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Abstract: A minimally invasive technique called image-guided needle biopsy takes tissue samples for diagnosis or treatment. Needle 

biopsy operations can be carried out more precisely and accurately with surgical robotic arms than with manual techniques. However, 

controlling surgical robotic arms can be difficult because the patient's movements and any obstructions in the needle's route must be 

considered. Surgical robotic arms can be controlled more effectively using computer vision technologies when performing image-guided 

needle biopsy procedures. Using computer vision, real-time tracking of the needle tip location, detection and avoidance of obstructions in 

the needle's path, motion compensation for the patient, and instantaneous feedback to the surgeon regarding the procedure's success are all 

possible. Image cancer recognition and tracking system was developed using computer vision to extract cancer center coordinates from the 

computer vision pixel images. The significance of the suggested approach lies in its ability to raise the effectiveness and precision of 

surgical robotic arm control, allowing surgeons to execute a more extensive variety of procedures with more ease and precision. The study 

also includes the investigation of multi-modal imaging modalities, including CT, MRI, and ultrasound studies, leveraging computer vision 

to localize tissue and guide the needles precisely. The goal of creating a system that coordinates localization and segment brain tumors was 

achieved. The center coordinates of brain tumors have been extracted from CT scan pictures by effectively applying computer vision 

techniques. This resulted in increased procedure accuracy and precision, a lower risk of damaging blood vessels and nerves, better surgeon 

visualization of the procedure, and reduced number of needle insertions required. Overall, the safety and effectiveness of this crucial 

medical process could be raised by using computer vision to optimize the control of surgical robotic arms during image-guided needle 

biopsy procedures. 
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1. Introduction 

Robotic arms have recently turned around medicine through 

more precise diagnostic and therapeutic applications. The 

arms can be manipulated through mathematical models, PID 

control, forward and inverse kinematics, dynamics, or other 

control algorithms. Vision-based robotic arm control 

techniques incorporate computerized visual tracking and 

object recognition concepts [1,2]. Computer vision 

technology can allow robotic arms to operate without 

human interaction by employing cameras and algorithms to 

interpret visual input. Additionally, this technology may 

make more organic and intuitive control techniques like eye 

tracking and gesture recognition possible.  Biopsy remains 

the gold standard in diagnosing most superficial and deep 

malignant neoplasms. While cutaneous biopsy can 

performed through shaving, punch, incisional, or excisional 

methods, biopsy for deep-seated neoplasms can be done 

through open surgery, endoscopy, or needle biopsy. Little 

bits of solid or liquid bodily tissue can be removed with a 

less invasive procedure called a percutaneous needle biopsy. 

Needles biopsy procedures have advanced in a number of 

ways in recent years, including precision biopsy using 

ultrasonic biopsy guidance and other imaging modalities 

such as CT, MRI, or X-ray biopsy guidance. Although 

computerized visual probes have been used in endoscopic 

biopsy operations, needle biopsy can also use them. This can 

facilitate needle injection into the required spot. For 

instance, computer vision can use coordinates to guide the 

trajectory of the needle during specimen collection. A 

sample from the desired area is taken to guide the biopsy 

needle and increase process accuracy. Precision medicine 

may benefit from the next generation of multimodal 

therapeutic approaches, which could help with the early 

identification of solid brain tumors and efficient treatment 

[3]. Pathologists benefit from computer-aided diagnosis 

(CAD), which develops numerous machine-learning and 

image-processing methods. This study examines the range 

of currently used computer-aided and manual breast 

cytology procedures [4]. Accurate cancer diagnosis and 

prognosis depend on ground breaking technological 

developments in molecular biology and cancer imaging [5]. 

The robots can also be used for non-operating room 

percutaneous biopsy, expanding the options for home-based 

diagnosis and therapy [6].Recent investigations have found 

that current surgical robotic systems for image-guided 

needle biopsies have an average trajectory variation of 2-3 

millimeters from target sites. This deviation has been found 

to affect both patient outcomes and procedural accuracy. 
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Furthermore, clinical evaluations have revealed a 15-20% 

