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Abstract: The identification of frequent itemsets is a vital and complex task in data mining. Conventional approaches for mining frequent 

itemsets in distributed datasets typically involve considerable communication overhead. To address this, this paper introduces an effective 

strategy aimed at optimizing communication times in extensive datasets. We provide a novel scheme strategy to reduce the frequency of 

communications and synchronizations needed for computing global frequent itemsets. We propose an algorithm, named Efficient Frequent 

Itemsets Finding (EFIF), which uncovers frequent itemsets at slave nodes within distributed environments. Our algorithm efficiently 

produces significant frequent itemsets by employing an effective candidate pruning technique. Two datasets with varying characteristics 

and complexities were selected to evaluate the efficiency and effectiveness of the EFIF algorithm in generating distributed frequent 

itemsets. This comprehensive assessment demonstrates the algorithm's performance across different scenarios. We compared the 

performance of the EFIF algorithm with the Apriori and FP-growth algorithms using a novel scheme strategy. Experimental results indicate 

that EFIF surpasses both Apriori and FP-growth in terms of communication and computation costs. 
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1. Introduction 

Association rules mining is integral to data mining, focusing 

on identifying connections between attributes that 

frequently co-occur in transactional databases [1]. An 

essential phase in this process involves discovering 

frequently appearing itemsets [1]. First introduced by 

Agrawal and Srikant in 1994 [2], the Apriori algorithm is 

widely recognized as a pioneering and popular technique for 

generating candidate itemsets that meet specified frequency 

criteria. Various adaptations of the Apriori algorithm aim to 

minimize the number of candidate itemsets generated or the 

number of database scans required. 

A significant advancement in association rules mining is the 

FP-growth algorithm, introduced by Han et al. [3]. Unlike 

traditional approaches that involve generating candidate 

itemsets, FP-growth offers a more efficient method for 

extracting frequent patterns from transaction databases. This 

algorithmic innovation has revolutionized association rules 

mining, simplifying and improving the extraction of 

valuable insights from vast datasets. 

The rapid growth of data and computational requirements in 

today's data-driven society has rendered traditional methods 

for discovering common itemsets inefficient. To meet the 

demands of large-scale data analysis, more effective parallel 

versions have been developed. The sequential Apriori 

algorithm has paved the way for several evolutionary paths, 

including the evolution of parallel and distributed 

algorithms. 

One significant algorithm in this domain is the CD (Count 

Distribution) algorithm, introduced by Agrawal and Shafer 

[4]. This method represents a foundational approach to data 

parallelism by offering a streamlined parallelization of the 

Apriori algorithm. A key advantage of the CD algorithm is 

its ability to minimize inter-site communication by 

exchanging only local support values of candidate itemsets 

across different sites during each iteration. 

Apart from the CD algorithm, several other parallel 

algorithms have made significant contributions to the field 

of data mining. For example, Park et al. [5] introduced the 

PDM (Parallel Data Mining) algorithm, Cheung et al. [6] 

developed the FDM (Fast Distributed Mining) algorithm, 

and Shintani and Kitsuregawa [7] proposed the NPA (Non-

Partitioned Apriori) algorithm. These algorithms, while 

sharing similarities with CD, incorporate enhancements 

such as hashing or candidate pruning to improve efficiency 

and performance. 

The evolution of parallel and distributed algorithms for 

identifying frequent itemsets has been crucial in addressing 

the challenges posed by the growing volume of data and 

computational requirements in today's data-centric 

environment. These algorithms play a pivotal role in 

enabling efficient and scalable data mining operations. 

The foundational DD (Data Distribution) algorithm, 

introduced by Agrawal and Shafer [4], operates on the 

principle of task parallelism. In this approach, database 

partitions from each site are disseminasted to all other sites. 
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To determine support, each site searches through the entire 

database, encompassing both local and remote partitions. 

