequence Diagram

Upon entering the website, the user can choose from a variety of

sorting algorithms based on their specific needs. This selection

triggers the website to open the chosen sorting algorithm,

allowing the user to customize parameters like the number of

elements, algorithm speed, and specific elements within the

algorithm. The initial array is then presented based on these

adjustments in the form of number bars. Upon the user's initiation

of the sorting algorithm, the website proceeds to execute the

sorting process in the background. Simultaneously, it visually

guides the user through each step by highlighting the currently

executing line of code (pseudo code) and the corresponding

number bar involved in the process. Once the array is

successfully sorted, the final result is presented along with the

total number of comparisons made during the process.

5. Code Snippets

5.1 Code snippet for Bubble Sort backend working

This JavaScript code defines functions for generating and

visualizing bars on a webpage, particularly for sorting algorithms.

The user can generate number bars randomly, in the best-case

scenario, or the worst-case scenario. This module includes the

Bubble Sort algorithm, with visualizations for each step, such as

bar comparisons and swaps. Similar modules are available for

other sorting algorithms. Buttons allow the user to control the

sorting process, including pausing and resuming. Additionally,

there are options to set the speed of the visualization. The code

utilizes HTML elements and styling to create a dynamic and

interactive sorting visualization on a webpage using different

color highlighting methods.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2379

const container = document.querySelector(".vrsplit1");

let isPlaying = false;

const pausePlayBtn = document.getElementById("pauseButton");

let terminate = false;

var count = 0;

const compare = document.getElementById("comp");

function generatebars(num) {

container.innerHTML=""

 for (let i = 0; i< num; i += 1) {

 const value = Math.floor(Math.random() * (180-9)+9) + 1;

 const bar = document.createElement("div");

 bar.classList.add("bar");

 bar.style.height = `${value/2}%`;

 const barLabel = document.createElement("label");

 barLabel.classList.add("bar__id");

 barLabel.innerHTML = value;

 if (num>80) {

barLabel.style.display='none';

 }

 if (num<=40) {

 if (num<=10) {

 barLabel.style.fontSize = 'xxx-large';

 }

 else if (num<=20) {

barLabel.style.fontSize = 'xx-large';

 }

 if (num>20 && num<=30) {

 barLabel.style.fontSize = 'x-large';

 }

 else if (num<=40) {

barLabel.style.fontSize = 'large';

 }

 }

 bar.appendChild(barLabel);

 container.appendChild(bar);

 }

}

generatebars(25);

function generate() {

 var n = document.getElementById("nele");

 var numele = parseInt(n.value);

 if (numele>400) {

window.alert("Upper bound is 400 bars. Kindly choose a value in that range!");

n.value=400;

generate();

 }

 else {

generatebars(numele);

 }

}

function generate2() {

 const value = Math.floor(Math.random() * 80) + 1;

 generatebars(value);

}

function generatebarsWorst(num) {

container.innerHTML=""

 let values = Array.from({length: num}, (_, i) =>Math.max(num - i + 9, 10));

 for (let i = 0; i< num; i += 1) {

 const value = values[i];

 const bar = document.createElement("div");

 bar.classList.add("bar");

 bar.style.height = `${value/2}%`;

 const barLabel = document.createElement("label");

 barLabel.classList.add("bar__id");

 barLabel.innerHTML = value;

 if (num>80) {

barLabel.style.display='none';

 }

 if (num<=40) {

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2380

 if (num<=10) {

 barLabel.style.fontSize = 'xxx-large';

 }

 else if (num<=20) {

barLabel.style.fontSize = 'xx-large';

 }

 if (num>20 && num<=30) {

 barLabel.style.fontSize = 'x-large';

 }

 else if (num<=40) {

barLabel.style.fontSize = 'large';

 }

 }

 bar.appendChild(barLabel);

 container.appendChild(bar);

 }

}

function generatebarsBest(num) {

container.innerHTML=""

 let values = Array.from({length: num}, (_, i) =>i + 1 + 9);

 for (let i = 0; i< num; i += 1) {

 const value = values[i];

 const bar = document.createElement("div");

 bar.classList.add("bar");

 bar.style.height = `${value/2}%`;

 const barLabel = document.createElement("label");

 barLabel.classList.add("bar__id");

 barLabel.innerHTML = value;

 if (num>80) {

barLabel.style.display='none';

