

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2572

Discovery of Frequent Itemsets in Distributed Datasets with Reduced

Communication Overhead

Houda Essalmi*1, Anass El Affar2

Submitted:14/03/2024 Revised: 29/04/2024 Accepted: 06/05/2024

Abstract: The identification of frequent itemsets is a vital and complex task in data mining. Conventional approaches for mining frequent

itemsets in distributed datasets typically involve considerable communication overhead. To address this, this paper introduces an effective

strategy aimed at optimizing communication times in extensive datasets. We provide a novel scheme strategy to reduce the frequency of

communications and synchronizations needed for computing global frequent itemsets. We propose an algorithm, named Efficient Frequent

Itemsets Finding (EFIF), which uncovers frequent itemsets at slave nodes within distributed environments. Our algorithm efficiently

produces significant frequent itemsets by employing an effective candidate pruning technique. Two datasets with varying characteristics

and complexities were selected to evaluate the efficiency and effectiveness of the EFIF algorithm in generating distributed frequent

itemsets. This comprehensive assessment demonstrates the algorithm's performance across different scenarios. We compared the

performance of the EFIF algorithm with the Apriori and FP-growth algorithms using a novel scheme strategy. Experimental results indicate

that EFIF surpasses both Apriori and FP-growth in terms of communication and computation costs.

Keywords: Distributed data mining algorithm, Communication Scheme, Apriori and FP-growth algorithms, Performance Analysis

1. Introduction

Association rules mining is integral to data mining, focusing

on identifying connections between attributes that

frequently co-occur in transactional databases [1]. An

essential phase in this process involves discovering

frequently appearing itemsets [1]. First introduced by

Agrawal and Srikant in 1994 [2], the Apriori algorithm is

widely recognized as a pioneering and popular technique for

generating candidate itemsets that meet specified frequency

criteria. Various adaptations of the Apriori algorithm aim to

minimize the number of candidate itemsets generated or the

number of database scans required.

A significant advancement in association rules mining is the

FP-growth algorithm, introduced by Han et al. [3]. Unlike

traditional approaches that involve generating candidate

itemsets, FP-growth offers a more efficient method for

extracting frequent patterns from transaction databases. This

algorithmic innovation has revolutionized association rules

mining, simplifying and improving the extraction of

valuable insights from vast datasets.

The rapid growth of data and computational requirements in

today's data-driven society has rendered traditional methods

for discovering common itemsets inefficient. To meet the

demands of large-scale data analysis, more effective parallel

versions have been developed. The sequential Apriori

algorithm has paved the way for several evolutionary paths,

including the evolution of parallel and distributed

algorithms.

One significant algorithm in this domain is the CD (Count

Distribution) algorithm, introduced by Agrawal and Shafer

[4]. This method represents a foundational approach to data

parallelism by offering a streamlined parallelization of the

Apriori algorithm. A key advantage of the CD algorithm is

its ability to minimize inter-site communication by

exchanging only local support values of candidate itemsets

across different sites during each iteration.

Apart from the CD algorithm, several other parallel

algorithms have made significant contributions to the field

of data mining. For example, Park et al. [5] introduced the

PDM (Parallel Data Mining) algorithm, Cheung et al. [6]

developed the FDM (Fast Distributed Mining) algorithm,

and Shintani and Kitsuregawa [7] proposed the NPA (Non-

Partitioned Apriori) algorithm. These algorithms, while

sharing similarities with CD, incorporate enhancements

such as hashing or candidate pruning to improve efficiency

and performance.

The evolution of parallel and distributed algorithms for

identifying frequent itemsets has been crucial in addressing

the challenges posed by the growing volume of data and

computational requirements in today's data-centric

environment. These algorithms play a pivotal role in

enabling efficient and scalable data mining operations.

The foundational DD (Data Distribution) algorithm,

introduced by Agrawal and Shafer [4], operates on the

principle of task parallelism. In this approach, database

partitions from each site are disseminasted to all other sites.

