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Abstract  The world of Mathematics has time and again thrown mysterious patterns at us and left it for us humans to decipher and 

unravel the reasons for such consistency. One such structure that has left a mark in its midst is that of a polygonal number. We are all 

conversant with the Polygon which by mere definition shows that it is a close plane figure of three or more sides and angles. Extending 

this definition further takes us to Tetradecagon, which is known as a 14-sided polygon. We identified a Diophantine triple from two 

special Tetradecagonal numbers a, b with property 𝐷(𝑓(𝑛)). Using this property, we extended our research to include Elliptic Curve 

Cryptography.  

Keywords: Diophantine triples, Tetradecagonal numbers, Pell equation, Elliptic curve, Elliptic curve cryptography. 

1. Introduction 

Let n be an integer. A set of positive integers 

{𝑎1, 𝑎2, … , 𝑎𝑚} is said to have the property 𝐷(𝑛), if 𝑎𝑖  𝑎𝑗 + 

𝑛 is a perfect square for all 1 ≤  𝑖 ≤  𝑗 ≤  𝑚; such a set is 

called a Diophantine m-tuple or a 𝑃𝑛 set of size m. The 

problem of construction of such set was studied by 

Diophantus. The first set of four positive integers with the 

above property was found by Fermat and it was 

{1,3,8, 120}. Many mathematicians considered the 

problem of the existence of Diophantine quadruples with 

the property 𝐷(𝑛) for any arbitrary integer 𝑛 and for any 

linear polynomial and polynomial of degree two in 𝑛. 

Further, various authors considered the connections of the 

problems of Diophantus.  

The concept of the Tetradecagon can be traced back to the 

times of ancient Greece and the Greek Mathematician 

Euclid; who has studied these structures in detail and 

presented them in his book called “Elements” in the year 

300BC. Building our knowhow around the Tetradecagon, 

we find striking properties that emphasises scope for an 

extensive area of application using these properties. One 

such property that comes to the fore are the 14 exterior 

angles which are all equal and measures 25.7142 degrees 

each and 14 interior angles which are 154.2857 degrees 

each. Using such unique properties exhibited by the 

Tetradecagonal structure; we came across to find the 

Diophantine triples from special polygonal number known 

by the name Tetradecagonal numbers. 

Let’s also know a bit of cryptography before we delve into 

the solution. Cryptography has been in existence since the 

ancient Greeks, Egyptians. Though it has a simple and 

humble origin in the past, but it has now culminated into a 

more advanced stream of science powered by 

Mathematics. With data being available and shared on the 

internet and on the Global communication highways; it has 

become more important and crucial to safeguard the data, 

protect it and make it more secure. Cryptography can be 

broadly classified as (1) Secret Key cryptography (2) 

Public Key cryptography and (3) Hash Functions.  

Secret key cryptography falls into the category of 

Symmetric Encryption. Examples are (i) AES – Advanced 

Encryption Standard (ii) DES – Data Encryption Standard 

(iii) Caesar Cipher. 

 

Fig 1: The figure shows the methodology used in 

implementing the Symmetric Encryption. 

Public Key cryptography is categorized as Asymmetric 

Encryption. Examples are (i) ECC – Elliptic Curve 

Cryptography (ii) Diffie-Hellman Protocol (iii) DSS – 

Digital Signature Standard. 
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Fig 2: The figure shows the generic implementation of the 

Elliptic Curve Cryptography exhibiting the Asymmetric 

nature of encryption/ decryption 

2. Priliminaries 

An elliptic curve for Elliptic curve cryptography purposes 

is a plane curve over a finite field which is made up of the 

points satisfying the equation 𝐸𝑝(𝑎, 𝑏): 𝑦
2 = (𝑥3 + 𝑎𝑥 +

𝑏), where the discriminant ∆= −16(4𝑎3 + 27𝑏2) ≠ 0.  If 

𝑃 and 𝑄 are two points on the elliptic curve 𝐸𝑝(𝑎, 𝑏) then 

point addition can be done as follows. Assume 𝑃 + 𝑄 =

(𝑥3, 𝑦3) then 

𝑥3 = (𝜆
2 − 𝑥1 − 𝑥2)(𝑚𝑜𝑑 𝑝) 

𝑦3 = (𝜆(𝑥1 − 𝑥3) − 𝑦1)) (𝑚𝑜𝑑 𝑝)  

𝜆 =

{
 

 
3𝑥1

2 + 𝑎

2𝑦1
(𝑚𝑜𝑑 𝑝), 𝑖𝑓 𝑃 = 𝑄

𝑦2 − 𝑦1
𝑥2 − 𝑥1

(𝑚𝑜𝑑 𝑝),    𝑖𝑓 𝑃 ≠ 𝑄.

