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Abstract: The study discusses various methods for preparing quantum-states from classical data, which is crucial for quantum machine 

learning (QML). It analyzes the complexity of these state preparation techniques, highlighting their efficiency and potential challenges. 

Effective state preparation plays a key role in connecting classical data with quantum systems, allowing quantum algorithms to be utilized 

in solving machine learning challenges. This paper reviews the related work of state preparation, introduces a variety of state preparation 

schemes currently proposed, describes the implementation process of these schemes, and summarizes and analyzes the complexity of these 

schemes. The paper covers different encoding methods, such as basis coding, amplitude coding, and quantum sampling coding. Finally, 

prospects for conducting research in the area of state preparation have been identified. Furthermore, the document examines potential future 

research avenues in field of quantum-state preparation and its impact on QML algorithms. 
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1 Introduction 

QML is a rapidly growing research field that uses principles 

of quantum information science in the field of artificial 

intelligence. The incredible potential of this technology lies 

in its ability to revolutionize the approach to computational 

tasks by leveraging the remarkable qualities of quantum 

systems, including superposition and entanglement. 

Superposition is the intriguing ability of a quantum system 

to be in combination with two or more states simultaneously 

until it is measured [1]. Entanglement refers to the quantum 

feature wherein the quantum properties of two or more 

objects are interrelated so that the quantum property of each 

object is related to the state of other objects, even when 

separated by a substantial distance. This interdependence 

enables quantum systems to execute specific computational 

tasks, such as quantum parallel processing, with greater 

efficiency in contrast to their classical counterparts. QML 

algorithms may potentially encode classical data and 

perform computations more efficiently than classical 

algorithms by representing classical dataset properties into 

quantum-states [2]. Nonetheless, preparing quantum-states 

from classical data is a complex process that demands 

careful consideration of various methods. 

 Quantum computing, as a new computing model, has the 

ability to exponentially accelerate some specific algorithms 

compared to classical computing and is expected to provide 

sufficient computing power for machine learning [3]. When 

using quantum computing to handle machine learning tasks, 

the representation of interesting properties of the dataset 

plays a vital role. The initial step is to identify the classical 

data properties of the dataset and ways to represent them so 

that they can be used in quantum algorithms. One of the 

fundamental challenges in this domain is the efficient 

preparation of quantum-states that can be utilized for ML 

tasks.  

ML is a science in Artificial Intelligence (AI) that trains 

known data through computer learning and uses the trained 

data model to predict information about unknown data. With 

the increase in computer performance, machine learning 

algorithms have significantly enhanced their ability to 

process voluminous data. Several ways exist to process and 

train classical data, such as neural networks, clustering, etc. 

The selection of training methods needs to refer to the 

corresponding data types to extract the features of unknown 

data. When processing large-scale data, deep learning 

methods are often adopted to obtain data features, such as 

neural networks containing billions of weights, which fully 

demonstrates the effect of deep learning in processing big 

data [4]. 

For QML algorithms to work, the classical properties of data 

need to be converted  in quantum information to harness the 

computational power of quantum information. The 

technique of transforming classical data for use in a 

quantum algorithm is known as the state-preparation [5]. In 

the preparation of quantum-states, various methods are 

employed to convert classical properties of data into the 

corresponding quantum information and states. 

Additionally, classical data can be mapped to Hamiltonians 
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using specific techniques. The techniques used to build the 

quantum-state directly influence the selection of the 

machine learning algorithm. This means that various state 

preparation methods result in differences in extracting 

classical data information. These differences may then 

impact the operations and the steps involved in the QML 

algorithms and the algorithmic complexity. The accuracy 

and success rate of state preparation significantly impact the 

effectiveness of the quantum algorithm. This paper explores 

the following aspects: 

• Approaches for preparing quantum-states 

• Simulation of the states of quantum systems 

• Applications: The research also explores potential 

applications of these prepared and simulated 

quantum-states, potentially in areas such as 

quantum computation or information processing. 