1 Laboratory LSI, FPT, USMBA Fez, Morocco

ORCID ID: 0000-0002-8865-7618
2 Laboratory LSI, FPT, USMBA Fez, Morocco

ORCID ID: 0009-0009-9545-0373

* Corresponding Author Email: houda.essalmi@usmba.ac.ma

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2573

To determine support, each site searches through the entire

database, encompassing both local and remote partitions.

While differing in implementation, DD shares similarities

with both Han et al.'s [8] IDD (Intelligent Data Distribution)

and Shintani and Kitsuregawa's [7] HPA (Hash-based

Parallel Mining of Association Rules). HPA manages global

reduction on a master site, whereas IDD focuses on splitting

basic prefix candidates. According to Agrawal and Shafer

[4], there are also CAD (Candidate Distribution) algorithms

that distribute candidates and transactions based on prefixes,

enabling each site to operate independently.

Numerous research initiatives have been dedicated to

addressing the complexity of mining frequent itemsets in

parallel and distributed settings.

In their research, Mudumba and Kabir [9] introduce a novel

technique called Mine-First association rule mining. This

approach integrates local and global association rule mining

strategies across diverse data sources, consolidating

frequent patterns identified in each source to reveal relevant

patterns across distributed environments. Moreover, the

model can be extended to generate rules tailored to specific

objectives. It elucidates significant relationships, offering

decision-makers insights into frequent patterns within

individual data sources and across the entire distributed

environment.

Samudrala et al. [10] proposed a novel distributed

architecture for frequent pattern mining using the Spark

Framework. Their approach encompasses three primary

stages: categorizing and clustering customer data according

to seasonal patterns, segmenting customers based on

behavior, and leveraging the Apriori algorithm to extract

frequent itemsets and association rules in a distributed

environment. This method is highly effective in analyzing

extensive datasets and delivering precise predictions on

customer needs and preferences.

Martin-Prin et al. [11] introduced a distributed SAT-based

framework specifically designed for solving the Closed

Frequent Itemset Mining (CFIM) problem. Their framework

targets minimizing communication overhead in distributed

architectures and mitigating bottlenecks from shared

memory. By effectively enumerating the complete set of

closed itemsets, the approach significantly reduces

processing time through a distributed computing paradigm.

Sahoo and Senapati [12] proposed an efficient approach

based on load matrices for distributed frequent pattern

mining. This method partitions the dataset vertically into

multiple segments, distributing them across available

system cores for concurrent processing. Experimental

findings demonstrate superior performance compared to the

conventional Apriori algorithm.

Many current algorithms aimed at mining frequent itemsets

in distributed environments often suffer from performance

degradation due to extensive data scans and frequent

synchronization and communication stages. To address this

challenge, we propose a novel algorithm named EFIF

(Efficient Frequent Itemsets Finding), specifically designed

for efficient mining of frequent itemsets in distributed

contexts. Our main objective is to achieve accurate results

across all data while minimizing communication and

synchronization overhead among distributed sites where the

database is located. By reducing candidate generation and

communication costs, quantified by the volume of

exchanged messages, our approach significantly improves

performance.

The article proceeds as follows: Section 2 outlines the

architecture scheme adopted in our approach. Section 3

details the EFIF algorithm. Section 4 analyzes the

experimental results of our proposed algorithm. Finally,

Section 5 presents the conclusion.

2. Proposed Communication Scheme

2.1. Reduction of Communication Cost

Within distributed parallel architectures, communication

among processors across sites during frequent itemsets

generation often imposes significant overhead (Tseng et al.

[13]). However, adopting a Master/Slaves scheme can

effectively mitigate this issue by reducing the frequency of

communications and synchronizations needed for

computing global frequent itemsets. For instance, Vasoya

and Koli [14] demonstrated in their work that implementing

such a system led to improved time and space complexity.

Initially, the Master processor segments the entire database

into clusters and allocates these clusters to Slave processors

[15]. Each Slave processor then employs an enhanced

Apriori algorithm to generate frequent itemsets and

forwards the results to the Master processor.