While differing in implementation, DD shares similarities 

with both Han et al.'s [8] IDD (Intelligent Data Distribution) 

and Shintani and Kitsuregawa's [7] HPA (Hash-based 

Parallel Mining of Association Rules). HPA manages global 

reduction on a master site, whereas IDD focuses on splitting 

basic prefix candidates. According to Agrawal and Shafer 

[4], there are also CAD (Candidate Distribution) algorithms 

that distribute candidates and transactions based on prefixes, 

enabling each site to operate independently. 

Numerous research initiatives have been dedicated to 

addressing the complexity of mining frequent itemsets in 

parallel and distributed settings.  

In their research, Mudumba and Kabir [9] introduce a novel 

technique called Mine-First association rule mining. This 

approach integrates local and global association rule mining 

strategies across diverse data sources, consolidating 

frequent patterns identified in each source to reveal relevant 

patterns across distributed environments. Moreover, the 

model can be extended to generate rules tailored to specific 

objectives. It elucidates significant relationships, offering 

decision-makers insights into frequent patterns within 

individual data sources and across the entire distributed 

environment. 

Samudrala et al. [10] proposed a novel distributed 

architecture for frequent pattern mining using the Spark 

Framework. Their approach encompasses three primary 

stages: categorizing and clustering customer data according 

to seasonal patterns, segmenting customers based on 

behavior, and leveraging the Apriori algorithm to extract 

frequent itemsets and association rules in a distributed 

environment. This method is highly effective in analyzing 

extensive datasets and delivering precise predictions on 

customer needs and preferences. 

Martin-Prin et al. [11] introduced a distributed SAT-based 

framework specifically designed for solving the Closed 

Frequent Itemset Mining (CFIM) problem. Their framework 

targets minimizing communication overhead in distributed 

architectures and mitigating bottlenecks from shared 

memory. By effectively enumerating the complete set of 

closed itemsets, the approach significantly reduces 

processing time through a distributed computing paradigm. 

Sahoo and Senapati [12] proposed an efficient approach 

based on load matrices for distributed frequent pattern 

mining. This method partitions the dataset vertically into 

multiple segments, distributing them across available 

system cores for concurrent processing. Experimental 

findings demonstrate superior performance compared to the 

conventional Apriori algorithm. 

Many current algorithms aimed at mining frequent itemsets 

in distributed environments often suffer from performance 

degradation due to extensive data scans and frequent 

synchronization and communication stages. To address this 

challenge, we propose a novel algorithm named EFIF 

(Efficient Frequent Itemsets Finding), specifically designed 

for efficient mining of frequent itemsets in distributed 

contexts. Our main objective is to achieve accurate results 

across all data while minimizing communication and 

synchronization overhead among distributed sites where the 

database is located. By reducing candidate generation and 

communication costs, quantified by the volume of 

exchanged messages, our approach significantly improves 

performance. 

The article proceeds as follows: Section 2 outlines the 

architecture scheme adopted in our approach. Section 3 

details the EFIF algorithm. Section 4 analyzes the 

experimental results of our proposed algorithm. Finally, 

Section 5 presents the conclusion. 

2. Proposed Communication Scheme  

2.1. Reduction of Communication Cost  

Within distributed parallel architectures, communication 

among processors across sites during frequent itemsets 

generation often imposes significant overhead (Tseng et al. 

[13]). However, adopting a Master/Slaves scheme can 

effectively mitigate this issue by reducing the frequency of 

communications and synchronizations needed for 

computing global frequent itemsets. For instance, Vasoya 

and Koli [14] demonstrated in their work that implementing 

such a system led to improved time and space complexity. 

Initially, the Master processor segments the entire database 

into clusters and allocates these clusters to Slave processors 

[15]. Each Slave processor then employs an enhanced 

Apriori algorithm to generate frequent itemsets and 

forwards the results to the Master processor. 

