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Abstract: Early detection of prostate cancer is challenging due to its subtle symptoms, which has led to the exploration of deep learning 

algorithms to improve diagnostic accuracy of MRI images. In response to these challenges, the development of a computer-aided detection 

(CAD) system with segmentation and categorization techniques has become increasingly important. In this research, a novel hybrid prostate 

cancer detection method that utilizes segmentation and adaptive model classification is proposed to overcome the current limitations. The 

proposed method includes three main phases: Image acquisition, segmentation and classification. At the beginning, images are extracted 

from publicly available online databases. Then, these images are subjected to Dilated Hybrid Segmentation (DHS), which integrates 

TransUnet with Segnet to accurately delineate prostate lesions. Finally, the segmented images are fed into the Adaptive and Attentive 

Multiscale Densenet (AAMDNet) classification model, where certain hyper parameters are optimized using the Enhanced Capuchin Search 

Algorithm (ECapSA). The performance of the model is then evaluated using various metrics. Compared to conventional approaches, this 

novel system delivers impressive results, and shows higher accuracy in the classification of prostate cancer. 

Keywords: Prostate Cancer Classification; Prostate Image; TransUnet and Segnet; Dilated Hybrid Segmentation; Adaptive and 

Attentive Multiscale Densenet; Enhanced Capuchin Search Algorithm. 

1. Introduction 

The prostate, a vital part of the male reproductive system, is small, 

about the size of a walnut, and lies below the urinary tract. Prostate 

cancer, a common type of cancer in men, originates in this gland 

[1]. The abnormal proliferation of cells in the prostate tissue leads 

to the formation of tumors, which can be benign or malignant [2]. 

Malignant tumors can metastasize and spread to the surrounding 

tissue. Prostate cancer mainly affects older people, but can also 

manifest itself without any recognizable symptoms and often 

progresses slowly [3]. In certain cases, it can progress aggressively 

and require therapeutic intervention [4]. 

Digital rectal examinations (DRE), blood tests for prostate-specific 

antigen (PSA) and biopsies of the prostate tissue are usually to 

detect prostate cancer. These diagnostic methods help to determine 

the presence and severity of prostate cancer [5]. Treatment options 

for prostate cancer depend on the stage and aggressiveness of the 

cancer. Early detection and appropriate treatment significantly 

improve the prognosis. Regular screening and discussions with the 

doctor are crucial, especially for men over the age of 50 or for men 

with a family history of the disease [6]. The classification of 

prostate cancer assesses factors such as stage, grade and risk [7]. 

This classification is essential for determining appropriate 

treatment strategies and predicting disease progression [8]. 

The classification of prostate cancer is very complex and 

represents a major challenge for the treatment of the disease [9]. 

Accurate classification is crucial as it serves as a basis for treatment 

decisions and prognostic assessments [10]. However, several 

factors contribute to the difficulties associated with this process 

[11]. Prostate cancer is inherently heterogeneous, exhibiting 

different characteristics from patient to patient and even within 

individual tumors. This variability makes accurate classification 

and prediction of disease behavior difficult. 

In the field of medical image analysis, particularly in the 

categorization and detection of prostate cancer, machine learning 

algorithms have proven to be powerful tools [12]. These 

algorithms, which use multi-layer synthetic neural networks, are 

characterized by the extraction of complex features and patterns 

from medical image data. In particular, deep learning techniques 

have shown promise in improving the accuracy, efficacy, and 

ability to handle complexity in prostate cancer categorization [13]. 

By using artificial neural networks to decipher complex medical 

image data, deep learning algorithms have revolutionized the 

categorization and diagnosis of prostate cancer [14]. These 

innovative techniques have the potential to increase the accuracy, 

efficiency and impartiality of prostate cancer assessment, 

improving patient outcomes and expanding our understanding of 

the disease. They therefore represent a significant advance in the 

field of medical image analysis and offer new opportunities for 

more accurate and effective diagnosis and treatment of prostate 

cancer [15]. 

The primary objectives of the developed model can be elucidated 

as follows. 
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1. Using TransUnet and SegNet to accurately segment 

prostate cancer regions in medical images, utilizing their 

strengths in dealing with complex anatomical structures. 

2. Implementing an Adaptive Attentive Multiscale DenseNet 

to classify segmented regions to ensure high accuracy in 

identifying different stages and types of prostate cancer. 

3. Applying the advanced Capuchin search algorithm for 

hyper parameter optimization to fine-tune the 

segmentation and classification models to maximize their 

performance and efficiency. 

4. Ensuring that Adaptive Attentive Multiscale DenseNet 

effectively captures multiscale features from segmented 

regions, increasing the accuracy of prostate cancer 

classification. 