2 State Preparation 

In the realm of QML algorithms, quantum computers are 

revolutionizing the processing of classical data by 

leveraging the representation of classical data in quantum 

systems. This process of converting classical data so that it 

may be consumed by quantum algorithms is known as state 

preparation [6]..  

Traditional methods for quantum-state preparation include 

initializing qubits in computational basis states (e.g., |0> or 

|1>) and generating superposition states using Hadamard 

gates. However, preparing more complex states, especially 

as the number of qubits increases, poses significant 

challenges [7]. 

There are different methods for preparing quantum-states, 

most of which involve converting that classically 

represented data into corresponding quantum-states [8]. The 

method by which the quantum-state is prepared directly 

affects the choice of executing machine learning algorithms, 

which means that different state preparation methods 

determine the differences in extracting classical data 

information and affect subsequent operations in quantum 

systems. For QML algorithms, the precision and attainment 

rate of state preparation are pivotal in determining the 

comprehensive efficacy and performance of the machine 

learning algorithm. 

The need for state preparation extends beyond the scope of 

machine learning applications. It is also the basis of some 

algorithms, such as the HHL [9] or VQE [10], which are 

used to solve linear equations. The quantum Principal 

Component Analysis (QPCA) is used for clustering and 

feature recognition. There are also support vector machine 

algorithms, which classify large-scale data. The common 

denominator of this kind of quantum algorithm is to solve 

practical classical problems, and it needs to use classical 

data as input and output.  

State preparation is a stepwise process and it entails: 

1. Transform the classical dataset data to a 

quantum-state. 

2. Apply quantum gates for the unitary 

transformation of the quantum-state. 

3. Finally, evaluate the results using probabilistic 

quantum measurement multiple times.  

The quantum algorithm complexity may be expressed by the 

count of quantum operations or gates utilized in the circuit 

of the quantum algorithm. The quantum algorithm 

efficiency may also be evaluated based on the number of 

execution queries required. The number of execution steps 

or time needed for the algorithm is called query complexity. 

Query complexity is particularly important in quantum 

computing, which helps quantify the advantage quantum 

algorithms might have over classical ones. Grover's 

quantum algorithm for unstructured search requires a query 

complexity of O(√N), and offers quadratic speedup over to 

classical algorithms [11]. Query complexity is closely 

related to other complexity measures like time complexity 

and space complexity. However, Query complexity only 

indicates the number of queries, and does not account for 

other computational costs that may be involved. 

3 Literature Review 

Several studies have investigated various techniques for 

state preparation in the context of QML algorithms and 

quantum computing [12]. In their 2022 paper, Cerezo et al. 

[10] discuss the challenges and opportunities in QML 

algorithm, highlighting state preparation. Meanwhile, 

Abrams and Williams (1999) [11] explores the use of 

quantum algorithms for numerical linear algebra, 

emphasizing the need for efficient state preparation 

methods. The paper proposes a state preparation technique 

based on the Qiskit runtime, a cloud-based quantum 

computing service.  

The related work on amplitude coding for state preparation 

is extensive. In addition to ordinary coding methods, 

amplitude coding was explored in the work of Grover and 

Rudolph in 2002 [13], where they prepared a data 

distribution that satisfies conditional integrability into a 

quantum-state. In 2005, Soklakov and Schack [14] used 

other forms of black boxes to propose an effective 

probabilistic algorithm under certain restrictions. Another 

approach is the quantum random access memory method, 

which directly obtains a new quantum-state from classical 

data starting from a known quantum-state. 

Overall, the literature highlights the importance of state 

preparation in quantum computing and the need for efficient 

techniques to enable practical quantum machine learning 

applications. 
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4 Encoding 

Encoding is the procedure of expressing the classical dataset 

information into quantum-states [15]. The process involves 

a unitary transformation that transitions the ground state to 

the target quantum-state within the quantum system. 