 }

 if (num<=40) {

 if (num<=10) {

 barLabel.style.fontSize = 'xxx-large';

 }

 else if (num<=20) {

barLabel.style.fontSize = 'xx-large';

 }

 if (num>20 && num<=30) {

 barLabel.style.fontSize = 'x-large';

 }

 else if (num<=40) {

barLabel.style.fontSize = 'large';

 }

 }

 bar.appendChild(barLabel);

 container.appendChild(bar);

 }

}

function generatebest() {

 const value = Math.floor(Math.random() * 80) + 1;

generatebarsBest(value);

}

function generateworst() {

 const value = Math.floor(Math.random() * 80) + 1;

generatebarsWorst(value);

}

function disable() {

document.getElementById("Button1").disabled = true;

document.getElementById("Button1").style.backgroundColor = "#d8b6ff";

document.getElementById("Button2").disabled = true;

document.getElementById("Button2").style.backgroundColor = "#d8b6ff";

document.getElementById("Button3").disabled = true;

document.getElementById("Button3").style.backgroundColor = "#d8b6ff";

document.getElementById("Button4").disabled = true;

document.getElementById("Button4").style.backgroundColor = "#d8b6ff";

document.getElementById("Button5").disabled = true;

document.getElementById("Button5").style.backgroundColor = "#d8b6ff";

}

var delay = 5000;

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2381

async function BubbleSort() {

 count = 0;

 let bars = document.querySelectorAll(".bar");

 var l0 = document.getElementById("line0");

 l0.style.backgroundColor = "lightgreen";

 for (let i = 0; i<bars.length; i++) {

 var l1 = document.getElementById("line1");

 l1.style.backgroundColor = "cyan";

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l1.style.backgroundColor = null;

 var c2 = 1;

 for (let j = 0; j <bars.length - i - 1; j++) {

 var l2 = document.getElementById("line2");

 l2.style.backgroundColor = "cyan";

 while (isPlaying) {

 if (terminate) {

 l2.style.backgroundColor = null;

 l0.style.backgroundColor = null;

document.getElementById("Button1").disabled = false;

document.getElementById("Button1").style.backgroundColor = "#a54997";

document.getElementById("Button2").disabled = false;

document.getElementById("Button2").style.backgroundColor = "#a54997";

document.getElementById("Button3").disabled = false;

document.getElementById("Button3").style.backgroundColor = "#a54997";

document.getElementById("Button4").disabled = false;

document.getElementById("Button4").style.backgroundColor = "#a54997";

document.getElementById("Button5").disabled = false;

document.getElementById("Button5").style.backgroundColor = "#a54997";

isPlaying = false;

pausePlayBtn.textContent = 'Pause';

 compare.textContent=' ' + " No of Comparisons: ";

 for (let k=0;k<bars.length;k++) {

 bars[k].style.backgroundColor="rgb(236, 190, 53)"; }

 terminate = !terminate;

 return; }

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, 1000)); }

 if (terminate) {

 l2.style.backgroundColor = null;

 l0.style.backgroundColor = null;

document.getElementById("Button1").disabled = false;

document.getElementById("Button1").style.backgroundColor = "#a54997";

document.getElementById("Button2").disabled = false;

document.getElementById("Button2").style.backgroundColor = "#a54997";

document.getElementById("Button3").disabled = false;

document.getElementById("Button3").style.backgroundColor = "#a54997";

document.getElementById("Button4").disabled = false;

document.getElementById("Button4").style.backgroundColor = "#a54997";

document.getElementById("Button5").disabled = false;

document.getElementById("Button5").style.backgroundColor = "#a54997";

 for (let k=0;k<bars.length;k++) {

 bars[k].style.backgroundColor="rgb(236, 190, 53)"; }

 compare.textContent=' ' + " No of Comparisons: ";

 terminate = !terminate;

 return; }

 var value1 = parseInt(bars[j].childNodes[0].innerHTML);

 var value2 = parseInt(bars[j + 1].childNodes[0].innerHTML);

 var l3 = document.getElementById("line3");

 l3.style.backgroundColor = "cyan";

 if (value1 > value2) {

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 var l4 = document.getElementById("line4");

 l4.style.backgroundColor = "cyan";

 bars[j].style.backgroundColor = "red";

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

bars[j + 1].style.backgroundColor = "red";

 var temp1 = bars[j].style.height;

 var temp2 = bars[j].childNodes[0].innerText;