Given that the database is horizontally fragmented across P 

sites, let's denote 𝐶𝐾 as the number of candidate itemsets at 

pass K. In algorithms following the scheme of broadcast 

communication, at each pass k, each site Pi is required to 

broadcast the locally calculated support from site Pi to all 

other sites [4] , for example, The CD algorithm requires (Pi 

- 1 * |𝐶𝐾 |) communication overhead at each iteration k [16]. 

In the Master/Slave scheme, during each k iteration, the P 

Slave sites send a message to the master site, and the master 

site responds with a message to all P Slave sites. Hence, we 

can conclude that the total message broadcast size in the 

Master/Slaves scheme is less compared to the broadcast 

communication scheme. 

2.2. Eliminate the Redundancy of the Generated 

Candidates  

In distributed algorithms that utilize broadcast for message 

exchange, a common issue arises known as redundant 

candidate count at each site. This occurs because, at every 
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iteration, the same set of frequent itemsets is identified, 

leading to redundant calculations of their global supports 

across all sites. 

In our approach, we address this challenge by centralizing 

the candidate itemset generation phase at the Master site. 

This strategic decision enables us to circumvent redundant 

calculations of candidate itemsets at each Slave site and 

optimally leverage the distributed system's global resources. 

Consequently, the Master site takes on the sole 

responsibility of generating global candidate itemsets and 

distributing them to all Slave sites. This ensures efficient 

utilization of system resources while eliminating redundant 

computations across multiple sites. 

3. Proposed Approach 

3.1. Proposed method steps  

We can represent "I" as a group of items, while the database 

consists of transactional data. In a distributed setting, the 

database is divided into partitions {DB1,DB2, …,DBP} and 

distributed across P sites {S1, S2,…. Sp}. D represents the 

size of the entire database, while di represents the size of 

each partition DBi. 

Consider an example database β illustrated in Figure 1, 

where the alphabet I= {a, b, c, d, e} (with m = 5 elements). 

In this scenario, the database is fragmented and distributed 

across two Slave sites. 

Fig. 1.  Sample Database β 

 

Fig. 2.  Slave Site1 and Slave Site2 Databases 

Given Itemset Y, Supp(Y) and Suppi(Y) represent the 

support of Y in the entire database DB and the subset DBi, 

respectively. Supp(Y) = card(Y) TG⁄    is calculated by 

dividing the number of transactions containing Y by the 

total number of transactions in DB, denoted as TG. 

Similarly, Suppi(Y) = card(Y) Ti⁄  is calculated by dividing 

the number of transactions containing Y by the total number 

of transactions in DBi, denoted as Ti. Supp(Y) is referred to 

as global support, while Suppi(Y) is referred to as local 

support on the site of Si.  

An Itemset Y is considered globally frequent if Supp(Y) 

multiplied by the total number of transactions in the 

database DB is greater than or equal to the minimum support 

threshold Supmin multiplied by D. Similarly, Y is locally 

frequent in the site  Si if Suppi(Y) multiplied by the number 

of transactions di is greater than or equal to 

Supmin multiplied by di. 

The Apriori sequential approach provides the foundation for 

our proposed algorithm EFIF (Efficient Frequent Itemsets 

Finding), which finds distributed frequent itemsets, it 

consists of three major steps as follows: 

− Step 1: involves creating the CountList structure, which 

is a two-dimensional matrix with dimensions (m x m), 

where m represents the number of items in the database. 

This matrix serves as a projection of the database. Each cell 

(i, j) corresponds to the frequency of the itemset composed 

of elements yi and 𝑦𝑗. Specifically, the cells on the diagonal 

represent the frequencies of 1-itemsets, while cells above 

the diagonal represent 2-itemsets, all with a minimum 

support threshold (Supmin = 2). 

CountList is implemented such that the Itemsets are ordered 

in lexicographic order at the implementation level, and 

redundant (symmetric) elements are eliminated. As a result, 

its size is reduced to ½(m²+m) as illustrated in the following 

example: 

 

Fig. 3.  Optimization of CountList 

The CountList structure is created by scanning the β 

database for every transaction, increasing the frequency of 

the 1-Itemsets and various 2-Itemsets found in the 

transaction. 