Encoding is a technique used to compose the state of 

quantum information using classical information. This stage 

is indispensable for translating conventional data into 

quantum format, a pivotal phase in constructing quantum 

computational algorithms. The goal of encoding is to 

represent the data in a quantum system.   

4.1 Basis coding 

In the Basis coding process, binary data-vectors are 

transformed into the of the quantum-state basis format  by 

using Pauli-X gates to encode the data in the binary 

representation of the basis state on the corresponding qubits. 

To translate a binary sequence of length n into a quantum-

state composed of n qubits states given by  |x⟩=|ix⟩, the 

process involves transforming |ix⟩, a computational basis 

state, into the quantum-state |x⟩. This transformation 

effectively represents the binary string x in the form of a 

quantum-state. The qubit count required for mapping N 

features of the dataset is N. The runtime of preparing the 

quantum-state for M data points with N features is f(MN). 

4.2 Amplitude coding  

The predominant technique for state preparation in quantum 

computing involves the encoding of data using the 

amplitude of the quantum-state. This method lays the 

groundwork for the manipulation and representation of data 

within a quantum system, serving as a fundamental basis for 

quantum algorithms and computations. The data vector can 

be a continuous variable, and the data feature information is 

expressed as the amplitude of the qubit.  

|𝐱⟩ = ∑  

𝑁

𝑖

𝑥𝑖|𝑖⟩ 

where {|𝑖⟩} This computational basis is essential for the 

Hilbert space, and it's crucial that the input meets the 

normalization condition.: |𝐱|2 = 1; since the amplitudes of 

a quantum-state are evaluated by the classical information 

associated with the system. The count of qubits needed for 

mapping N features of the dataset is log2N. The runtime of 

preparing the quantum-state for M data points with N 

features is f(log(MN)). 

4.3 Angle encoding 

Angle encoding is a technique that utilizes quantum rotation 

gates (Rx, Ry, Rz)  to transform classical information x. In 

this method, the classical-data provided sets the parameters 

for rotating the gate, which are then used to encode the 

information. Mathematically it is expressed as  

|𝐱⟩ = ⨂
𝑖

𝑛

 𝑅(𝐱𝑖)|0𝑛⟩ 

where R can be one of Rx, Ry, Rz. 

This encoding leverages the relationship between the phase 

of quantum-states, represented by complex numbers, and 

the probabilities of observing specific outcomes. In 

quantum algorithms, phase expressed as angles is crucial. 

Parameterized quantum circuits tune circuit parameters for 

desired computations. Angle encoding integrates classical 

information into quantum-states, enabling quantum 

computers to process classical data effectively. The count of 

qubits required for mapping N features of the dataset is N. 

The runtime of preparing the quantum-state for M data 

points with N features is f(MN). 

4.4 Hamiltonian Evolution Ansatz Encoding 

The Hamiltonian encoding approach, also known as 

dynamic encoding, involves embedding conventional 

information to the dynamics of a quantum-state by 

manipulating the hamiltonian energy of the system. This 

approach leverages the quantum-state's evolution over time 

to store and process information, offering potential 

advantages in quantum information processing and quantum 

communication. Unlike directly readying a quantum-state 

containing the desired feature distribution, this approach 

implicitly encodes feature information by allowing it to 

define the progression of the quantum information. 

Specifically, the data is used to construct a Hamiltonian 

operator, and then the ground state is developed under the 

influence of this hamiltonian for a specified duration. This 

method constructs a Hamiltonian state whose ground state 

represents the desired quantum-state.  

It uses a Trotter formula to approximate an evolution and is 

useful in obtaining the ground state of a Hubbard model 

|𝐱⟩

= (∏  

𝑛

𝑖=1

𝑅𝑍𝑖𝑍𝑖+1
(

𝑡

𝑇
𝑥𝑖) 𝑅𝑌𝑖𝑌𝑖+1

(
𝑡

𝑇
𝑥𝑖) 𝑅𝑋𝑖𝑋𝑖+1

(
𝑡

𝑇
𝑥𝑖))

𝑇

⨂
𝑖=1

𝑛+1

 |𝜓𝑖⟩ 

where 𝑅𝑋𝑋, 𝑅𝑌𝑌, 𝑅𝑍𝑍are the rotation gates, |𝜓𝑖⟩ is a Haar-

random single-qubit, and the total count of Trotter steps is 

given as T. 