increase in procedural time in non-robotic-assisted 

procedures compared to standards, which might be 

attributable to inadequate decision assistance and feedback 

systems. Additionally, studies have shown that current 

constraints on feedback accuracy and response time are 

linked to a noteworthy 20% rise in procedure-related 

problems. These findings highlight the critical need for 

procedural precision and efficiency improvements by 

addressing constraints on response time, decision-making 

speed, and trajectory accuracy during robotically assisted 

needle biopsy operations. In light of this, combining 

computer vision technology with surgical robotic arms 

offers a ground-breaking chance to completely alter the field 

of minimally invasive procedures. By utilizing cutting-edge 

image analysis algorithms and multi-modal data fusion, 

image-guided needle biopsy operations might be made 

much more precise, safe, and practical, eventually 

improving patient outcomes and establishing new standards 

for procedural excellence. This paper aims to apply 

computer vision technologies to optimize the control of a 

robotic surgical arm. In particular, the study looks at how 

computer vision algorithms can monitor and recognize 

objects and how they can be integrated with control 

algorithms to operate the robotic arm actuators. Through 

tackling these obstacles, the goal is to create a surgical 

robotic arm control system that is more dependable and 

efficient, potentially finding use in the medical field. 

1.1. The Comprehensive Theoretical Basis 

An image-guided biopsy uses static or real-time imaging to 

guide the removal of a tissue sample from beneath the skin 

to offer diagnostic data [3]. The C-arm fluoroscopy 

technique uses a single X-ray image to calculate movement 

and assess aiming accuracy, which minimizes radiation 

exposure and operating time. The precision and reliability 

of the method have been assessed in pre-clinical studies and 

robot-assisted pedicle screw placement operations. Since 

the touch sense of surgical robots is still evolving, using a 

robotic system in the operating room is difficult. Robotic 

equipment was upgraded by employing newly developed 

intraoperative X-ray imaging technologies that facilitate 

lesion location to tackle the lesion location. [7]. Not only 

may robots be trained to perform repeated jobs, but their 

usage in ultrasound-guided percutaneous puncture also 

reduces operator fatigue. A multitude of robotic systems 

have been developed to facilitate ultrasound-guided biopsy 

procedures. According to [8], a novel robot-assisted method 

for transrectal ultrasound-guided prostate biopsy has been 

demonstrated in five clinical cases to be associated with 

very minimal distortion of the prostate, suggesting that it is 

safe and practical to use the robot to help with prostate 

biopsy. Additionally, robotic needle biopsy was 

demonstrated to be effective in targeting breast lesions 

identified through magnetic resonance imaging (MRI) using 

ultrasound guidance [9]. The use of ultrasonography in 

robotic needle biopsies is growing over time. As an 

example, a robotic device was evaluated on five puncture 

sites. It was found to reduce the number of needle insertions 

and increase accuracy compared to free-hand punctures 

[10]. Additionally, to optimize the image quality of an 

ultrasonogram, innovative robotic control methods for 

ultrasound imaging can use variable impedance control 

[11]. An additional option for the robotic system is to have 

two arms: an ultrasonic scanning arm and a puncture arm. 

These arms can be equipped with master-slave control and 

compliant positioning functions to improve the success rate 

of renal puncture surgery [12].Numerous MRI-guided 

robotic systems have been created to lower patient risk and 

improve intra-tumor probe placement accuracy. High-

contrast images of the interior organs are obtained using 

magnetic resonance imaging (MRI), which combines radio 

waves, computer processing, and magnetic fields. By 

interpreting the MRI pictures, the surgical robots may be 

taught to insert the needle precisely, reducing the chance of 

errors or unintended consequences. Patient danger is 

typically increased by iterative positioning and imaging 

caused by inadequate physician grasp of patients in the MRI 

scanner.  As a result, a strong teleoperated system and an 

instrumented testing platform were created and successfully 

used for robotic MRI-guided percutaneous and 

epicutaneous punctures. For malignancies like 

hepatocellular carcinoma, which is often treated with 

percutaneous ablation, MRI can also be used to guide 

ablative therapy. Determining the exact position of the intra-

tumour probe is so crucial. 

An MRI-guided percutaneous needle treatment using a 

semi-automated robotic system with concurrent MRI 

compatibility testing revealed that. A better technique to 

improve the MRI procedure and provide great visibility of 

the target lesion without ionizing radiation is to use end 

effectors aligned with the cancer target site under MRI 

guidance [13]. While the GUI software waits for the CT 

Scan Dataset to be received, CT scan images are imported 

The OpenCV thresholding algorithm executes on CT Scan 

images followed by morphological operations, contours are 

drawn to generate centroid coordinates, and GUI is linked 

to inverse kinematics execution for the surgical robot joints 

to execute the movement. 