 

3. Method of Analysis 

Section A 

(i) Let 𝑎 = 6𝑛2 − 5𝑛 and 𝑏 = 6𝑛2 + 7𝑛 + 1 be 

tetradecagonal numbers of rank 𝑛 and 𝑛 + 1 

respectively such that 𝑎𝑏 + 42𝑛2 + 7𝑛 + 1 is a perfect 

square, say 𝑟2 = (6𝑛2 + 𝑛 + 1)2. Let 𝑐 be any non-

zero integer such that  

𝑎𝑐 + 42𝑛2 + 7𝑛 + 1 = 𝑠2……………  

 (1) 

𝑏𝑐 + 42𝑛2 + 7𝑛 + 1 = 𝑡2……………  

 (2) 

Giving a transformation 𝑠 = 𝑋 + 𝑎𝑌, 𝑡 = 𝑋 + 𝑏𝑌 in 

equations (1) and (2)we get a  Pellian equation 𝑋2 −

𝑎𝑏𝑌2 = 42𝑛2 + 7𝑛 + 1, has fundamental solution 

(𝑋0, 𝑌0) = (6𝑛2 + 𝑛 + 1,1).The equations (1) and (2) 

gives the solution 𝑠 = 12𝑛2 − 4𝑛 + 1, 𝑡 = 12𝑛2 + 6𝑛 + 2 

and we get  the number 𝑐 = 24𝑛2 + 4𝑛 + 3. 

(ii) We approached the problem with the focus on the 

Diophantine Triples (𝑎, 𝑏, 𝑐) and its representation. As 

indicated above, the primary equations are 

•  𝑎 =  6𝑛2 − 5𝑛 

•  𝑏 =  6𝑛2 + 7𝑛 + 1 

•  𝑐 =  24𝑛2 + 4𝑛 + 3 

We can see that the emergence of the consistent pattern 

enabled us to assume the following. 

The assumption going ahead is, the problem of existence 

of Diophantine 3-tuples is 

closely connected with the properties of elliptic curves 

associated with them. 

Let {a, b, c} be a rational Diophantine triple with property 

𝐷(𝑥). This means that there exist 

non-negative rational numbers  𝑟, 𝑠, 𝑡 such that 

• (𝑎𝑏 + 𝑥) =  𝑟2 

• (𝑎𝑐 + 𝑥) =  𝑠2 

• (𝑏𝑐 + 𝑥) =  𝑡2 

Then (𝑎𝑏 + 𝑥)(𝑎𝑐 + 𝑥)(𝑏𝑐 + 𝑥) =  𝑦2, 𝑦 = (𝑟𝑠𝑡)2. In 

this case, if  𝑛 =  1, 𝑎 =  1, 𝑏 =  14 and 𝑐 =

 31 (Calculations based on the formulae indicated in point 

(ii). Refer “Method of Analysis”, Section A, Point (ii)). 

Giving us an elliptic curve  

(14 + 𝑥)(31 + 𝑥)(434 + 𝑥) = 𝑦2 

(𝑥3 + 479𝑥2 + 19964𝑥 + 188356) = 𝑦2………. (3) 

If equation (3) is reduced over the prime field 𝐹𝑝, where 

𝑝 = 479 we get an elliptic curve in Weierstrass form 

𝐸479(325,109). 

(𝑥3 + 325𝑥 + 109)(𝑚𝑜𝑑479) = 𝑦2(𝑚𝑜𝑑479) … (4) 

The discriminant of the equation (4)  

∆= −16(4𝑎3 + 27𝑏2) = −16(137633287)(𝑚𝑜𝑑479)

= 453 ≠ 0. 

Hence equation (4) can be used for elliptic curve 

cryptography. 

Section B 

Given below is a Java program that uses the conditions to 

check for the validity of the Elliptic curve points. 
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Fig 3: The above screenshot image shows the intended 

Java program that enables us to generate the appropriate 

ECC points. 