The Hamiltonian-evolution approach is particularly 

advantageous when aiming to construct the ground state of 

a physically realizable hamiltonian. This method facilitates 

the direct and precise preparation of the desired quantum-

state. 

5 Encoding for Quantum Image Processing (QIP) 

QIP techniques use quantum techniques and algorithms to 

represent, manipulate, and manage images. It is noteworthy 

that not all classical image operations can be implemented 

in quantum; however, there are scenarios where encoding 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1617–1622  |  1620 

and processing images as quantum data does provide 

benefits over classical algorithms. The most important 

aspect of QIP is the representation of images in a way that 

is conducive to quantum processing.  

The pixel values are encoded as probability amplitudes and 

the position is encoded as the basis states of Hilbert space. 

5.1 The Qubit Lattice 

This scheme represents a pixel of an image as the amplitude 

of the qubit.  Therefore a pixel at the ith row and jth column 

is given as  

|𝑝𝑖𝑥𝑒𝑙𝑖 ,𝑗 〉  = cos
𝜃𝑖 ,𝑗

2
 |0〉 + sin

𝜃𝑖 ,𝑗

2
|1〉 

5.2 Flexible representation of quantum images 

(FRQI) 

In this representation, the amplitude of the qubit denotes the 

grayscale value of every pixel in the image.. Additionally, 

an ancilla qubit is employed to denote the relative position 

of each individual pixel. given by the below equation 

〈𝑖𝑚𝑎𝑔𝑒〉  =
1

2𝑛
∑ (cos 𝜃𝑖 |0〉 + sin 𝜃𝑖|1〉)|𝑖〉

22𝑛−1

𝑖=0

 

where 𝜃𝑖 ∈ [0,
π

2
] 

As a result of superposition, the available representation 

space decreases exponentially when compared to classical 

images. This phenomenon has significant implications for 

data storage and processing, particularly in the context of 

quantum computing and information theory. In FRQI, only 

2n + 1 qubits are required since a qubit represents the qubit’s 

gray value, and the entire image is represented by a quantum 

superposition of the row and column coordinates. 

5.3 Novel enhanced quantum representation 

(NEQR) 

NEQR maps grayscale pixel values of an image to qubit 

basis-states. This approach contrasts with FRQI in that it 

utilizes the basis-state of an array of qubits to preserve each 

pixel ‘s grayscale value, rather than encoding probability 

amplitude within a qubit. The NEQR representation for a 2n 

× 2n image is expressed as 

〈𝑖𝑚𝑎𝑔𝑒〉  =
1

2𝑛
∑  

22𝑛−1

𝑦=0

∑ |𝑓(𝑦, 𝑥)〉|𝑦𝑥〉

22𝑛−1

𝑥=0

 

where |f(y, x) represent the color information and f (y, x) is 

the pixel intensity 

NEQR technology, through its advanced algorithms and 

computational methods, demonstrates remarkable precision 

in the extraction of digital images from quantum images. 

This innovative approach significantly expedites the image 

creation process, offering a substantial quadratic speedup 

compared to conventional methods.. 

6 Methodology 

In this paper, we have implemented various state 

preparation methods and evaluated their performance on 

real datasets. Our results demonstrate the trade-offs between 

the different state preparation methods in terms of accuracy, 

complexity, and practical feasibility. The dataset attributes 

encompass various data types, including categorical 

variables, strings, and integers.

 

The steps involved are: 

1. Encode the input conventional data into the 

quantum-state using a state preparation technique. 

2. Apply a series of parametrized gates to the encoded 

form to perform feature extraction. 

