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Abstract: The study discusses various methods for preparing quantum-states from classical data, which is crucial for quantum machine
learning (QML). It analyzes the complexity of these state preparation techniques, highlighting their efficiency and potential challenges.
Effective state preparation plays a key role in connecting classical data with quantum systems, allowing quantum algorithms to be utilized
in solving machine learning challenges. This paper reviews the related work of state preparation, introduces a variety of state preparation
schemes currently proposed, describes the implementation process of these schemes, and summarizes and analyzes the complexity of these
schemes. The paper covers different encoding methods, such as basis coding, amplitude coding, and quantum sampling coding. Finally,
prospects for conducting research in the area of state preparation have been identified. Furthermore, the document examines potential future

research avenues in field of quantum-state preparation and its impact on QML algorithms.
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1 Introduction

QML is a rapidly growing research field that uses principles
of quantum information science in the field of artificial
intelligence. The incredible potential of this technology lies
in its ability to revolutionize the approach to computational
tasks by leveraging the remarkable qualities of quantum
systems, including superposition and entanglement.
Superposition is the intriguing ability of a quantum system
to be in combination with two or more states simultaneously
until it is measured [1]. Entanglement refers to the quantum
feature wherein the quantum properties of two or more
objects are interrelated so that the quantum property of each
object is related to the state of other objects, even when
separated by a substantial distance. This interdependence
enables quantum systems to execute specific computational
tasks, such as quantum parallel processing, with greater
efficiency in contrast to their classical counterparts. QML
algorithms may potentially encode classical data and
perform computations more efficiently than classical
algorithms by representing classical dataset properties into
quantum-states [2]. Nonetheless, preparing quantum-states
from classical data is a complex process that demands
careful consideration of various methods.

Quantum computing, as a new computing model, has the
ability to exponentially accelerate some specific algorithms
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compared to classical computing and is expected to provide
sufficient computing power for machine learning [3]. When
using quantum computing to handle machine learning tasks,
the representation of interesting properties of the dataset
plays a vital role. The initial step is to identify the classical
data properties of the dataset and ways to represent them so
that they can be used in quantum algorithms. One of the
fundamental challenges in this domain is the efficient
preparation of quantum-states that can be utilized for ML
tasks.

ML is a science in Artificial Intelligence (Al) that trains
known data through computer learning and uses the trained
data model to predict information about unknown data. With
the increase in computer performance, machine learning
algorithms have significantly enhanced their ability to
process voluminous data. Several ways exist to process and
train classical data, such as neural networks, clustering, etc.
The selection of training methods needs to refer to the
corresponding data types to extract the features of unknown
data. When processing large-scale data, deep learning
methods are often adopted to obtain data features, such as
neural networks containing billions of weights, which fully
demonstrates the effect of deep learning in processing big
data [4].

For QML algorithms to work, the classical properties of data
need to be converted in quantum information to harness the
computational power of quantum information. The
technique of transforming classical data for use in a
quantum algorithm is known as the state-preparation [5]. In
the preparation of quantum-states, various methods are
employed to convert classical properties of data into the
corresponding  quantum  information and  states.
Additionally, classical data can be mapped to Hamiltonians
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using specific techniques. The techniques used to build the
quantum-state directly influence the selection of the
machine learning algorithm. This means that various state
preparation methods result in differences in extracting
classical data information. These differences may then
impact the operations and the steps involved in the QML
algorithms and the algorithmic complexity. The accuracy
and success rate of state preparation significantly impact the
effectiveness of the quantum algorithm. This paper explores
the following aspects:

e  Approaches for preparing quantum-states
e Simulation of the states of quantum systems

e Applications: The research also explores potential
applications of these prepared and simulated
quantum-states, potentially in areas such as
quantum computation or information processing.

2 State Preparation

In the realm of QML algorithms, quantum computers are
revolutionizing the processing of classical data by
leveraging the representation of classical data in quantum
systems. This process of converting classical data so that it
may be consumed by quantum algorithms is known as state
preparation [6]..

Traditional methods for quantum-state preparation include
initializing qubits in computational basis states (e.g., [0> or
|1>) and generating superposition states using Hadamard
gates. However, preparing more complex states, especially
as the number of qubits increases, poses significant
challenges [7].