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 bars[j].style.height = bars[j + 1].style.height;

 bars[j].childNodes[0].innerText = bars[j + 1].childNodes[0].innerText;

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2382

bars[j + 1].style.height = temp1;

bars[j + 1].childNodes[0].innerText = temp2;

 l4.style.backgroundColor = null; }

 c2 = c2+1;

 var l5 = document.getElementById("line5");

 l5.style.backgroundColor = "cyan";

 l3.style.backgroundColor = null;

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l5.style.backgroundColor = null;

 bars[j].style.backgroundColor = "rgb(236, 190, 53)";

bars[j + 1].style.backgroundColor = "rgb(236, 190, 53)";

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l2.style.backgroundColor = null; }

 count = count + c2;

 compare.textContent=' ' + " No of Comparisons: "+count;

 var l6 = document.getElementById("line6");

 l6.style.backgroundColor = "cyan";

bars[bars.length - i - 1].style.backgroundColor = "rgb(49, 226, 13)";

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l6.style.backgroundColor = null; }

 var l7 = document.getElementById("line7");

 l7.style.backgroundColor = "cyan";

 for (let i = 0; i<bars.length; i++) {

 bars[i].style.backgroundColor = "rgb(49, 226, 13)"; }

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l7.style.backgroundColor = null;

document.getElementById("Button1").disabled = false;

document.getElementById("Button1").style.backgroundColor = "#a54997";

document.getElementById("Button2").disabled = false;

document.getElementById("Button2").style.backgroundColor = "#a54997";

document.getElementById("Button3").disabled = false;

document.getElementById("Button3").style.backgroundColor = "#a54997";

document.getElementById("Button4").disabled = false;

document.getElementById("Button4").style.backgroundColor = "#a54997";

document.getElementById("Button5").disabled = false;

document.getElementById("Button5").style.backgroundColor = "#a54997";

compare.textContent=' ' + " No of Comparisons: "+count;

 await new Promise((resolve) =>setTimeout(() => { resolve(); }, delay));

 l0.style.backgroundColor = null;}

function delaySet() {

 delay = 5000;

 var s = document.getElementById("speeder");

 var d = parseInt(s.value);

 delay=delay/d;}

pausePlayBtn.addEventListener('click', () => {

 if (isPlaying) {

isPlaying = false;

pausePlayBtn.textContent = 'Pause';

 } else {

isPlaying = true;

pausePlayBtn.textContent = 'Resume'; }

 });

This JavaScript code segment constructs a sorting visualizer

specifically tailored for the Bubble Sort algorithm. Upon

initialization, it defines essential variables such as container,

isPlaying, and pausePlayBtn to facilitate sorting operations and

user interaction. Functions are then established to generate bars

for visualization (generatebars), control animation speed

(delaySet), and execute the Bubble Sort algorithm (BubbleSort).

The heart of the functionality lies within the BubbleSort function,

where a loop iterates through the bars, assessing adjacent

elements and executing swaps as necessary until the array is

sorted. Throughout this process, visual cues like color changes in

bars and highlighted lines signify the algorithm's progression.

Additionally, an event listener is incorporated to the

pausePlayBtn button, allowing users to toggle between pausing

and resuming the sorting animation. Furthermore, the delaySet

function permits users to adjust the

 animation speed by modifying the delay between iterations of the

sorting algorithm. This code segment provides an interactive

platform for visualizing Bubble Sort, enhancing comprehension

and engagement with the sorting procedure.

5.2 Code snippet for Feedback form

This HTML document represents a feedback form webpage. It

includes a form with fields for name, age, email, a rating using

emojis, and a message. The embedded JavaScript function

validateForm() checks for the correctness of input data, including

name validation with a regular expression for disallowing

numbers. The form is styled using an external CSS file and has a

background image. Upon submission, the form is set to be sent

via email to specified recipients using the "mailto" attribute.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2383

<!DOCTYPE html>

<html>

<head>

<title>

 Feedback Form

</title>

<link rel="stylesheet" href="feedbackcss.css">

<script>

 function validateForm() {var name = document.forms["feedbackForm"]["name"].value;

 var age = document.forms["feedbackForm"]["name"].value;

 var email = document.forms["feedbackForm"]["email"].value;

 var message = document.forms["feedbackForm"]["message"].value;

 var regEmail = /^\w+([\.-]?\w+)*@\w+([\.-]?\w+)*(\.\w{2,3})+$/g; //JavascriptreGex for Email Validation.