Support (yi) =CountList (i, 1) / n, | yi|=1,  

Support (yiyj) =CountList (i, j-(i-1)) / n, | yiyj|=1, n=| β |. 

In our approach, each Slave site computes its local 

CountList structure (CountListLn) by traversing its 

respective portion of the local database. Subsequently, we 

determine the supports of the 1-itemsets by directly 

accessing the CountListLn and discard those with support 

values less than  Supmin . From these frequent 1-itemsets, 

we generate the candidates for 2-itemsets. 

It's noteworthy that computing frequent 1-itemsets and 

frequent 2-itemsets requires just a single traversal of the 

local database, unlike the Apriori algorithm which 

necessitates two separate runs. Following this, the Slave 

sites transmit the content of their CountListLn to the Master 
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site. The Master site then calculates the global support in the 

CountListG structure by aggregating (summing up the 

values) all the CountListLn received from the various Slave 

sites. This process is illustrated in Figure 4 below, depicting 

a scenario with a Master site and 2 Slave sites.  

 

Fig. 4.  CountList calculated the sum based on local 1 and 

local 2 

The Master site concludes the list of global frequent 1-

Itemsets and frequent 2-Itemsets from CountListG without 

database access or communication with the Slave sites. The 

list of 1-Itemsets includes {a :3, b:5, c:5, e:5}, and the list of 

2-Itemsets includes {ab:2, ac :3, ae:2, bc:4, be:5, ce:4}. 

− Step 2 Global extraction of frequently occurring K-

Itemsets (K ≥ 3):  

The search for frequent k-itemsets (K ≥ 3) is made more 

effective by the Master site, which uses a graphical structure 

to iteratively construct a list of global candidate k-itemsets 

(K ≥ 3).  

Let us take an example using transactions in Database β, a 

Master site, and two Slave sites to demonstrate this 

procedure. Global frequent 2-itemsets {ab, ac, ae, bc, be, ce} 

are used to start the graphical layout. These sets are 

organized lexicographically as nodes at level 1. Every node 

stands for a frequent element along with its backing. At level 

2, global 2-itemsets from level 1 are self-joined to create 

global candidates for 3-itemsets. 

The abc node is formed when nodes ab and ac share (k-2) 

prefixed members. A link is created between these two 

global frequent nodes and the newly constructed abc node. 

The least support value of the two global frequent nodes is 

allocated to the abc node to assess the global support for 

itemsets abc. 

Likewise, the abe node arises from the nodes ab and ae, 

which have the same first item, 'a'. Between the two nodes, 

ab and ae, and the abe node, a link is established. The 

minimum support of the ab and ae nodes determines its 

approximate support. 

Nodes like ab, bc, and be do not have a common prefix, 

preventing the generation of new nodes in the graphical 

structure. This process is then applied to other nodes such as 

ac, ae, bc, be, and ce until all frequent nodes are identified 

in level 2. This includes abc, abe, ace, and bce, as shown in 

Figure 5. 

 

 

Fig. 5.  Finding candidates for K-Itemsets (where K is 

greater than or equal to 3) using the graphical structure. 

At level 3, we identify the 4-itemset nodes by combining the 

global frequent nodes "abc" and "abe" from level 2, which 

have a common prefix "ab" of size (k-2). This merging 

process creates the node "abce" with an approximate support 

that is the minimum of the "abc" and "abe" global frequent 

nodes. However, the global frequent nodes "abc" and "ace" 

do not share the same (k-2) items in common, so no link is 

established between them. This process continues until no 

additional nodes are generated. As a result, a list of K-

itemset global candidates (K ≥ 3) is produced along with 

their approximate support values, without the need for 

exchanges with Slave sites.  

− Step 3: Refining Global Frequent Itemsets:  

To reduce the number of global frequent itemsets, a 

validation step is needed during this stage of the algorithm. 