Given that the database is horizontally fragmented across P

sites, let's denote 𝐶𝐾 as the number of candidate itemsets at

pass K. In algorithms following the scheme of broadcast

communication, at each pass k, each site Pi is required to

broadcast the locally calculated support from site Pi to all

other sites [4] , for example, The CD algorithm requires (Pi

- 1 * |𝐶𝐾 |) communication overhead at each iteration k [16].

In the Master/Slave scheme, during each k iteration, the P

Slave sites send a message to the master site, and the master

site responds with a message to all P Slave sites. Hence, we

can conclude that the total message broadcast size in the

Master/Slaves scheme is less compared to the broadcast

communication scheme.

2.2. Eliminate the Redundancy of the Generated

Candidates

In distributed algorithms that utilize broadcast for message

exchange, a common issue arises known as redundant

candidate count at each site. This occurs because, at every

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2574

iteration, the same set of frequent itemsets is identified,

leading to redundant calculations of their global supports

across all sites.

In our approach, we address this challenge by centralizing

the candidate itemset generation phase at the Master site.

This strategic decision enables us to circumvent redundant

calculations of candidate itemsets at each Slave site and

optimally leverage the distributed system's global resources.

Consequently, the Master site takes on the sole

responsibility of generating global candidate itemsets and

distributing them to all Slave sites. This ensures efficient

utilization of system resources while eliminating redundant

computations across multiple sites.

3. Proposed Approach

3.1. Proposed method steps

We can represent "I" as a group of items, while the database

consists of transactional data. In a distributed setting, the

database is divided into partitions {DB1,DB2, …,DBP} and

distributed across P sites {S1, S2,…. Sp}. D represents the

size of the entire database, while di represents the size of

each partition DBi.

Consider an example database β illustrated in Figure 1,

where the alphabet I= {a, b, c, d, e} (with m = 5 elements).

In this scenario, the database is fragmented and distributed

across two Slave sites.

Fig. 1. Sample Database β

Fig. 2. Slave Site1 and Slave Site2 Databases

Given Itemset Y, Supp(Y) and Suppi(Y) represent the

support of Y in the entire database DB and the subset DBi,

respectively. Supp(Y) = card(Y) TG⁄ is calculated by

dividing the number of transactions containing Y by the

total number of transactions in DB, denoted as TG.

Similarly, Suppi(Y) = card(Y) Ti⁄ is calculated by dividing

the number of transactions containing Y by the total number

of transactions in DBi, denoted as Ti. Supp(Y) is referred to

as global support, while Suppi(Y) is referred to as local

support on the site of Si.

An Itemset Y is considered globally frequent if Supp(Y)

multiplied by the total number of transactions in the

database DB is greater than or equal to the minimum support

threshold Supmin multiplied by D. Similarly, Y is locally

frequent in the site Si if Suppi(Y) multiplied by the number

of transactions di is greater than or equal to

Supmin multiplied by di.

The Apriori sequential approach provides the foundation for

our proposed algorithm EFIF (Efficient Frequent Itemsets

Finding), which finds distributed frequent itemsets, it

consists of three major steps as follows:

− Step 1: involves creating the CountList structure, which

is a two-dimensional matrix with dimensions (m x m),

where m represents the number of items in the database.

This matrix serves as a projection of the database. Each cell

(i, j) corresponds to the frequency of the itemset composed

of elements yi and 𝑦𝑗. Specifically, the cells on the diagonal

represent the frequencies of 1-itemsets, while cells above

the diagonal represent 2-itemsets, all with a minimum

support threshold (Supmin = 2).

CountList is implemented such that the Itemsets are ordered

in lexicographic order at the implementation level, and

redundant (symmetric) elements are eliminated. As a result,

its size is reduced to ½(m²+m) as illustrated in the following

example:

Fig. 3. Optimization of CountList

The CountList structure is created by scanning the β

database for every transaction, increasing the frequency of

the 1-Itemsets and various 2-Itemsets found in the

transaction.

Support (yi) =CountList (i, 1) / n, | yi|=1,

Support (yiyj) =CountList (i, j-(i-1)) / n, | yiyj|=1, n=| β |.