 var regName = /\d+$/g; // Javascript reGex for Name validation

 if (name == "" || regName.test(name)) {alert("Name must be filled out");

 return false; }

 if (age == "") {alert("Name must be filled out correctly");

 return false; }

 if (email == "" || !regEmail.test(email)) {

alert("Email must be filled out correctly");

 return false; }

 if (message == "") {

alert("Message must be filled out");

 return false; }

 return true; }

</script>

</head>

<body background="bg.jpg" style="background-repeat:no-repeat; background-size:100% 100vh;">

<center>

<div id="div1" style="background-color: rgba(0, 0, 0, 0.7)">

<h1 font-size : 70px style="margin:20px;">Feedback Form</h1>

<form name="feedbackform" action="mailto: rishabh4124@rla.du.ac.in; rishabh4087@rla.du.ac.in" method="post" onsubmit="return

validateForm()" enctype="text/plain">

<label for="name">Name:</label>

<input type="text" id="name" name="name" required>

<label for"age">Age:</label>

<input type="number" min="15" max="100" name="Age" required>

<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

<label for="" text-align:left>Rating:</label>

<div id="response">

<input type="radio" id="sad" name="response" value="sad" class="radio" />

<label class="emoji emoji1" for="sad">😞</label>

<input type="radio" name="response" id="average" value="average" class="radio" />

<label class="emoji emoji2" for="average">😐</label>

<input type="radio" name="response" id="happy" value="happy" class="radio" />

<label class="emoji emoji3" for="happy">😊</label>

</div>

<label id="label1" for="message">Message</label>

<textarea id="message" name="message" rows="7" cols="40"></textarea>

<input type="submit" value="Submit" class="button">

<input type="reset" value="Reset" class="button">

</form>

</div>

</center>

</body>

</html>

The provided HTML code constitutes a feedback form designed

to collect user input. The form begins with the declaration of the

document type and version of HTML being used. Within the

`<head>` section, metadata such as the webpage title and a link to

an external CSS file for styling purposes are specified.

Additionally, JavaScript code is embedded within the `<script>`

tags to validate user inputs before submission. The validation

function, `validateForm()`, checks that the name, age, email, and

message fields are not empty and meet specific criteria defined by

regular expressions. Moving on to the `<body>` section, the

background image of the webpage is set, and the content is

centered using the `<center>` tag. The feedback form itself is

contained within a `<div>` element with a semi-transparent black

background. It includes input fields for name, age, email, rating,

and message, along with submit and reset buttons. Upon

submission, the form data is sent via email to the specified

recipients. Overall, the HTML code constructs a visually

appealing and functional feedback form with client-side

validation to ensure the accuracy of user-provided information

before submission.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2384

6. Performance Evaluation of different sorting
algorithms.

For evaluating the performance of various sorting algorithms, the

authors conducted comprehensive tests by considering different

input sizes and types. The algorithms' performance was assessed

under varying scenarios, including best and worst-case scenarios

for the same input size. This evaluation involved noting the

number of comparisons made by each algorithm and determining

their respective time complexities. Our analysis encompassed a

range of sorting algorithms, including Bubble Sort, Merge Sort,

Selection Sort, Insertion Sort, Heap Sort, Gnome Sort, and

Stooge Sort. Through this systematic evaluation process, authors

gained insights into the efficiency and effectiveness of each

algorithm across different input scenarios.

1) Bubble Sort's performance was evaluated across different

input sizes and scenarios. For an input size of 25 elements, the

algorithm demonstrated its best-case scenario efficiency with

only 25 comparisons required when the input was already sorted,

showcasing its linear time complexity of O(n). However, in the

worst-case scenario with random input, Bubble Sort required 160

comparisons, revealing its quadratic time complexity of O(n^2).