There are different methods for preparing quantum-states,
most of which involve converting that classically
represented data into corresponding quantum-states [8]. The
method by which the quantum-state is prepared directly
affects the choice of executing machine learning algorithms,
which means that different state preparation methods
determine the differences in extracting classical data
information and affect subsequent operations in quantum
systems. For QML algorithms, the precision and attainment
rate of state preparation are pivotal in determining the
comprehensive efficacy and performance of the machine
learning algorithm.

The need for state preparation extends beyond the scope of
machine learning applications. It is also the basis of some
algorithms, such as the HHL [9] or VQE [10], which are
used to solve linear equations. The quantum Principal
Component Analysis (QPCA) is used for clustering and
feature recognition. There are also support vector machine
algorithms, which classify large-scale data. The common
denominator of this kind of quantum algorithm is to solve
practical classical problems, and it needs to use classical
data as input and output.

State preparation is a stepwise process and it entails:

1. Transform the classical dataset data to a
guantum-state.

2. Apply quantum gates for the
transformation of the quantum-state.

3. Finally, evaluate the results using probabilistic
guantum measurement multiple times.

unitary

The quantum algorithm complexity may be expressed by the
count of quantum operations or gates utilized in the circuit
of the quantum algorithm. The quantum algorithm
efficiency may also be evaluated based on the number of
execution queries required. The number of execution steps
or time needed for the algorithm is called query complexity.
Query complexity is particularly important in quantum
computing, which helps quantify the advantage quantum
algorithms might have over classical ones. Grover's
quantum algorithm for unstructured search requires a query
complexity of O(NN), and offers quadratic speedup over to
classical algorithms [11]. Query complexity is closely
related to other complexity measures like time complexity
and space complexity. However, Query complexity only
indicates the number of queries, and does not account for
other computational costs that may be involved.

3 Literature Review

Several studies have investigated various techniques for
state preparation in the context of QML algorithms and
quantum computing [12]. In their 2022 paper, Cerezo et al.
[10] discuss the challenges and opportunities in QML
algorithm, highlighting state preparation. Meanwhile,
Abrams and Williams (1999) [11] explores the use of
quantum algorithms for numerical linear algebra,
emphasizing the need for efficient state preparation
methods. The paper proposes a state preparation technique
based on the Qiskit runtime, a cloud-based quantum
computing service.

The related work on amplitude coding for state preparation
is extensive. In addition to ordinary coding methods,
amplitude coding was explored in the work of Grover and
Rudolph in 2002 [13], where they prepared a data
distribution that satisfies conditional integrability into a
quantum-state. In 2005, Soklakov and Schack [14] used
other forms of black boxes to propose an effective
probabilistic algorithm under certain restrictions. Another
approach is the quantum random access memory method,
which directly obtains a new quantum-state from classical
data starting from a known quantum-state.

Overall, the literature highlights the importance of state
preparation in quantum computing and the need for efficient
techniques to enable practical quantum machine learning
applications.
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4 Encoding

Encoding is the procedure of expressing the classical dataset
information into quantum-states [15]. The process involves
a unitary transformation that transitions the ground state to
the target quantum-state within the quantum system.
Encoding is a technique used to compose the state of
guantum information using classical information. This stage
is indispensable for translating conventional data into
quantum format, a pivotal phase in constructing quantum
computational algorithms. The goal of encoding is to
represent the data in a quantum system.

4.1 Basis coding

In the Basis coding process, binary data-vectors are
transformed into the of the quantum-state basis format by
using Pauli-X gates to encode the data in the binary
representation of the basis state on the corresponding qubits.
To translate a binary sequence of length n into a quantum-
state composed of n qubits states given by [x)=|ix), the
process involves transforming |ix), a computational basis
state, into the quantum-state |x). This transformation
effectively represents the binary string x in the form of a
quantum-state. The qubit count required for mapping N
features of the dataset is N. The runtime of preparing the
quantum-state for M data points with N features is f(MN).

4.2 Amplitude coding

The predominant technique for state preparation in quantum
computing involves the encoding of data using the
amplitude of the quantum-state. This method lays the
groundwork for the manipulation and representation of data
within a quantum system, serving as a fundamental basis for
quantum algorithms and computations. The data vector can
be a continuous variable, and the data feature information is
expressed as the amplitude of the qubit.