The list of potential K-itemsets, where K is larger than or 

equal to 3, is sent to the Slave sites by the Master site once 

it is formed in the preceding stage. 

 The Slave sites then examine the local database sections to 

determine the actual supports of the received K-itemsets. 

The Master site receives the computation results after that. 

By eliminating non-globally frequent K-itemsets, the 

Apriori algorithm's Master site determines which K-

itemsets are globally frequent. It should be noted that 1-

itemsets and 2-itemsets are not included in this procedure 

since the global CountListG structure was already used in 

Step 1 to determine their actual supports. 

The Slave sites calculate the local supports of 1-itemset 

candidates in the first iteration of the Apriori process, which 

involves a Master site and two Slave sites. They then 

transmit this data to the Master site. Next, the Master site 

finds the 1-frequent itemsets by combining the candidates it 

obtained from the Slave sites. The 2-itemset candidates are 

computed by the Slave sites in subsequent iterations and 

sent back to the Master site. For iterations two, three, and 

four, the same iterative procedure is continued. 

Therefore, the EFIF algorithm requires 2 database accesses, 

one in Step 1 and another in Step 3. In comparison, the 

Apriori algorithm requires 4 exchanges. By utilizing the 

graphical structure in Step 2, our algorithm reduces the 

number of candidate itemsets generated. This not only 
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decreases the cost of computing frequent itemsets but also 

minimizes the accesses to local databases of Slave sites for 

calculating the supports of local candidate itemsets. 

3.2. Process of EFIF algorithm 

A suggested layout for the methodology of the proposed 

EFIF algorithm is presented in Figure 6. 

Here is a refined version of the process for the EFIF 

algorithm: 

• Database Fragmentation: Partition the database 

horizontally into a Master site and multiple Slave sites. 

• Local Support Calculation: Calculate local support for 1-

itemsets and 2-itemsets using the CountList structure at 

each Slave site, removing those with support 

below Supmin . 

• Transmitting Local CountList: Send the local CountListLn 

contents to the Master site. 

• Global CountList Calculation: Determine the global 

CountListG by aggregating the local CountList structures. 

• Generating Frequent k-Itemsets: Identify frequent k-

itemsets (K ≥ 3) from the frequent 2-itemsets list extracted 

from CountListG, based on an initial graphical structure 

consisting of a sorted set of global frequent 2-itemsets. 

• Approximate Support Calculation: Determine the 

approximate support at each level of the graphical 

structure created in Step 2 for each candidate in the 

frequently occurring k-itemsets list (K ≥ 3). 

• Sending Candidate List to Slave Sites: Distribute the 

generated  list of frequent k-itemsets (K ≥ 3) to all   Slave 

sites. 

• Real Local Support Calculation: Each Slave site computes 

the   actual local supports of the received candidate k-

itemsets. 

• Returning Results to Master: Send the results back to the 

Master site to identify frequent k-itemsets that exceed 

 Supmin. 

• Extraction of Distributed Frequent Itemsets: Extract 

distributed frequent itemsets based on the determined 

frequent k-itemsets. 

 

Fig. 6.  Architecture of the proposed EFIF 

4. Experimental Results 

This section employs the T40l10D100K and Chess datasets 

for experimental evaluation of the EFIF algorithm's 

performance. A detailed description of these datasets is 

provided in Table 1. 

Table 1. Datasets Description 

Dataset 

Name 

Description 

  
T40l10D100

K 

 

 

 

 

 

Chess 

A dataset is available at FIMI [17] and 

studied by Fournier et al. [18]. It comprises 

transactions related to a certain domain, 

with 1000 distinct items, and a total size of 

100,000 transactions. 

 

Another dataset is available at FIMI 

[17] and utilized in research by Fournier et 

al. [18]. This dataset represents chess games 

and consists of transactions with 75 items 

and 3196 transactions. It serves as a 

benchmark for evaluating the performance 

of the EFIF algorithm. 