As the input size increased to 50 and 100 elements, Bubble Sort's

inefficiency became more pronounced, with 325 comparisons for

the former and 2995 comparisons for the latter, both confirming

its quadratic time complexity. While Bubble Sort is

straightforward and suitable for small datasets or pre-sorted

inputs, its performance significantly deteriorates for larger

datasets, making it inefficient compared to more advanced sorting

algorithms.
Table 2. Analysis of Bubble sort

No of

inputs

No of

comparisons

Type of Input Complexity

25 25 Best Case O(n)

25 160 Random O(n2)

25 325 Worst Case O(n2)

50 676 Random O(n2)

100 2995 Random O(n2)

Bubble sort is named for the way larger elements move up the list

faster, like bubbles rising in liquid. Adjacent elements are

compared and swapped during each pass, gradually sorting the

list.

2) Insertion Sort reveals its performance across varying input

sizes and scenarios. With an input size of 25 elements, Insertion

Sort demonstrates optimal efficiency in the best-case scenario,

requiring only 25 comparisons, showcasing its linear time

complexity of O(n). However, in the worst-case scenario with

random input, it necessitates 221 comparisons, indicating its

quadratic time complexity of O(n^2). As the input size increases

to 50 and 100 elements, Insertion Sort's inefficiency becomes

more evident, with 433 and 2950 comparisons, respectively,

further confirming its quadratic time complexity. While Insertion

Sort is effective for small datasets or pre-sorted inputs, its

performance diminishes significantly for larger datasets, aligning

with other quadratic-time sorting algorithms.

Table 3. Analysis of Insertion sort

No of

inputs

No of

comparisons

Type of Input Complexit

y

25 25 Best Case O(n)

25 221 Random O(n2)

25 433 Worst Case O(n2)

50 658 Random O(n2)

100 2950 Random O(n2)

Insertion sorting is akin to sorting playing cards in your hand.

The array is divided into sorted and unsorted parts. Values from

the unsorted part are selected and inserted into the correct

position within the sorted part.

3) Selection Sort like other quadratic-time sorting algorithms,

exhibits varying performance depending on the input size and

characteristics. For an input size of 25 elements, Selection Sort

showcases its best-case scenario efficiency with only 25

comparisons needed, reflecting its linear time complexity of O(n).

However, in the worst-case scenario with random input, the

Selection Sort requires 379 comparisons, revealing its quadratic

time complexity of O(n^2). As the input size increases to 50 and

100 elements, the inefficiency of Selection Sort becomes more

pronounced, with 668 and 2894 comparisons respectively, further

confirming its quadratic time complexity. While Selection Sort

may be suitable for small datasets or educational purposes due to

its simplicity, its performance diminishes significantly for larger

datasets, making it less practical for real-world applications

compared to more efficient sorting algorithms.

Table 4.Analysis of Selection sort

No of

inputs

No of

comparisons

Type of Input Complexity

25 25 Best Case O(n)

25 379 Random O(n2)

25 480 Worst Case O(n2)

50 668 Random O(n2)

100 2894 Random O(n2)

Selection sort is a basic sorting algorithm that iteratively locates

the minimum element from the unsorted portion of an array and

positions it at the start of the sorted segment.

4) Quick Sort demonstrates efficient performance across

different input sizes and scenarios, showcasing its effectiveness

as a sorting algorithm. For an input size of 25 elements, Quick

Sort exhibits optimal efficiency in both the best-case and random

scenarios, requiring 200 and 251 comparisons respectively. This

reflects its average-case time complexity of O(n*logn), where 'n'

represents the size of the input. However, in the worst-case

scenario with random input, Quick Sort necessitates 505

comparisons, indicating its potential to degrade to quadratic time

complexity (O(n^2)). As the input size increases to 50 and 100

elements, Quick Sort maintains its efficiency, with 524 and 1184

comparisons respectively in random scenarios, reinforcing its

average-case time complexity. Quick Sort's ability to achieve

near-optimal performance in average and best-case scenarios

makes it a preferred choice for sorting large datasets efficiently,

especially when compared to quadratic-time sorting algorithms

like Bubble Sort or Selection Sort.

Table 5. Analysis of Quick sort

No of

inputs

No of

comparisons

Type of

Input

Complexity

25 200 Best Case O(n(logn))

25 251 Random O(n(logn))

25 505 Worst Case O(n2)

50 524 Random O(n(logn))

100 1184 Random O(n(logn))

QuickSort, like Merge Sort, is a Divide and Conquer algorithm

that selects a pivot and partitions the array around it. Different

versions of QuickSort choose the pivot in various ways, including

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2385

the first element, the last element, a random element, or the

median.