N

)= xli)

4

where {|i)} This computational basis is essential for the
Hilbert space, and it's crucial that the input meets the
normalization condition.: |x|? = 1; since the amplitudes of
a quantum-state are evaluated by the classical information
associated with the system. The count of qubits needed for
mapping N features of the dataset is log>N. The runtime of
preparing the quantum-state for M data points with N
features is f(log(MN)).

4.3  Angle encoding

Angle encoding is a technique that utilizes quantum rotation
gates (Rx, Ry, Rz) to transform classical information X. In
this method, the classical-data provided sets the parameters
for rotating the gate, which are then used to encode the
information. Mathematically it is expressed as

) = ®R(x,)|0")
where R can be one of RX, Ry, Rz.

This encoding leverages the relationship between the phase
of quantum-states, represented by complex numbers, and
the probabilities of observing specific outcomes. In
quantum algorithms, phase expressed as angles is crucial.
Parameterized quantum circuits tune circuit parameters for
desired computations. Angle encoding integrates classical
information into quantum-states, enabling quantum
computers to process classical data effectively. The count of
qubits required for mapping N features of the dataset is N.
The runtime of preparing the quantum-state for M data
points with N features is f(MN).

4.4 Hamiltonian Evolution Ansatz Encoding

The Hamiltonian encoding approach, also known as
dynamic encoding, involves embedding conventional
information to the dynamics of a quantum-state by
manipulating the hamiltonian energy of the system. This
approach leverages the quantum-state's evolution over time
to store and process information, offering potential
advantages in quantum information processing and quantum
communication. Unlike directly readying a quantum-state
containing the desired feature distribution, this approach
implicitly encodes feature information by allowing it to
define the progression of the quantum information.
Specifically, the data is used to construct a Hamiltonian
operator, and then the ground state is developed under the
influence of this hamiltonian for a specified duration. This
method constructs a Hamiltonian state whose ground state
represents the desired quantum-state.

It uses a Trotter formula to approximate an evolution and is
useful in obtaining the ground state of a Hubbard model

|x)

t t t n+1
= (] ] it (72 Rries (20) Rt () | @ 100
1

where Ry, Ryy, R;zare the rotation gates, [i;) is a Haar-
random single-qubit, and the total count of Trotter steps is
givenasT.

The Hamiltonian-evolution approach is particularly
advantageous when aiming to construct the ground state of
a physically realizable hamiltonian. This method facilitates
the direct and precise preparation of the desired quantum-
state.

5 Encoding for Quantum Image Processing (QIP)

QIP techniques use quantum techniques and algorithms to
represent, manipulate, and manage images. It is noteworthy
that not all classical image operations can be implemented
in quantum; however, there are scenarios where encoding
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and processing images as quantum data does provide
benefits over classical algorithms. The most important
aspect of QIP is the representation of images in a way that
is conducive to quantum processing.

The pixel values are encoded as probability amplitudes and
the position is encoded as the basis states of Hilbert space.

5.1  The Qubit Lattice

This scheme represents a pixel of an image as the amplitude
of the qubit. Therefore a pixel at the ith row and jth column
is given as

. _ by 00
|pixel;,; ) = cos > [0) + sin > [1)
5.2  Flexible representation of quantum images
(FRQI)

In this representation, the amplitude of the qubit denotes the
grayscale value of every pixel in the image.. Additionally,
an ancilla qubit is employed to denote the relative position
of each individual pixel. given by the below equation

221

(image) = Zin Z (cos 6; 10) + sin6;|1))]i)

i=0
where 6, € [Og]

As a result of superposition, the available representation
space decreases exponentially when compared to classical
images. This phenomenon has significant implications for
data storage and processing, particularly in the context of
guantum computing and information theory. In FRQI, only
2n + 1 qubits are required since a qubit represents the qubit’s

gray value, and the entire image is represented by a quantum
superposition of the row and column coordinates.

5.3  Novel enhanced quantum representation
(NEQR)

NEQR maps grayscale pixel values of an image to qubit
basis-states. This approach contrasts with FRQI in that it
utilizes the basis-state of an array of qubits to preserve each
pixel ‘s grayscale value, rather than encoding probability
amplitude within a qubit. The NEQR representation for a 2n
x 2n image is expressed as

22M—q 220

1
(image) =on Z Z If (v, )} yx)

y=0 x=0

where [f(y, X) represent the color information and f (y, X) is
the pixel intensity

NEQR technology, through its advanced algorithms and
computational methods, demonstrates remarkable precision
in the extraction of digital images from quantum images.
This innovative approach significantly expedites the image
creation process, offering a substantial quadratic speedup
compared to conventional methods..