Even though it can be difficult, computed tomography (CT) 

guided needle insertion has been safely utilized to collect 

biopsy specimens and effectively proven in a swine kidney 

model [14]. Percutaneous needle insertion into common 

target organs such as the liver, kidneys, lungs, and 

retroperitoneum was successfully guided by a patient-

mounted, CT-guided robotic system with five degrees of 

motion in a porcine model to assess the accuracy and 

precision of a robotic technique to perform robotics [15].To 

reduce the radiation the doctor is exposed to during the 
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procedure, a method for measuring the robot's angle offset 

using CT technology and a compensating technique was 

proposed. Their method's effectiveness was confirmed 

through experiments, and a surgery support robot called 

ZEROBOT was developed. They developed a robotic 

method guided by CT that can accurately position needles 

with an error of less than 2 mm [16].  

A paper published investigated the application of haptic 

feedback to teleoperation tasks in a robotic arm system. The 

study showed how haptic feedback can enhance task 

performance and lessen user fatigue. 

 A low-cost embedded controller was suggested for 

building a bare structured pneumatic robot arm. The 

research aimed to create lightweight actuators for use in 

flexible robotic arms. The robot's motions are guided by the 

items it detects and tracks in its surroundings, which are 

detected and tracked using computer vision algorithms. 

 Analyze the image's edge gradient distribution to determine 

which areas are more likely to contain objects. However, 

they May have trouble with intricate backdrops or 

occlusions, may be sensitive to shifts in lighting or angle, 

and may be computationally costly for massive datasets or 

high-resolution photos. 

In any background or terrain, the moving item may be 

detected and tracked by the algorithm analyzed from 

sources in a series of video frames captured by a stationary 

camera [17]. Deep learning (DL) is a burgeoning 

multidisciplinary field in its early stages. In the present era, 

DL designs can be successfully applied to challenges across 

a wide range of sectors due to the increasing availability of 

data [18]. To improve the SIFT algorithm's slow matching 

speed, this paper's suggested approach outperformed 

alternative algorithms in terms of efficiency, reduced 

algorithm error, and lowered the time required to process 

images [19]. 

[20] identified two primary categories of visual servoing: 

image-based visual servoing (IBVS) and position-based 

visual servoing (PBVS). In IBVS, the robot's mobility is 

controlled by the image features taken from the camera; in 

PBVS, on the other hand, the robot's motion is controlled by 

the orientation and location of the item being managed. 

One visual servoing method is image-based visual servoing 

(IBVS), in which the robot's motion is managed using the 

camera's image features [21]. IBVS aims to regulate the 

robot's position and orientation in a closed-loop system by 

using visual feedback from the camera [22]. 

As per [22], position-based visual servoing (PBVS) is a kind 

of visual servoing technology in which the robot's motion is 

controlled according to its position and orientation 

concerning the object being manipulated. The objective of 

PBVS is to regulate the robot's position and orientation in a 

closed-loop system using the visual feedback obtained from 

the camera. While there are various methods for 

implementing PBVS, the fundamental concept is to estimate 

the object's position and orientation of the robot using the 

camera [21]. Overall, IBVS is a powerful technique for 

controlling the motion of a robot based on visual feedback 

and is used in various applications, including object 

tracking, pick-and-place tasks, and visual inspection [20]. 

2. Method 

The authors defined the system requirements based on 

clinical needs to develop GUI software for extracting 

coordinates to guide surgical robotic arms. Initially, 

computer vision algorithms to identify biopsy targets and 

analyze medical images were developed using Python 

software. Then, image pre-processing through contouring 

algorithms, morphological procedures, thresholding, feature 

extraction, and target localization were done using Open CV 

in the Python 3.8 environment. Medical imaging datasets, 

such as CT scans or MRI images of brain cancer, were used 

for deep learning algorithm training and validation. Lastly, 

Python-based frameworks will validate the integrated 

system in virtual environments. Extensive testing was also 

conducted to ensure accurate localization and identification 

of biopsy targets on CT or MRI image scans for the 

precision of needle insertion. The machine-learning process 

is summarized in Figure 1. The end effector received an 

image of a contoured brain tumor with center positions 

represented in (x, y) coordinates. 

2.1. System Flowchart 

 

Fig 1. Flowchart for System Architecture. 

RGB pictures showing healthy and cancerous brain images 

from the (Brain et al. for Brain Tumour Detection| 
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Kaggle.com, 2018) dataset created an image processing 

system for computer vision-based brain cancer recognition 

and diagnosis. The dataset comprises 253 images that were 

used for training and validations. Among these images, 98 

were from normal head tissue, and 155 were abnormal. 

 

Fig 2. (a) Before Thresholding (b) After Thresholding. 