5) Randomized QuickSort exhibits efficient performance across

varying input sizes and scenarios, showcasing its effectiveness as

an improvement over traditional Quick Sort. For an input size of

25 elements, Randomized Quick Sort demonstrates optimal

efficiency in both the best-case and random scenarios, requiring

215 and 245 comparisons respectively. This reflects its average-

case time complexity of O(n*logn), where 'n' represents the size

of the input. However, in the worst-case scenario with random

input, Randomized Quick Sort necessitates 502 comparisons,

indicating its potential to degrade to quadratic time complexity

(O(n^2)). As the input size increases to 50 and 100 elements,

Randomized Quick Sort maintains its efficiency, with 568 and

1097 comparisons respectively in random scenarios, reinforcing

its average-case time complexity. The randomized nature of

Quick Sort helps mitigate the likelihood of encountering worst-

case scenarios, making Randomized Quick Sort a preferred

choice for sorting large datasets efficiently while reducing the

risk of performance degradation compared to traditional Quick

Sort.

Table 6.Analysis of Randomized Quicksort

No of

inputs

No of

comparisons

Type of

Input

Complexity

25 215 Best Case O(n(logn))

25 245 Random O(n(logn))

25 502 Worst Case O(n2)

50 568 Random O(n(logn))

100 1097 Random O(n(logn))

Randomized quicksort prevents worst-case time complexity by

randomly choosing the pivot, mitigating issues with already

sorted inputs and excessive comparisons.

6) Merge Sort consistently demonstrates efficient performance

across different input sizes and scenarios, establishing itself as a

reliable sorting algorithm. For an input size of 25 elements,

Merge Sort exhibits optimal efficiency in both the best-case and

random scenarios, requiring 118 comparisons each time. This

reflects its consistent average-case time complexity of O(n*logn),

where 'n' represents the size of the input. Interestingly, even in the

worst-case scenario with random input, Merge Sort maintains its

efficiency with only 118 comparisons needed. As the input size

increases to 50 and 100 elements, Merge Sort continues to

demonstrate its efficiency, with 286 and 672 comparisons

respectively in random scenarios, reaffirming its average-case

time complexity. The stable and predictable performance of

Merge Sort makes it an excellent choice for sorting large datasets

efficiently, particularly when compared to other sorting

algorithms.

Table 7.Analysis of Merge sort

No of

inputs

No of

comparisons

Type of Input Complexit

y

25 118 Best Case O(n(logn))

25 118 Random O(n(logn))

25 118 Worst Case O(n(logn))

50 286 Random O(n(logn))

100 672 Random O(n(logn))

Merge sort divides an array into halves, sorts each half, then

merges them together, following the divide-and-conquer

approach.

7) Heap Sort demonstrates efficient performance across various

input sizes and scenarios, making it a reliable sorting algorithm.

For an input size of 25 elements, Heap Sort exhibits optimal

efficiency in both the best-case and random scenarios, requiring

74 and 275 comparisons respectively. This indicates its consistent

average-case time complexity of O(n*logn), where 'n' represents

the size of the input. Even in the worst-case scenario with random

input, Heap Sort maintains its efficiency with 290 comparisons

needed. As the input size increases to 50 and 100 elements, Heap

Sort continues to perform well, with 738 and 1743 comparisons

respectively in random scenarios, reaffirming its average-case

time complexity. The stable performance of Heap Sort across

different input sizes and scenarios makes it a suitable choice for

sorting large datasets efficiently, particularly when compared to

other sorting algorithms.

Table 8.Analysis of Heap sort

No of

inputs

No of

comparisons

Type of Input Complexit

y

25 74 Best Case O(n(logn))

25 275 Random O(n(logn))

25 290 Worst Case O(n(logn))

50 738 Random O(n(logn))

100 1743 Random O(n(logn))

Heap sort transforms an unsorted array into a binary heap and

repeatedly extracts the maximum element until the array is sorted.

8) Gnome Sort's performance varies across different input sizes

and scenarios. For an input size of 25 elements, Gnome Sort

demonstrates optimal efficiency in the best-case scenario,

requiring only 25 comparisons. This reflects its linear time

complexity of O(n), where 'n' represents the size of the input.

However, in the worst-case scenario with random input, Gnome

Sort requires 600 comparisons, indicating its potential to degrade

to quadratic time complexity (O(n^2)). Similarly, for an input

size of 50 elements, Gnome Sort showcases its inefficiency in

random scenarios, needing 1233 comparisons. As the input size

increases to 100 elements, Gnome Sort's performance further

deteriorates, requiring 5250 comparisons in random scenarios.