In our approach, each Slave site computes its local

CountList structure (CountListLn) by traversing its

respective portion of the local database. Subsequently, we

determine the supports of the 1-itemsets by directly

accessing the CountListLn and discard those with support

values less than Supmin . From these frequent 1-itemsets,

we generate the candidates for 2-itemsets.

It's noteworthy that computing frequent 1-itemsets and

frequent 2-itemsets requires just a single traversal of the

local database, unlike the Apriori algorithm which

necessitates two separate runs. Following this, the Slave

sites transmit the content of their CountListLn to the Master

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2575

site. The Master site then calculates the global support in the

CountListG structure by aggregating (summing up the

values) all the CountListLn received from the various Slave

sites. This process is illustrated in Figure 4 below, depicting

a scenario with a Master site and 2 Slave sites.

Fig. 4. CountList calculated the sum based on local 1 and

local 2

The Master site concludes the list of global frequent 1-

Itemsets and frequent 2-Itemsets from CountListG without

database access or communication with the Slave sites. The

list of 1-Itemsets includes {a :3, b:5, c:5, e:5}, and the list of

2-Itemsets includes {ab:2, ac :3, ae:2, bc:4, be:5, ce:4}.

− Step 2 Global extraction of frequently occurring K-

Itemsets (K ≥ 3):

The search for frequent k-itemsets (K ≥ 3) is made more

effective by the Master site, which uses a graphical structure

to iteratively construct a list of global candidate k-itemsets

(K ≥ 3).

Let us take an example using transactions in Database β, a

Master site, and two Slave sites to demonstrate this

procedure. Global frequent 2-itemsets {ab, ac, ae, bc, be, ce}

are used to start the graphical layout. These sets are

organized lexicographically as nodes at level 1. Every node

stands for a frequent element along with its backing. At level

2, global 2-itemsets from level 1 are self-joined to create

global candidates for 3-itemsets.

The abc node is formed when nodes ab and ac share (k-2)

prefixed members. A link is created between these two

global frequent nodes and the newly constructed abc node.

The least support value of the two global frequent nodes is

allocated to the abc node to assess the global support for

itemsets abc.

Likewise, the abe node arises from the nodes ab and ae,

which have the same first item, 'a'. Between the two nodes,

ab and ae, and the abe node, a link is established. The

minimum support of the ab and ae nodes determines its

approximate support.

Nodes like ab, bc, and be do not have a common prefix,

preventing the generation of new nodes in the graphical

structure. This process is then applied to other nodes such as

ac, ae, bc, be, and ce until all frequent nodes are identified

in level 2. This includes abc, abe, ace, and bce, as shown in

Figure 5.

Fig. 5. Finding candidates for K-Itemsets (where K is

greater than or equal to 3) using the graphical structure.

At level 3, we identify the 4-itemset nodes by combining the

global frequent nodes "abc" and "abe" from level 2, which

have a common prefix "ab" of size (k-2). This merging

process creates the node "abce" with an approximate support

that is the minimum of the "abc" and "abe" global frequent

nodes. However, the global frequent nodes "abc" and "ace"

do not share the same (k-2) items in common, so no link is

established between them. This process continues until no

additional nodes are generated. As a result, a list of K-

itemset global candidates (K ≥ 3) is produced along with

their approximate support values, without the need for

exchanges with Slave sites.

− Step 3: Refining Global Frequent Itemsets:

To reduce the number of global frequent itemsets, a

validation step is needed during this stage of the algorithm.

The list of potential K-itemsets, where K is larger than or

equal to 3, is sent to the Slave sites by the Master site once

it is formed in the preceding stage.

 The Slave sites then examine the local database sections to

determine the actual supports of the received K-itemsets.

The Master site receives the computation results after that.

By eliminating non-globally frequent K-itemsets, the

Apriori algorithm's Master site determines which K-

itemsets are globally frequent. It should be noted that 1-

itemsets and 2-itemsets are not included in this procedure

since the global CountListG structure was already used in

Step 1 to determine their actual supports.