Applying thresholding techniques to medical CT scans in 

the dataset makes it possible to isolate and highlight areas 

of abnormal tissue, potentially indicating the presence of 

tumors or cancerous growths, as shown in Fig. 5 above. This 

segmentation process aids medical professionals in 

precisely identifying and analyzing regions of interest, 

contributing to early tumor detection and treatment 

planning. 

2.2. Image Contouring Model 

The authors used the cv2.find Contours () function in 

OpenCV. This function takes three primary parameters: 

1. image: The input image must be binary. 

2. contours: An output vector that stores the objects' 

contours in the image. 

3. hierarchy: An output vector that stores the hierarchy of 

the contours. 

 

2.3. Testing of Contouring 

 

Fig 3.  Contouring on Brain Cancer Cell on CT-Scan 

These contours enable visualization of anatomical structures 

and serve as the basis for subsequent medical diagnostics 

and a safe biopsy procedure. Through OpenCV, the author 

discovered that contouring facilitates a crucial step in 

medical image analysis, assisting healthcare professionals in 

accurately delineating and characterizing anatomical 

features for diagnostic and treatment planning purposes. 

2.4. Centre Coordinate Extraction after Contouring 

After segmentation, the center of the lesion can be found by 

finding the centroid of the segmented lesion, as shown in 

Figure 4 below. The centroid of a region is the average of 

the x- and y-coordinates of all the pixels in the area of the 

contour. This is done by the equation below; 

Let n be the number of points in the contour. The centroid 

(Cx, Cy) of the ith point (xi, yi) is calculated as follows: 

𝑐𝑥 =
1

𝑛
∑ 𝑥1

𝑛
𝑖=0  and  𝑐𝑦 =

1

𝑛
∑ 𝑦𝑖  𝑛

𝑖=0  (1) 

 

Fig 4. Extracting Brain Cancer Centre Coordinates 

 

Fig 5.  (a) Before Bounding (b) After Bounding 

2.5. Centre Coordinate Extraction after Bounding 

The center coordinates of a bounding box, as shown in 

Figure 9 below, can be obtained using the following 

formulas: 

𝑥_𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑥 + (𝑤 / 2)   

 (2) 

The Y coordinate of the center of the bounding box is 

calculated as the average of the Y coordinates of the top-left 

and bottom-left corners: 

      

𝑦_𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑦 +  (ℎ / 2)    (3) 
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Where w and h are the width and height of the bounding box 

The X coordinate of the center of the bounding box is 

calculated as the average of the X coordinates of the top-left 

and top-right corners. The author further uses the code 

above to draw the vertical line and horizontal line, which 

intersect at the center where: 

(x, cy): defines the line's starting point at the top center of 

the bounding box. 

(x + w, cy): defines the line's ending point at the bottom 

center of the bounding box 

(0, 255, 0): specifies the color of the line as green. 2: 

represents the thickness of the line in pixels. 

 

Fig 6.  (a) Brain Cancer Centre Coordinates 

2. Results and Discussion 

Results using OpenCV Contouring and Bounding on CT-

Scan Images 

3.1. Training the Contouring and Bounding Model 

The folder containing all the collected Dataset of all CT-

Scan Images from (Brain et al. for Brain Tumor Detection| 

Kaggle.Com, 2018) Brain Tumour CT Scans is imported 

into the Contouring and Bounding Box model using the 

code. 

 

Fig 7. Output of Imported Images in the model 

3.2. Results of Contouring and Bounding 

Here, the author used Computer Vision contouring and 

bounding box OpenCV models using the same CT-Scan 

image in the dataset to locate the cancer in the brain. When 

utilizing the contouring model, the tumor's approximate 

center is indicated by a red dot in the center of the contour 

lines, painted in blue in the CT scan image. The operator is 

provided with a message, writing "tumor detected" in 

yellow, and the tumor's pixel coordinates (x, y) are also 

offered. 

Similarly, the author employed the Bounding Box Model, 

indicating the approximate center coordinates of the tumor 

for its location in the CT scan image and drawing a 

bounding box around it in pink. A message is also provided 

to the operator, with "tumor detected" in yellow. 

 

Fig 8.  Contouring and Bounding Model on Brain Tumour 

The author tested the center coordinate extraction using the 

models on other CT Scan images from the dataset, obtaining 

the center coordinates from contouring and bounding 

models. 

3.3. Results of Contouring model on eight images 

bounding 
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Fig 9.  Y4 Image Scan Result 

In this case, in fig. 9, the contouring model identifies 171.0 

pixels of the tumor in image Y1, while the bounding box 

model identifies 163.0 pixels of the cancer in image Y1. 