5. Testing and validating the segmentation and classification 

models against established prostate cancer imaging 

datasets and compare their performance with existing 

state-of-the-art methods. 

6. Contributing to the medical imaging and prostate cancer 

research by providing a novel and effective approach to 

cancer segmentation, classification and optimization. 

2. Existing Works 

2.1. Related Works 

Classification of prostate cancer is crucial aspect of treating the 

disease, as it involves grading and characterizing the cancer based 

on key factors such as stage, grade and risk level. Accurate 

classification plays a crucial role in determining the most 

appropriate treatment strategies and predicting the patient 

outcomes. Various methods and systems are for this purpose, each 

with their own strengths and challenges. A detailed overview of 

the different methods is shown in Table I and is discussed in the 

following paragraphs. 

Table I: Features and Challenges of Existing Deep Learning Based Prostate Cancer Classification System 

Author [citation] Metho-dology Features Challenges 

Shrestha et al. 

[16] 
DNN 

It can model complex, non-linear relationships in data. 

It can automatically learn hierarchical representations from 

data. 

Hyper parameter tuning can be 

challenging. 

Garg et al. [17] CAD 

Reduces the time and effort required for design and 

engineering tasks. 

Allows for accurate simulations and testing before physical 

production. 

Complex designs can be 

computationally intensive to 

render and analyze. 

Chahal et al. 

[18] 
Unet 

Specifically designed for image segmentation tasks, 

especially in medical imaging. 

It may require a large amount of 

labeled data for training. 

Guiqin et al. 

[19] 
CNN It automatically learns hierarchical features from data. 

It requires substantial 

computational resources for 

training deep networks 

Pääkkönen et al. 

[20] 
ML It can make predictions and decisions based on data. 

It requires feature engineering in 

many cases. 

Pushpak et al. 

[21] 
DL It can automatically extract features from raw data. 

Training can be time-consuming 

and computationally expensive. 

Yuchun et al. 

[22] 
DL 

It can model complex, non-linear relationships in data. 

It can automatically learn hierarchical representations from 

data. 

Tuning the hyperparameteters 

can be challenge. 

 

2.2. Research Gaps and Challenges 

Deep Neural Networks (DNNs) were developed to model 

complex, non-linear relationships in data. They automatically learn 

hierarchical representations, which can be of great use in capturing 

complex patterns in medical images and other types of data 

relevant to prostate cancer classification. DNNs consist of multiple 

layers of interconnected neurons that enable them to learn from 

large amounts of data. However, the challenge lies in tuning the 

numerous parameters within these networks. This tuning process 

is crucial for achieving high accuracy, but is also one of the most 

difficult aspects of working with DNNs, as it requires significant 

computational resources and expertise. 

Computer-aided design (CAD) systems are used to streamline 

design and development engineering tasks. In the context of 

prostate cancer, CAD can be used to create detailed models and 

simulations of the prostate and surrounding tissue. These 

simulations allow accurate testing and prediction of treatment 

outcomes prior to surgery. However, the intricate designs created 

by CAD systems can be very computationally intensive to 

visualize and analyze, posing a challenge in terms of the computing 

power and time required. 

Unet is a specialized deep learning architecture tailored to image 

segmentation tasks, especially in medical imaging. It is extremely 

effective in delineating structures in medical images, such as 

tumors in prostate scans. The Unet architecture consists of a 

contracting path to capture the context and a symmetric expanding 

path that enables precise localization. Despite its remarkable 

capabilities, Unet often requires a large amount of labeled training 

data to work effectively, which can be a limitation in medical fields 

where labeled data is scarce. 

Convolutional Neural Networks (CNNs) are particularly suitable 

for processing and analyzing visual data. They are able to 

automatically learn hierarchical features from raw input images, 

making them ideal for tasks such as detecting and classifying 

cancer regions in prostate images. CNNs use convolutional layers 

to extract features and pooling layers to reduce dimensionality, 

followed by fully connected layers for classification. However, 

training deep CNNs can be resource intensive and requires a lot of 

computational power and time. 
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Deep learning (DL) encompasses a range of architectures, 

including DNNs, CNNs and others, that are capable of 

automatically extracting features from raw data. This ability to 

learn directly from the data without the need for manual feature 

processing is particularly beneficial for complex classification 

tasks such as prostate cancer. Despite its promising capabilities, 

deep learning requires extensive computational resources and time 

for training and hyper parameter tuning remains a major challenge. 

Machine learning (ML) Traditional machine learning methods 

facilitate prediction and decision making based on data. These 

methods often require manual feature engineering, where experts 

must identify and extract relevant features from the raw data before 

feeding them into the ML algorithms. While ML methods can be 

very effective, manual feature engineering can be time-consuming 

and requires extensive expertise. 