Program Outcome: 

We have provided a table with corresponding values 

generated through the program. These values will guide us 

to understand the intricacies associated with the Elliptic 

Curve Cryptography. Certain cells have been identified 

through proper COLOR indicators.  

Legend(s): 

Point to be 

encrypted 

(M) 

Generator 

point (G) 

2*G 

indicator 

3*G 

indicator 

Cipher 

point (C2) 

     

Table 1: The above table shows the generated points corresponding to the Elliptic curve for the given equation 

 

 

The points generated by the program were ported into 

Excel and plotted using the chart feature. The resultant 

chart is shown below. 
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Fig 4: Figure showing the resultant Elliptic Curve points 

that satisfy the given equation.  

Section C 

(i) Illustrative steps to Elliptic Curve Cryptography 

The equation of an elliptic curve is given as, 

𝐸𝑝(𝑎, 𝑏): 𝑦
2 = (𝑥3 + 𝑎𝑥 + 𝑏) 

Few terms that will be used, 

• 𝐸𝑝 -> Elliptic Curve defined over the finite field 𝐹𝑝 

• 𝑝-> The prime number  

Note: The elliptic curve generation is based on a maximum 

limit which is set for the points on the Elliptic curve. 

(ii) Key Generation 

Key generation is an important part where we have to 

generate both public key and private key. The sender will 

be encrypting the message with receiver’s public key and 

the receiver will decrypt its private key. 

• Choose a point “M” from 𝐸𝑝(𝑎, 𝑏) 

• Choose a generator point “G” from 𝐸𝑝(𝑎, 𝑏) 

• Select a private key ‘𝑛’ which is selected from the 

range 1 ≤ 𝑛 ≤ (𝑝 − 1) and compute the public key 

𝑃𝑈 = 𝑛 ∗ 𝐺 

• Now, select a number ‘𝑘’ within the range of 1 ≤

𝑘 ≤ (𝑝 − 1). 

(iii)  Encryption 

Let “M” be a point denoting a message which is also 

represented as a point on the Elliptic curve. 

Two cipher texts will be generated which we will represent 

as 𝐶1 and 𝐶2. 

𝐶1  =  𝑘 ∗ 𝐺 

𝐶2  =  𝑀 +  𝑘 ∗ 𝑃𝑈  

It is this𝐶1 and 𝐶2 which will be send to the recipient. 

(iv) Decryption 

We have to get back the message “M” that was send to the 

recipient, 

𝑀 = 𝐶2 –  𝑛 ∗ 𝐶1 

“M” is the original message that we have sent. 

(v) Illustrative example for the Elliptic curve 

encryption/ decryption 

Consider the elliptic curve  

𝐸479(325,109): 𝑦
2 = (𝑥3 + 325𝑥 + 109) 

Step I 

Encode a plain text message as a point on the elliptic curve 

𝐸479(325,109). 

From the Table 1, we have 𝑀 = (4,6) ∈ 𝐸479(325,109).  

The point (4,6) is highlighted in Figure 4 for illustrative 

purpose (Shown in ORANGE hue). 

Step II 

Establish the public key and the private key as follows. 

Choose the generator point 𝐺 = (17,3) ∈ 𝐸479(325,109) 

from the Table 1. The generator point G is also highlighted 

in the Figure 4 (Shown in GREEN hue). Please refer. Then 

select a private key ‘𝑛 = 3’ which is selected from the 

range 1 ≤ 𝑛 ≤ 478 and compute 𝑃𝑈 = 3 ∗ 𝐺. 

Now 3 ∗ 𝐺 = 3(17,3) = (17,3) + (17,3) + (17,3), first 

we calculate as 3 ∗ 𝐺 = (𝑥3, 𝑦3) = (17,3) + (17,3) 

Using the doubling of points in the elliptic curve we have 

𝜆 =
3𝑥1

2+𝑎

2𝑦1
(𝑚𝑜𝑑 𝑝) 

𝜆 =
3(17)2 + 325

6
(𝑚𝑜𝑑 479) =

1192

6
(𝑚𝑜𝑑479) = 39. 

Then 𝑥3 = (𝜆
2 − 𝑥1 − 𝑥2)(𝑚𝑜𝑑 𝑝) = 1487(𝑚𝑜𝑑 479) =

50, and  

𝑦3 = (𝜆(𝑥1 − 𝑥3) − 𝑦1)) (𝑚𝑜𝑑 𝑝) = −1290(𝑚𝑜𝑑479)

= 147. 