The Slave sites calculate the local supports of 1-itemset

candidates in the first iteration of the Apriori process, which

involves a Master site and two Slave sites. They then

transmit this data to the Master site. Next, the Master site

finds the 1-frequent itemsets by combining the candidates it

obtained from the Slave sites. The 2-itemset candidates are

computed by the Slave sites in subsequent iterations and

sent back to the Master site. For iterations two, three, and

four, the same iterative procedure is continued.

Therefore, the EFIF algorithm requires 2 database accesses,

one in Step 1 and another in Step 3. In comparison, the

Apriori algorithm requires 4 exchanges. By utilizing the

graphical structure in Step 2, our algorithm reduces the

number of candidate itemsets generated. This not only

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2576

decreases the cost of computing frequent itemsets but also

minimizes the accesses to local databases of Slave sites for

calculating the supports of local candidate itemsets.

3.2. Process of EFIF algorithm

A suggested layout for the methodology of the proposed

EFIF algorithm is presented in Figure 6.

Here is a refined version of the process for the EFIF

algorithm:

• Database Fragmentation: Partition the database

horizontally into a Master site and multiple Slave sites.

• Local Support Calculation: Calculate local support for 1-

itemsets and 2-itemsets using the CountList structure at

each Slave site, removing those with support

below Supmin .

• Transmitting Local CountList: Send the local CountListLn

contents to the Master site.

• Global CountList Calculation: Determine the global

CountListG by aggregating the local CountList structures.

• Generating Frequent k-Itemsets: Identify frequent k-

itemsets (K ≥ 3) from the frequent 2-itemsets list extracted

from CountListG, based on an initial graphical structure

consisting of a sorted set of global frequent 2-itemsets.

• Approximate Support Calculation: Determine the

approximate support at each level of the graphical

structure created in Step 2 for each candidate in the

frequently occurring k-itemsets list (K ≥ 3).

• Sending Candidate List to Slave Sites: Distribute the

generated list of frequent k-itemsets (K ≥ 3) to all Slave

sites.

• Real Local Support Calculation: Each Slave site computes

the actual local supports of the received candidate k-

itemsets.

• Returning Results to Master: Send the results back to the

Master site to identify frequent k-itemsets that exceed

 Supmin.

• Extraction of Distributed Frequent Itemsets: Extract

distributed frequent itemsets based on the determined

frequent k-itemsets.

Fig. 6. Architecture of the proposed EFIF

4. Experimental Results

This section employs the T40l10D100K and Chess datasets

for experimental evaluation of the EFIF algorithm's

performance. A detailed description of these datasets is

provided in Table 1.

Table 1. Datasets Description

Dataset

Name

Description

T40l10D100

K

Chess

A dataset is available at FIMI [17] and

studied by Fournier et al. [18]. It comprises

transactions related to a certain domain,

with 1000 distinct items, and a total size of

100,000 transactions.

Another dataset is available at FIMI

[17] and utilized in research by Fournier et

al. [18]. This dataset represents chess games

and consists of transactions with 75 items

and 3196 transactions. It serves as a

benchmark for evaluating the performance

of the EFIF algorithm.

The experimental setup took place within a local network

environment. The dataset was horizontally partitioned and

distributed across several slave sites. The experiments were

conducted on a computer equipped with an Intel® Core™

i7 CPU running at 2.80 GHz, 4GB of RAM, and operating

on the Windows 10 platform. The system was tested with

varying numbers of slave sites, specifically 3, 5, and 7. The

implementation and evaluation of the EFIF algorithm were

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2577

carried out using the Java programming language and the

NetBeans IDE development environment.

These datasets are chosen to assess the efficiency and

effectiveness of the EFIF algorithm in generating distributed

frequent itemsets. They offer varying characteristics and

complexities, providing a comprehensive evaluation of the

algorithm's performance across different scenarios.