This suggests that the bounding box model is less precise 

than the contouring model, capturing fewer pixels within the 

tumor. Both models agree that the center of the tumor is 

located at approximately (171.0 and 251.0) pixels on the 

image. This indicates a high degree of alignment between 

the two models regarding tumor localization.  

 

Fig 10.  Y7 image scan Result 

In this case, in Fig. 10, the contouring model identifies 129.0 

pixels belonging to the tumor, while the bounding box 

model identifies 124.0 pixels. This indicates that the 

bounding box slightly underestimates the tumor's size 

compared to the contouring model. Both models agree that 

the tumor's center is located at approximately (129.0 and 

221.0) pixels. This suggests a high degree of alignment 

between the two models regarding tumor localization. 

 

Fig 11.  Y22 Image Scan Result 

 The bounding box model identifies 144.0 pixels, and the 

contouring model identifies more than in the tumor. This 

suggests that the bounding box significantly underestimates 

the tumor size compared to the contouring model. The 

contouring model and the bounding box model do not agree 

upon the center of the tumor, which places it at roughly 

(161.0, 254.0) and (144.0, 218.0) pixels, respectively. Given 

the substantial variation, this indicates a considerable 

difference in the perceived center point of the tumor 

between the two models. The cause is that the Y22 image 

represents a tumor with a complex shape, potentially 

explaining 

the discrepancies between the contouring and bounding box 

models. The reason is that the tumor is located near the edge 

of the image, potentially influencing the bounding box 

model's accuracy in capturing its size and center. 

 

Fig 12.  Chart Showing Contouring (Cx) coordinates and 

Bounding Box (Bx) coordinates 

Fig. 12 shows the x coordinates of the contouring and 

bounding box models captured on different CT Scan images 

within the dataset. Regarding Accuracy, the Contouring 

Model generally provides more accurate x-coordinates for 

objects with complex shapes or irregular boundaries. 

Tracing the tumor's contour can capture intricate details and 

determine the center more precisely. Regarding Suitability, 

the Contouring Model is well-suited for applications where 

precise x-coordinate extraction is crucial, such as tumor 

tracking, precise tumor localization, and detailed image 

analysis. 

The author ended up recording the center coordinates of 

each model on a table, as shown in Table 1 below, and the 

graphs were plotted below in fig. 13: 

Table 1. Showing Contouring Model and Bounding Box 

Model Centre Coordinates 

Image_N

o 

Contouring 

Model(pixels) 

Bounding Box 

Model(pixels) 

Cx Cy Bx By 

Y1 154 
28

9 
146 289 

Y4 171 
25

1 
163 254 

Y7 129 
22

1 
124 220 

Y8 223 
24

6 
218 

235.

5 

Y11 149 
30

6 
149 308 

Y13 284 
12

7 
286 134 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2595–2607  |  2601 

Y22 161 
25

4 
144 218 

Y36 193 
22

0 
184 251 

 

Table 2. Interpretation of Cx and Bx Coordinates of both 

models 

Image_No Cx Bx Interpretation 

Y1 154 146 

Both models 

agree on the 

object's x-

coordinate 

center, 

indicating high 

alignment. 

Y4 171 163 

Like Y1, both 

models are 

closely aligned 

in their center 

point 

estimation. 

Y7 129 127.5 

The difference 

between Cx 

and Bx is 

minimal, 

suggesting 

good model 

agreement. 

Y8 223 218 

Despite a slight 

discrepancy, 

the center 

estimations are 

still reasonably 

aligned. 

Y11 149 149 

Perfect match 

between Cx 

and Bx, 

demonstrating 

excellent 

agreement in 

object 

localization. 

Y13 284 286 

Another 

instance of 

perfect 

alignment 

between the 

two models' 

center point 

estimations. 

Y22 161 145 

The 

discrepancy 

between Cx 

and Bx is more 

significant 

than in 

previous cases, 

indicating 

potential 

inaccuracy in 

the bounding 

box model's 

center 

estimation. 

Y36 193 184 

Similar to Y22, 

the difference 

between Cx 

and Bx 

suggests 

inaccuracies in 

the bounding 

box model's 

center point 

detection. 