6 Methodology

In this paper, we have implemented various state
preparation methods and evaluated their performance on
real datasets. Our results demonstrate the trade-offs between
the different state preparation methods in terms of accuracy,
complexity, and practical feasibility. The dataset attributes
encompass various data types, including categorical
variables, strings, and integers.

QML algorithm

Read out

Quantum circuit

State
preparations

Measurements

The steps involved are:

1. Encode the input conventional data into the
quantum-state using a state preparation technique.

2. Apply aseries of parametrized gates to the encoded
form to perform feature extraction.

3. Measure the quantum circuit output and measure
outcomes to update the parameters of the quantum
gates.

4. Repeat steps 2-3 until the model converges.

5. Use the trained quantum circuit and implement the
hybrid quantum-classical ML methodology.

6. Optimize the hybrid model using classical
backpropagation.

7. Evaluate the performance of the hybrid model on
test data.

8. Repeat the process for each state preparation
technique and compare the results.
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9. Analyze the trade-offs between the different state
preparation methods in terms of accuracy,
complexity, and practical feasibility.

10. Conclude with the recommended state preparation
method based on the application requirements.

6.1  Quantum feature map-based data encoding

A quantum feature-map serves as a method for converting
classical dataset properties to the quantum-state space. The
selection of an appropriate feature map is of paramount
importance and is contingent upon the specific
characteristics of the dataset being analyzed for
classification purposes.. The feature map contains layers of
Hadamard gates and entangling blocks.. The quantum SVM
kernel is based on the Pauli, Zfeature, and ZZFeature maps.
To prepare quantum kernel matrices for training and testing,
a feature map is applied to each pair of training data points
first, followed by testing data points. In a later stage,
classification support vector machines are trained and tested
using quantum kernel matrices [16].

ZZ Feature Map

The Quantum ZZMap is a distinct feature map used in
QSVM. The circuit is a second-order Pauli-Z evolution. The
ZZ Feature Map requires the input of two parameters: the
total count of features and the count of repeated circuits. The
ZZ Feature Map is difficult to reproduce using conventional
methods and is executed using circuits with low depth on
quantum devices that are nearly fully developed. The
objective is to build the kernel of the Support Vector
Machine (SVM) by using quantum-states. The ZZMap
focuses explicitly on the interaction between qubits in the
quantum circuit, which introduces a phase shift (the “ZZ”

part).

By exploiting quantum entanglement and superposition the
ZZMap enhances the expressive power of the feature map.

U@ p) = exp| i) &7
J
da

®Zk) exp iZij(Mi)(Zj) H®"
J

7 Results

The characteristics of the specific dataset strongly influence
the performance of quantum encoding, the selected
encoding technique, and the quantum algorithm utilized. For
the Iris dataset, the Hamiltonian evolution encoding
achieved the highest classification accuracy of 97.3% on the
test set.

In contrast, the ZZ-feature encoding and IQP encoding
achieved slightly lower accuracies of 96.7% and 96.5%,
respectively.

8 Conclusion

Machine learning algorithms rely on the quality of the
dataset used for learning, and for quantum algorithms, the
conventional data must be converted using appropriate
encoding techniques to be effective and efficient. Designing
efficient and effective encoding strategies is crucial for
realizing the full potential of quantum machine learning
[17].

The performance of QML techniques is highly dependent
on the specific dataset properties, the chosen encoding
technique, and the quantum algorithm employed [18].

New encoding techniques, such as Sparse Encoding, which
explores efficient encoding methods for sparse datasets,
common in many real-world applications, and Hierarchical
Encoding [19], which represents hierarchical structures with
multiple levels of abstraction, provide ample opportunities
for further research.

Data-driven encoding, which aims to Design encoding
schemes that adapt to the specific characteristics of the data,
is also an active area of research [20].

Some potential research directions include developing
techniques for encoding image datasets into quantum-states,
investigating quantum encoding techniques for textual data,
and exploring approaches to handling time-series data
within the quantum computational framework.
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