We assess the performance of the EFIF algorithm against

Apriori and FP-growth algorithms using the Master/Slaves

scheme. Researchers Fournier et al. [18] have implemented

Apriori and FP-growth in Java. The figures below illustrate

the execution time for different support thresholds across

datasets T40l10D100K and Chess. The x-axis represents the

minimum support, while the y-axis indicates the execution

time.

Fig. 7. Assessment of Chess datasets at runtime.

The Chess database has fewer transactions than the other

two, and the analysis reveals that the EFIF algorithm

performs better, particularly for lower support values, than

both the Apriori and FP-growth algorithms. Compared to

Apriori and FP-growth algorithms, the EFIF algorithm can

generate fewer candidate itemsets, which accounts for its

superiority. Consequently, compared to Apriori and FP-

growth algorithms, this decrease has a direct influence on

communication costs and results in less messages being

transferred between sites. Furthermore, compared to the

Apriori and FP-growth algorithms, the EFIF algorithm

requires at least one fewer iteration, which saves one

communication phase.

Fig. 8. Runtime assessment for T40l10D100K

To evaluate the EFIF algorithm's scalability, we grew the

database size. The EFIF method works better than the

Apriori and FP-growth algorithms, as shown by the findings

shown in Figure 7. The primary reason for this improvement

is that the computation of global frequent itemsets by the

EFIF method requires fewer communication phases.

Furthermore, we noticed that the algorithms' performance

tends to converge as the number of sites (or slave nodes)

rises. The convergence becomes particularly noticeable

when using more slave nodes—07 slave nodes, for example.

For the purpose of calculating global frequent itemsets, the

fine granularity of data distribution results in a substantial

communication cost.

Fig. 9. Scalability of EFIF by number of nodes with

 Supmin =20%

According to the experiments, the EFIF algorithm

outperforms the Apriori and FP-growth algorithms in terms

of efficiency and scalability. As the database size, number

of nodes, and transactions increase, the EFIF algorithm

accelerates significantly. In situations with more parallelism

(higher number of nodes), the EFIF algorithm's performance

is comparable to the Apriori and FP-growth algorithms. This

highlights the EFIF algorithm's strength and flexibility in

different data sizes and computational settings.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2572–2578 | 2578

5. CONCLUSION

This research introduces EFIF, a novel distributed approach

aimed at discovering common itemsets within distributed

datasets. EFIF employs a Master/Slaves strategy to

efficiently locate frequent itemsets across distributed

systems, thereby reducing the number of candidate itemsets

and minimizing communication overhead. The EFIF

methodology consists of three primary steps: first,

constructing the CountListG structure by scanning the

database to tally the frequencies of 1-itemsets and 2-

itemsets per transaction; second, identifying candidates of

K-itemsets (where K ≥ 3) using a graphical approach; and

finally, refining the identified frequent itemsets.

Experimental evaluations compared EFIF with the Apriori

and FP-growth algorithms using datasets with varying

minimum support values. The results demonstrate EFIF's

superior performance in terms of computation time and

communication efficiency, highlighting its scalability in

distributed computing environments.

References

[1] R. Agrawal, T. Imieliński et A. Swami, “ Mining

association rules between sets of items in large databases

“, ACM SIGMOD Rec., vol. 22, no. 2, pp. 207–216,

1993, doi: 10.1145/170036.170072.

[2] R. Agrawal, R. Srikant, “ Fast algorithms for mining

association rules,” in Proc. 20th int. conf. very large

databases, VLDB. Vol. 1215, 1994, pp. 487-

499,doi:10.5555/645920.

[3] J. Han, J. Pei et Y. Yin, “ Mining frequent patterns

without candidate generation “, ACM SIGMOD Rec.,

vol. 29, no. 2, pp. 1–12, 2000, doi:

10.1145/335191.335372.

[4] R. Agrawal et J. C. Shafer, “Parallel mining of

association rules “, IEEE Trans. Knowl. Data Eng., vol.

8, no. 6, pp. 962–969, 1996, doi :10.1109/69.553164.