3. Measure the quantum circuit output and measure 

outcomes to update the parameters of the quantum 

gates. 

4. Repeat steps 2-3 until the model converges. 

5. Use the trained quantum circuit and implement the 

hybrid quantum-classical ML methodology. 

6. Optimize the hybrid model using classical 

backpropagation. 

7. Evaluate the performance of the hybrid model on 

test data. 

8. Repeat the process for each state preparation 

technique and compare the results. 
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9. Analyze the trade-offs between the different state 

preparation methods in terms of accuracy, 

complexity, and practical feasibility. 

10. Conclude with the recommended state preparation 

method based on the application requirements. 

6.1 Quantum feature map-based data encoding 

A quantum feature-map serves as a method for converting 

classical dataset properties to the quantum-state space. The 

selection of an appropriate feature map is of paramount 

importance and is contingent upon the specific 

characteristics of the dataset being analyzed for 

classification purposes.. The feature map contains layers of 

Hadamard gates and entangling blocks.. The quantum SVM 

kernel is based on the Pauli, Zfeature, and ZZFeature maps. 

To prepare quantum kernel matrices for training and testing, 

a feature map is applied to each pair of training data points 

first, followed by testing data points. In a later stage, 

classification support vector machines are trained and tested 

using quantum kernel matrices [16]. 

ZZ Feature Map 

The Quantum ZZMap is a distinct feature map used in 

QSVM. The circuit is a second-order Pauli-Z evolution. The 

ZZ Feature Map requires the input of two parameters: the 

total count of features and the count of repeated circuits. The 

ZZ Feature Map is difficult to reproduce using conventional 

methods and is executed using circuits with low depth on 

quantum devices that are nearly fully developed. The 

objective is to build the kernel of the Support Vector 

Machine (SVM) by using quantum-states. The ZZMap 

focuses explicitly on the interaction between qubits in the 

quantum circuit, which introduces a phase shift (the “ZZ” 

part). 

By exploiting quantum entanglement and superposition the 

ZZMap enhances the expressive power of the feature map. 

𝑈(𝛼, 𝛽) = (exp (𝑖 ∑ 𝜙𝑗(𝜇𝑖)(𝑍𝑗

𝑗

⊗ 𝑍𝑘)) exp (𝑖 ∑ 𝜙𝑗(𝜇𝑖)(𝑍𝑗)

𝑗

) 𝐻⊗𝑛)

𝑑

 

7 Results 

The characteristics of the specific dataset strongly influence 

the performance of quantum encoding, the selected 

encoding technique, and the quantum algorithm utilized. For 

the Iris dataset, the Hamiltonian evolution encoding 

achieved the highest classification accuracy of 97.3% on the 

test set.  

In contrast, the ZZ-feature encoding and IQP encoding 

achieved slightly lower accuracies of 96.7% and 96.5%, 

respectively.  

8 Conclusion 

Machine learning algorithms rely on the quality of the 

dataset used for learning, and for quantum algorithms, the 

conventional data must be converted using appropriate 

encoding techniques to be effective and efficient. Designing 

efficient and effective encoding strategies is crucial for 

realizing the full potential of quantum machine learning 

[17]. 

The performance of QML techniques is highly dependent 

on the specific dataset properties, the chosen encoding 

technique, and the quantum algorithm employed [18].  

New encoding techniques, such as Sparse Encoding, which 

explores efficient encoding methods for sparse datasets, 

common in many real-world applications, and Hierarchical 

Encoding [19], which represents hierarchical structures with 

multiple levels of abstraction, provide ample opportunities 

for further research.  

Data-driven encoding, which aims to Design encoding 

schemes that adapt to the specific characteristics of the data, 

is also an active area of research [20]. 

Some potential research directions include developing 

techniques for encoding image datasets into quantum-states, 

investigating quantum encoding techniques for textual data, 

and exploring approaches to handling time-series data 

within the quantum computational framework.  
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