Overall, while Gnome Sort may perform adequately for small

datasets or nearly sorted inputs, its efficiency diminishes

significantly for larger datasets, making it less practical compared

to other sorting algorithms with better time complexities.

Table 9.Analysis of Gnome sort

No of

inputs

No of

comparisons

Type of Input Complexit

y

25 25 Best Case O(n)

25 315 Random O(n2)

25 600 Worst Case O(n2)

50 1233 Random O(n2)

100 5250 Random O(n2)

Gnome sort is a basic sorting algorithm that swaps adjacent

elements until the list is sorted. Named after a "gnome"

rearranging a garden, it is more efficient than bubble sort as it

moves backward through the list.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2386

9) Stooge Sort's performance exhibits a consistent time

complexity of O(n^2.709), where 'n' represents the size of the

input. This complexity is reflected in all scenarios, including the

best case, worst case, and random inputs, across varying input

sizes. For an input size of 25 elements, Stooge Sort requires 3151

comparisons in the best-case scenario and 3280 comparisons in

random scenarios, showcasing its inefficiency even for relatively

small datasets. The worst-case scenario with random input

requires 3654 comparisons for the same input size. As the input

size increases to 50 and 100 elements, Stooge Sort's performance

deteriorates further, requiring 10149 and 24743 comparisons

respectively in random scenarios. Overall, Stooge Sort's time

complexity indicates its inefficiency compared to more

commonly used sorting algorithms, particularly for larger

datasets, making it less practical for real-world applications

where efficiency is crucial.

Table 10. Analysis of Stooge sort

No of

inputs

No of

comparisons

Type of Input Complexity

25 3151 Best Case O(n2.709)

25 3280 Random O(n2.709)

25 3654 Worst Case O(n2.709)

50 10149 Random O(n2.709)

100 24743 Random O(n2.709)

Stooge Sort, named after The Three Stooges, is a recursive

algorithm. It divides an array into overlapping parts, sorts them in

a specific order, ensuring a sorted array. Though not efficient, it's

an intriguing algorithm.

7. Conclusion and Future Work
To summarize, 'iSort' is a noteworthy achievement in the display

of sorting algorithms. It is a versatile tool that prioritizes the

user's needs and considerably enhances the understanding and

exploration of sorting strategies. 'iSort' offers a versatile input

system, live performance measurements, and inventive

functionalities such as scenario creation and dynamic speed

adjustment. This platform provides an immersive and all-

encompassing environment for anyone involved in learning,

teaching, and developing sorting algorithms. The successful

integration of established features with unique components in this

tool is highlighted by a comparative analysis with existing tools,

solidifying its reputation as a user-friendly and comprehensive

tool.

In the future, the development of 'iSort' presents promising

opportunities for more improvements and growth. Potential future

work could involve incorporating supplementary sorting

approaches to enhance the algorithmic scope of the application.

Applying sorting algorithms to real-world datasets can enhance

their usefulness and enable users to test the algorithms using

legitimate data. Utilizing advanced visualization tools could

provide more profound understanding of algorithm behavior,

while optimizing the code could enhance performance.

Expanding the tool's capabilities to include a broader range of

algorithms and transforming it into a more versatile algorithm

visualizer holds great potential for further advancement.

Integrating aural components into the sorting visualizer would

enhance user engagement and interactivity, while offering crucial

audible feedback to supplement the visual clues. These upcoming

initiatives are positioned to solidify 'iSort' as a prominent

platform for exploring sorting algorithms and comprehending

algorithmic concepts.

References
[1] M. Marcellino, D. W. William, S. S. Suntiarko, and K.

Margi, “Comparative of Advanced Sorting Algorithms

(Quick Sort, Heap Sort, Merge Sort, Intro Sort, Radix Sort)

Based on Time and Memory Usage,” Oct. 2021.

10.1109/ICCSAI53272.2021.9609715.

[2] A. K. Thakkar, S. Dash, and S. Joshi, “Sorting Algorithm

visualizer,” Jan. 2023.

[3] A. Trivedi, K. Pandey, V. Gupta, and M. K. Jha,

“AlgoRhythm - A Sorting and Path-finding visualizer tool to

improve existing algorithms teaching methodologies,” Feb.