 

 

Fig 13.  Chart Showing Contouring (Cy) coordinates, and 

Bounding Box (By) coordinates 

Fig. 13 shows the x coordinates of the contouring and 

bounding box models captured on different CT Scan 

images within the dataset. Regarding Accuracy, the 

Bounding Box Model may be less accurate for objects with 

complex shapes or irregular boundaries. Since it uses a 

rectangular bounding box, it may not tightly enclose the 

tumor, resulting in less precise y-coordinates 

Table 3. Interpretation of Cy and By Coordinates of both 

models 

Image_No Cy By Intertumor 

Y1 289 289 

Both models 

perfectly align in 

their Cy value, 

indicating 

excellent 

agreement. 

Y4 251 254 

There is minimal 

difference 

between Cy and 

By, suggesting 

good alignment. 
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Y7 221 218 

There is a slight 

discrepancy, but 

overall, there is a 

good agreement 

in object center 

estimation. 

Y8 246 235.5 

Cy and By differ 

more than in 

previous 

examples, 

indicating 

potential 

inaccuracy in the 

bounding box 

model. 

Y11 306 308 

It is a perfect 

tumor boundary 

and calculates 

center 

coordinates for 

the tumor. 

Y13 127 134 

There is a 

minimal 

deviation 

between Cy and 

By, suggesting 

good agreement. 

Y22 254 218 

There is a 

significant 

difference 

between Cy and 

By, indicating 

substantial 

inaccuracy in the 

bounding box 

model for this 

image. 

Y36 220 251 

There is a large 

discrepancy 

between Cy and 

By, suggesting 

potential 

limitations in the 

bounding box 

model's 

performance. 

 

The Bounding Box Model is more suitable for applications 

where a rough estimate of the y-coordinate is acceptable, 

such as tumor detection, approximate tumor localization, 

and quick image analysis. The author suggested that the 

Contouring Model is generally more accurate for complex 

objects and less sensitive to tumor rotation and perspective 

distortions. However, the Bounding Box Model is 

computationally more efficient and may be sufficient for 

applications where a rough estimate of the center 

coordinates is acceptable. 

Inverse kinematics can be applied to the (x, y) pixel 

coordinates from computer vision to optimize control of a 

surgical robotic arm during image-guided needle biopsy 

procedures. It will serve as the center's standard for the end 

effector using the needle to remove the tumor. 

Consequently, the end effector's primary path would arrive 

at this location to support the surgeons doing a biopsy 

procedure.  

3.1. Discussion 

This study aimed to design a computer vision-based system 

to assist with image-guided needle biopsy procedures by 

optimizing the control of a surgical robotic arm. 

Specifically, the aims were to detect, segment, and locate 

brain tumours in CT scan images for coordinate extraction. 

Both academics and industry have acknowledged the use of 

AI in healthcare in the revolution of robotics and health [24]. 

For this practice guideline, a proven, safe, and efficient 

method for a subset of patients with suspected pathology is 

image-guided percutaneous needle biopsy (PNB) [25]. For 

appropriate decision-making, including treatment planning, 

an image-guided needle biopsy is a safe and reliable non-

surgical technique to diagnose suspected abnormal findings 

at breast imaging [26].Clinicians can identify and stage 

patients to select the best course of     oncologic     therapy     

using     various     innovative     imaging technologies [27]. 

An image-guided percutaneous biopsy is a standard method 

in oncology, essential to tumor histology determination, 

cancer staging, and confirmation of the diagnosis [28]. 

Image-guided musculoskeletal (MSK) biopsies are a safe 

and efficient technique that can produce a diagnostic 

accuracy of up to 97% [29]. 

Many years ago, the concept of using robots for surgery was 

conceived, and soon after, a market need was established 

[30]. Because robotics improves accuracy and precision, 

even when percutaneous procedures are relatively basic, the 

quality of the process is significantly increased [31]. 

A critical first step in early detection is a timely and accurate 

tissue diagnosis. For experienced breast imagers, image-

guided core needle breast biopsies are usually a 

straightforward process, although some common scenarios 

present special challenges [32]. An image-guided lung 

biopsy is necessary to detect and treat lung lesions [33]. The 

most recent advancements in actuation, sensors, novel 

materials, interventional devices, interactive/real-time MRI, 

and MRI-guided robot intervention are all thoroughly 

reviewed in this study. Novel clinical advances and future 

directions for study are also presented [34].  The 

microsurgery robot (MSR) has been the subject of extensive 

research over the last three decades because it can improve 

surgeons' operational skills through various jobs [35]. 

Medical imaging navigation technology is essential to 

intraoperative assisted puncture, preoperative robotic 

puncture path design, and surgical efficacy assessment. 