 

The experimental setup took place within a local network 

environment. The dataset was horizontally partitioned and 

distributed across several slave sites. The experiments were 

conducted on a computer equipped with an Intel® Core™ 

i7 CPU running at 2.80 GHz, 4GB of RAM, and operating 

on the Windows 10 platform. The system was tested with 

varying numbers of slave sites, specifically 3, 5, and 7. The 

implementation and evaluation of the EFIF algorithm were 
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carried out using the Java programming language and the 

NetBeans IDE development environment.   

These datasets are chosen to assess the efficiency and 

effectiveness of the EFIF algorithm in generating distributed 

frequent itemsets. They offer varying characteristics and 

complexities, providing a comprehensive evaluation of the 

algorithm's performance across different scenarios. 

We assess the performance of the EFIF algorithm against 

Apriori and FP-growth algorithms using the Master/Slaves 

scheme. Researchers Fournier et al. [18] have implemented 

Apriori and FP-growth in Java. The figures below illustrate 

the execution time for different support thresholds across 

datasets T40l10D100K and Chess. The x-axis represents the 

minimum support, while the y-axis indicates the execution 

time. 

 

Fig. 7.  Assessment of Chess datasets at runtime. 

The Chess database has fewer transactions than the other 

two, and the analysis reveals that the EFIF algorithm 

performs better, particularly for lower support values, than 

both the Apriori and FP-growth algorithms. Compared to 

Apriori and FP-growth algorithms, the EFIF algorithm can 

generate fewer candidate itemsets, which accounts for its 

superiority. Consequently, compared to Apriori and FP-

growth algorithms, this decrease has a direct influence on 

communication costs and results in less messages being 

transferred between sites. Furthermore, compared to the 

Apriori and FP-growth algorithms, the EFIF algorithm 

requires at least one fewer iteration, which saves one 

communication phase. 

 

Fig. 8.  Runtime assessment for T40l10D100K 

To evaluate the EFIF algorithm's scalability, we grew the 

database size. The EFIF method works better than the 

Apriori and FP-growth algorithms, as shown by the findings 

shown in Figure 7. The primary reason for this improvement 

is that the computation of global frequent itemsets by the 

EFIF method requires fewer communication phases. 

Furthermore, we noticed that the algorithms' performance 

tends to converge as the number of sites (or slave nodes) 

rises. The convergence becomes particularly noticeable 

when using more slave nodes—07 slave nodes, for example. 

For the purpose of calculating global frequent itemsets, the 

fine granularity of data distribution results in a substantial 

communication cost. 

 

 

Fig. 9.  Scalability of EFIF by number of nodes with 

 Supmin  =20% 

According to the experiments, the EFIF algorithm 

outperforms the Apriori and FP-growth algorithms in terms 

of efficiency and scalability. As the database size, number 

of nodes, and transactions increase, the EFIF algorithm 

accelerates significantly. In situations with more parallelism 

(higher number of nodes), the EFIF algorithm's performance 

is comparable to the Apriori and FP-growth algorithms. This 

highlights the EFIF algorithm's strength and flexibility in 

different data sizes and computational settings. 
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5. CONCLUSION 

This research introduces EFIF, a novel distributed approach 

aimed at discovering common itemsets within distributed 

datasets. EFIF employs a Master/Slaves strategy to 

efficiently locate frequent itemsets across distributed 

systems, thereby reducing the number of candidate itemsets 

and minimizing communication overhead. The EFIF 

methodology consists of three primary steps: first, 

constructing the CountListG structure by scanning the 

database to tally the frequencies of 1-itemsets and 2-

itemsets per transaction; second, identifying candidates of 

K-itemsets (where K ≥ 3) using a graphical approach; and 

finally, refining the identified frequent itemsets. 

Experimental evaluations compared EFIF with the Apriori 

and FP-growth algorithms using datasets with varying 

minimum support values. The results demonstrate EFIF's 

superior performance in terms of computation time and 

communication efficiency, highlighting its scalability in 

distributed computing environments. 
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