[5] J. S. Park, M.-S. Chen et P. S. Yu, “An effective hash-

based algorithm for mining association rules “, ACM

SIGMOD Rec., vol. 24, no. 2, pp. 175–186,

1995,doi:10.1145/568271.223813.

[6] D. W. Cheung, Jiawei Han, V. T. Ng, A. W. Fu and

Yongjian Fu, “A fast distributed algorithm for mining

association rules, “ Fourth International Conference on

Parallel and Distributed Information Systems, Miami

Beach, FL, USA, 1996, pp. 31-42, doi:

10.1109/PDIS.1996.568665.

[7] T. Shintani and M. Kitsuregawa, “Hash based parallel

algorithms for mining association rules, “ Fourth

International Conference on Parallel and Distributed

Information Systems, Miami Beach, FL, USA, 1996, pp.

19-30, doi: 10.1109/PDIS.1996.568664.

[8] E.-H. Han, G. Karypis et V. Kumar, “Scalable parallel

data mining for association rules “, ACM SIGMOD Rec.,

vol. 26, no.2, pp. 277–288,

1997,doi:10.1145/253262.253330.

[9] B. Mudumba et M. F. Kabir, “Mine-first association rule

mining: An integration of independent frequent patterns

in distributed environments “, Decis. Analytics J., pp.

100434, 2024, doi :10.1016/j.dajour.2024.100434.

[10] K. Samudrala, J. Kolisetty, A. S. Chakravadhanula, B.

Preetham and R. Senapati, “Novel Distributed

Architecture for Frequent Pattern Mining using Spark

Framework, “ 2023 3rd International Conference on

Intelligent Technologies (CONIT), Hubli, India, 2023,

pp. 1-5, doi: 10.1109/CONIT59222.2023.10205903.

[11] J. Martin-Prin, I. O.Dlala, N.Travers, and S. Jabbour, “A

Distributed SAT-Based Framework for Closed Frequent

Itemset Mining“, In International Conference on

Advanced Data Mining and Applications. Cham:

Springer Nature Switzerland, November.2022, pp. 419-

433, doi: 10.1007/978-3-031-22137-8_31.

[12] A. Sahoo and R. Senapati, “A Novel Approach for

Distributed Frequent Pattern Mining Algorithm using

Load-Matrix, “ 2021 International Conference on

Intelligent Technologies (CONIT), Hubli, India, 2021,

pp. 1-5, doi: 10.1109/CONIT51480.2021.9498411.

[13] F. S. C. Tseng, Y.-H. Kuo et Y.-M. Huang, “Toward

boosting distributed association rule mining by data de-

clustering “, Inf. Sci., vol. 180, no 22, pp. 4263–

4289,2010, doi:10.1016/j.ins.2010.07.020.

[14] A. Vasoya et N. Koli, “Mining of Association Rules on

Large Database Using Distributed and Parallel

Computing “, Procedia Comput. Sci., vol. 79, pp. 221–

230, 2016, doi: 10.1016/j.procs.2016.03.029.

[15] T. Tassa, “Secure Mining of Association Rules in

Horizontally Distributed Databases, “ in IEEE

Transactions on Knowledge and Data Engineering, vol.

26, no. 4, pp. 970-983, April 2014, doi:

10.1109/TKDE.2013.41.

[16] M. Z. Ashrafi, D. Taniar and K. Smith, “ODAM: An

optimized distributed association rule mining algorithm,

“ in IEEE Distributed Systems Online, vol. 5, no. 3, 2004,

doi: 10.1109/MDSO.2004.1285877.

[17] B. Goethals, M. J. Zaki, “FIMI’03: Workshop on

frequent itemset mining implementations“, In Third IEEE

International Conference on Data Mining Workshop on

Frequent Itemset Mining Implementations,2003, pp.1–

13, doi: 10.1145/1007730.1007744.

[18] P. Fournier-viger, A. Gomariz, T. Gueniche, A. Soltani, C.

Wu et al., “Spmf: a java open-source pattern mining

library“, The Journal of Machine Learning Research,

vol.15, pp.3389-3393, 2014, doi : 10.1007/978-3-319-

46131-1_8.