Robotic microneedle puncture has become a global research 
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hotspot [34]. In most organ systems, percutaneous needle 

biopsy (PNB) has a strong track record of safety, efficacy, 

and favorable results with minimal adverse effect rates. 

These treatments depend on imaging guidance, which 

enables the safe insertion of a needle into an organ or lesion 

to remove tissue for analysis [36]. 

The employment of surgical robots and image guidance has 

grown in percutaneous treatments to help reach internal 

organs or tissue through the skin; nevertheless, the 

advantages and disadvantages of these technologies have 

not been thoroughly investigated [37].Compared to 

traditional manual procedures, percutaneous puncture 

assisted by a surgical robot using image guidance has shown 

to be more accurate and efficient. It also puts less physical 

strain on the operator and decreases the chance of problems. 

Advanced imaging modalities, such as CT, MRI, and 

ultrasound, can provide accurate, high-resolution pictures to 

diagnose and treat various ailments, according to [37]. The 

benefits of the image-guided prostate biopsy robot include a 

high level of automation, independence from operator 

expertise and experience, decreased workload and operating 

time for urologists, and more.  t makes up for the drawbacks 

of conventional free-hand biopsy and increases the precision 

and reliability of biopsy by delivering biopsy needles to 

predetermined biopsy areas with minimum needle 

placement errors [38]. 

One of the most significant developments in breast surgery 

over the past 20 years has been the ability to use vacuum-

assisted, stereotactic, and percutaneous core needle biopsy 

(CNB) techniques to diagnose breast cancer outside of the 

operating room [39].Using a robotic arm, the suggested 

method locates the breast, identifies the target, captures and 

reconstructs the 3D ultrasound volume, and guides the 

needle. The EE thus features a stereo camera system, a 

needle stop, a pico-beamer, a US probe holder, and a three-

DOF needle guide [40]. An all-in-one system that helps the 

radiologist with breast cancer imaging and biopsy was 

demonstrated. It is coupled to a robotic arm. Although the 

radiologist maintains control, like in the traditional 

approach, it has a high accuracy of needle placement [40]. 

Examining the precision of robot-assisted needle biopsy for 

skull base tumors was the main goal of the outcome 

measure. The five degrees of freedom robot used optical 

navigation to automatically inject a 14-gauge needle into the 

intended target [41].  

Robotic technology is used to help surgeons during 

surgeries in a novel, cross-disciplinary research area called 

surgical robot systems (SRS). The inability to interpret 

complicated information and quick surgical judgments are 

examples of current SRS bottlenecks that have not been 

successfully resolved [42]. Surgical robots are 

comprehensive medical devices that, by replacing manual 

tasks with precision control, can reduce the risk of infection 

and trauma to patients after incisions. They incorporate 

numerous high-tech elements and symbolize 

interdisciplinary knowledge [43]. 

Image guiding is a common method for less invasive 

operations. Depending on the type of intervention, various 

imaging modalities are available. Common imaging 

modalities include computed tomography, magnetic 

resonance, and ultrasound [44]. 

Several studies present a unique, fully automated robotic-

assisted system for positioning and inserting commercial 

full-core biopsy equipment under ultrasonography 

guidance, with its control and experimental evaluation [45]. 

To accomplish this, the authors created a cutting-edge 

robotic system that can identify the port and automatically 

position the scope in the best possible way [46].  

 Percutaneous needle biopsy (PNB) has been well-

documented for its safety and effectiveness in most organ 

systems, with good outcomes and low rates of side effects. 

Imaging guidance, which permits the safe insertion of a 

needle into an organ or lesion to remove tissue for analysis, 

is crucial to these treatments [36]. 

The employment of surgical robots and image guidance has 

grown in percutaneous treatments to help reach internal 

organs or tissue through the skin; nevertheless, the 

advantages and disadvantages of these technologies have 

not been thoroughly investigated [37]. Percutaneous 

puncture assisted by a surgical robot with image guidance 

has proven more accurate and efficient than conventional 

manual operations. It also has a lower risk of complications 

and less physical strain on the operator. According to [37], 

advanced imaging modalities, including ultrasound, CT, and 

MRI, can produce precise, high-resolution images to help 

diagnose and treat various illnesses. 