2023. 10.1109/Confluence56041.2023.10048793

[4] B. Goswami,A. Dhar, A. Gupta, and A. Gupta, “Algorithm

Visualizer: Its features and working,” Jan.

2022.10.1109/UPCON52273.2021.9667586

[5] V. Gupta, “Visualizing, Designing, and Analyzing the

Merge Sort Algorithm Retrieved September 10, 2023 from

https://medium.com/javarevisited/visualizing-designing-and-

analyzing-the-merge-sort-algorithm-904ceb78a592,” Mar.

2023.

[6] W. H. Lim, Y. Cai, D. Yao, and Q. Cao, “Visualize and

Learn Sorting Algorithms in Data Structure Subject in a

Game-based Learning.,” Dec. 2022.10.1109/ISMAR-

Adjunct57072.2022.00083

[7] MahfuzRifat.(n.d.). Sorting Visualizer. Retrieved from

https://mahfuzrifat7.github.io/SortingVisualizer/

[8] A. Jain, “Realizing Algorithms Using GUI,” Dec. 2021.

10.1109/SMART52563.2021.9676269

[9] J. Lobo and S. Kuwelkar, “Performance Analysis of Merge

Sort Algorithms,” Aug. 2020.

[10] A. Prakash, “Sorting visualizers using JavaScript. Retrieved

fromhttps://www.youtube.com/watch?v=cW16SGqr_Lg,”

[11] G. Prabhakar, S. Gaur, L. Deshwal, and P. Jain, “Analysis of

Algorithm Visualizer to Enhance Academic Learning” Apr.

2022.10.1109/ICIPTM54933.2022.9753906.

[12] C. Mihailescu, “Sorting Visualizer [Computer software].

Retrieved fromhttps://clementmihailescu.github.io/Sorting-

Visualizer/,”

[13] Code Drifter. (Year). Sorting Visualizer using JavaScript

[14] D. Khanduja and A. Dhawan, “Comparative analysis of

sorting algorithms through visualization tools,” International

Journal of Computer Applications, vol. 42, no. 14, pp. 23-

29, 2012.

[15] J. Hartman, “Sorting Visualizer. [Computer software],”

2021.

[16] Q. Cutts andJ. Bishop, “Sorting out sorting: A

classroomactivity for teaching sorting algorithms,” Journal

of Computing Sciences in Colleges, vol. 30, no. 5, pp. 15-

22, 2015.

[17] Y. Chrysanthou and C. Chrysanthou, “Interactive

visualization of sorting algorithms using OpenGL,”

Computer Science Journal of Moldova, vol. 21, no. 3, pp.

352-375, 2013.

[18] E. Halverson and C. Rogers, “A review of research on

sorting algorithms: A human-centered perspective. ACM

SIGCSE Bulletin,” vol. 50, no. 1, pp. 39-155, 2018.

[19] M. Moshtaghi and K. Wilkinson, “Improving student

learning of sorting algorithms through algorithm animation

and performance analysis,” Computer Science Education,

vol. 27, no. 3, pp. 255-275, 2017.

http://dx.doi.org/10.1109/Confluence56041.2023.10048793
http://dx.doi.org/10.1109/UPCON52273.2021.9667586
https://medium.com/javarevisited/visualizing-designing-and-analyzing-the-merge-sort-algorithm-904ceb78a592
https://medium.com/javarevisited/visualizing-designing-and-analyzing-the-merge-sort-algorithm-904ceb78a592
https://doi.org/10.1109/ISMAR-Adjunct57072.2022.00083
https://doi.org/10.1109/ISMAR-Adjunct57072.2022.00083
https://mahfuzrifat7.github.io/SortingVisualizer/
https://www.youtube.com/watch?v=cW16SGqr_Lg
https://clementmihailescu.github.io/Sorting-Visualizer/
https://clementmihailescu.github.io/Sorting-Visualizer/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2373–2387 | 2387

[20] S. Palmiter and K. Boese, “Visualizing sorting algorithms

using music,” Journal of Computing Sciences in Colleges,

vol. 31, no.5, pp. 101-108, 2016.

[21] G. Prabhakar, S. Gaur, L. Deshwal, and P. Jain, “Analysis of

Algorithm Visualizer to Enhance Academic Learning,”

IEEE, vol. 2, pp. 279-282, 2022.