2 ∗ 𝐺 = (50,147) 

The point 2*G i.e. (50, 147) is indicated in the Table 1 

(Shown in BLUE hue). 

Hence 3 ∗ 𝐺 = (50,147) + (17,3), since the points 𝑃1 =

(17,3), 𝑃2 = (50,147) are not equal from the rule of 

addition of two distinct points. 

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

(𝑚𝑜𝑑 𝑝) 

𝜆 =
147 − 3

50 − 17
(𝑚𝑜𝑑 479) =

48

11
(𝑚𝑜𝑑 479) = 135 

Then 𝑥3 = (𝜆
2 − 𝑥1 − 𝑥2)(𝑚𝑜𝑑𝑝) = 18158(𝑚𝑜𝑑479) =

435 and  
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𝑦3 = (𝜆(𝑥1 − 𝑥3) − 𝑦1)) (𝑚𝑜𝑑 𝑝)

= (−52122)(𝑚𝑜𝑑479) = 89. 

Now 𝑃𝑈 = 3 ∗ 𝐺 = (435,89). 

The point 3*G is highlighted in the Figure 4 in the 

YELLOW hue. 

Step III 

Consider a random number 𝑘 such that 1 ≤ 𝑘 ≤ (𝑝 − 1), 

choose 𝑘 = 2 

𝐶1  =  𝑘 ∗ 𝐺 

=  2 ∗ (17,3) = (50,147) 

𝐶2  =  𝑀 +  𝑘 ∗ 𝑃𝑈 = (4,6) + 2 ∗ (435,89)

= (4,6) + (50,332) = (372,260) 

Step IV 

Decryption using the private key 

𝑀 = 𝐶2 –  𝑛 ∗ 𝐶1 

= (372,260) − 3 ∗ (50,147) 

= (372,260) − 3(50,332) 

= (372,260) + (50, −332(𝑚𝑜𝑑479)) 

= (372,260) + (50,147) = (4,6). 

Finally, we are able to generate the Cipher texts 𝐶1 and 

𝐶2 using the plotted points provided by the Elliptic Curve 

representation. 

Hence Cipher text 

𝐶1 (Private Key) = (50, 147), and 

𝐶2  (Public Key) = (372,260) 

 

Fig 5: The above figure shows the actual process steps 

carried out to encrypt/ decrypt an original point and make 

it accessible to the recipient. 

Revisiting the earlier Figure shown for Asymmetric 

Encryption; let’s interpret our solution with respect to the 

given figure. The analytic representation is shown in 

Figure 5 above. We have attempted to show the detailed 

steps that would be activated and enabled for a recipient to 

match their Public Key with the Senders Private/ Secret 

Key and access the original point.  

NOTE: All the points are part of the Elliptic Curve point 

representation. It sure is an indication that the recipient 

will not be able to access the original point if the recipient 

provides another public key point not related to the 

equation used in generating these Elliptic curve points.  

4. Conclusion 

Though ECC was implemented by most web browsers 

during the early stages; it was replaced with RSA 

encryption as the Stage 1 encryption. This trend has 

continued until recently when most Governments around 

the world have begun implementing ECC cryptography for 

Government related Digital Signatures to safeguard 

Government assets.  

Some of the striking features and benefits of ECC are: 

• It involves smaller ciphertexts, keys, and signatures, 

and therefore faster generation of keys and 

signatures is possible,  

• The decryption and encryption mechanism speeds 

are moderately fast, 

• The smaller keys mean less data transmitted over 

the server during security validation, 

• Enhanced ECC Mathematical strategies are giving 

rise to more complicated and stronger encryption 

models, and 

• It is surely providing an alternative to other 

cryptographic methods.  

In this research article, we have generated the 

cryptographic model by associating the Tetradecagonal 

structure, its associated Diophantine triples and its 

properties to generate the cryptographic solution. 

Combining the most intricate structure in Mathematics to 

generate a practical application that could in future be an 

intrinsic part of cryptographic models is the most 

important takeaway of this research. 

The day is not far behind when with more alarming 

breaches of security being noticed worldwide; we may find 

that ECC will take its right place and provide a stronger 

and robust alternative. 
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