The benefits of the image-guided prostate biopsy robot 

include a high level of automation, independence from 

operator expertise and experience, decreased workload and 

operating time for urologists, and more. It makes up for the 

drawbacks of conventional free-hand biopsy. It increases 

the precision and reliability of biopsy by delivering biopsy 

needles to pre-defined biopsy areas with low needle 

placement errors [38].One of the most significant 

developments in breast surgery over the past 20 years has 

been the ability to use vacuum-assisted, stereotactic, and 

percutaneous core needle biopsy (CNB) techniques to 

diagnose breast cancer outside of the operating room 

(Klimberg & Rivere, 2016). The proposed approach 

involves the localization of the breast, target identification, 

3D US volume capture and reconstruction, and needle 

guidance, all carried out by a robotic arm. As a result, the 

EE has a three-DOF needle guide, a needle stop, a 

picobeamer, a US probe holder, and a stereo camera system 

[40]. 
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An all-in-one system that helps the radiologist with breast 

cancer imaging and biopsy was demonstrated. It is coupled 

to a robotic arm. Although the radiologist maintains control, 

like in the traditional approach, it has a high accuracy of 

needle placement [40]. Examining the precision of robot-

assisted needle biopsy for skull base tumors was the main 

goal of the outcome measure. The robot with five degrees of 

freedom used optical navigation to automatically inject a 

14-gauge needle into the intended target [41]. 

Robotic technology is used to help surgeons during 

surgeries in a novel, cross-disciplinary research area called 

surgical robot systems (SRS). The inability to interpret 

complicated information and quick surgical judgments are 

examples of current SRS bottlenecks that have not been 

successfully resolved [42]. Surgical robots are 

comprehensive medical devices that, by replacing manual 

tasks with precision control, can reduce the risk of infection 

and trauma to patients after incisions. They incorporate 

numerous high-tech elements and symbolize 

interdisciplinary knowledge [43]. 

A common method for less invasive operations is image 

guiding. Various imaging modalities are available, 

depending on the type of intervention. Common imaging 

modalities include computed tomography, magnetic 

resonance tomography, and ultrasound [44].A novel 

completely automated robotically assisted system with 

control and experimental assessment is presented in 

multiple publications [45] for the positioning and insertion 

of commercial full-core biopsy equipment under 

ultrasonography guidance. The authors developed a state-

of-the-art robotic system that can recognize the port and 

autonomously place the scope in the most advantageous 

location to achieve this [46]. 

3. Conclusion 

To achieve the objectives, the author explored various 

computer vision techniques using OpenCV in Python. 

Through processing functions like thresholding, 

morphological operations, and contouring, tumors could be 

isolated and highlighted from background tissue in CT 

scans. This image preprocessing allowed for the 

identification and tracking of potential biopsy targets. 

The contouring model could precisely trace tumor 

boundaries and calculate center coordinates for tumor 

localization. Testing on sample CT images successfully 

located examples of brain cancer, with minimal 

discrepancies between the contouring model and bounding 

box model coordinates. This demonstrated the effectiveness 

of the contouring approach. Evaluating additional results on 

CT scan images with different tumor locations showed the 

high accuracy and repeatability of the approach. 

This validates that the goals were successfully achieved by 

implementing computer vision algorithms and a contouring 

methodology in OpenCV. Segmentation and coordinated 

determination of tumors from CT scans were made possible. 

However, the center coordinates obtained from the 

contouring model created by the author can be further 

applied to surgical robotic arms, as shown in Figure 38 

below, through inverse kinematics. By providing the 

coordinates of the tumor's center as the target position, 

inverse kinematics techniques can be applied to 

mathematically determine the joint configurations required 

to align the biopsy tool at the tumor. This helps dynamically 

plan collision-free trajectories for the robotic arm and end 

effector to accurately approach and position itself at the 

tumor from various initial arm postures. The joint angles 

produced by inverse kinematics are then used to smoothly 

actuate and coordinate the motion of each robotic arm 

segment along the computed path to the tumor center 

coordinates. Properly centering the biopsy tool at the tumor 

coordinates optimized by computer vision ensures a 

representative tissue sample is collected from the desired 

target area for effective diagnosis and analysis. Inverse 

kinematics thus plays a vital role in the precision guidance 

of the surgical robot for minimally invasive and accurate 

biopsy procedures under image guidance. 

In conclusion, the goal of creating a system to coordinate 

localization and segment brain tumors was achieved. The 

center coordinates of brain tumors have been extracted from 

CT scan pictures by effectively applying computer vision 

techniques. Even though the initial findings are 

encouraging, more work must be done before clinical 

translation. Specifically, they create real-time

 visual feedback to accommodate intraoperative 

modifications and enhance the learning model with more 

datasets. Computer vision has much promise to improve 

surgical robotic arm control and guidance with further 

research, increasing the efficacy, safety, and accuracy of 

image-guided needle biopsy operations. 
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