 In summary, each of these methods offers distinct advantages for 

prostate cancer classification, from the high-dimensional 

capabilities of SVM to the powerful feature learning of deep neural 

networks and CNNs. However, they also bring specific challenges, 

such as the need for computational resources, experience in tuning 

hype parameters and the availability of labeled training data. The 

Accurate and efficient classification of prostate cancer depends on 

the correct application of these methods to ensure optimal 

treatment strategies and a better prognosis for patients. 

3. Explanation of the Proposed Classification 

Model for Prostate Cancer: Improved 

Heuristic Algorithm 

3.1. Collection of raw images 

In the initial phase, images relevant to prostate cancer are collected 

for later processing by a categorization model.   

Dataset-1: “Access Date: 2023-09-26”.This dataset is primarily 

about prostate cancer, with a focus on the "Prostate central gland 

and peripheral zone." The dataset comprises a total of 394 images, 

of which 75% are allocated for training purposes, while the 

remaining 25% are designated for testing.  

All studies [23] included T2-weighted (T2W), proton density-

weighted (PD-W), dynamic contrast enhanced (DCE), and 

diffusion-weighted (DW) imaging. Images were acquired with two 

different types of Siemens 3T MR scanners, the MAGNETOM 

Trio and Skyra. The T2-weighted images were acquired with a 

turbo spin echo sequence and had a resolution of around 0.5 mm 

in plane and a slice thickness of 3.6 mm. The DCE time series was 

acquired using a 3-D turbo flash gradient echo sequence with a 

resolution of approximately 1.5 mm, a slice thickness of 4 mm and 

a temporal resolution of 3.5 s. The proton density weighted image 

was acquired before to the DCE time series using the same 

sequence with different echo and repetition times and a different 

flip angle. Finally, the DWI series were acquired with a single-shot 

echo planar imaging sequence with a resolution of 2 mm in-plane 

and 3.6 mm slice thickness and with diffusion-encoding gradients 

in three directions. Three b-values were acquired (50, 400, and 

800), and subsequently, the ADC map was calculated by the 

scanner software. All images were acquired without an endorectal 

coil. 

Dataset-2: “Access Date: 2023-09-25”.It includes [23] data 

comprises a total of 1083 images. For the purposes of model 

development, 75% of these images are allocated for training, with 

the remaining 25% reserved for testing.  

Prostate cancer T1- and T2-weighted magnetic resonance images 

(MRIs) were acquired on a 1.5 T Philips Achieva by combined 

surface and endorectal coil, including dynamic contrast-enhanced 

images obtained prior to, during and after I.V. administration of 

0.1 mmol/kg body weight of Gadolinium-DTPA (pentetic acid). 

3.2. Adaptive Concept in Prostate Cancer Classification Model 

Prostate cancer can progress, with low-grade cancers initially 

becoming more aggressive. Regular monitoring is essential to 

track these changes and adjust treatment as needed. The proposed 

ECapSA-based classification model, shown in Figure 1, is 

designed to improve diagnostic accuracy and treatment efficacy. 

 

Fig. 1. Framework of developed ECapSA based prostate cancer 

classification model 

The aim of this work is to develop an advanced classification 

model for prostate cancer by integrating heuristic and deep 

learning methods to improve diagnostic accuracy. Input images are 

collected from publicly available sources to create a diverse 

dataset. TransUnet and SegNet are then used for accurate 

segmentation of prostate regions, which is essential for improving 

classification accuracy. 

The segmented images are classified as cancerous or non-

cancerous using the AAMDNet model, which utilizes deep 

learning for high accuracy. The performance of the model is 

evaluated using metrics such as sensitivity, specificity, F1 score 

and accuracy to ensure its reliability and precision in classifying 

prostate cancer. 

3.3. Identification of Abnormalities using Dilated Hybrid 

Segmentation Model  

3.3.1. TransUnet 

The ability of the U-net to accurately separate objects or regions of 

interest in photographs can be enhanced by the transformer's 

ability to view the entire image. A TransUnet approach [24] 

combines the advantages of the transformer and U-net designs and 

can use Transformer-based mechanisms of self-attention to 
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recognize complex relationships between individual pixels in an 

image, or voxels in the case of 3D image 

The output of the kth layer of a transformer encoder consists of K 

layers of Multihead Self-Attention (MSA) and Multi-Layer 

Perceptron (MLP) blocks. Let's denote the input to the kth layer as 

kl, where l is the layer index l =1,2,..L. The output of the lth layer 

can be written as following Eq.(1) and Eq.(2). 

1)1(( −+−= s

l

s

l

s

l HHKMMSAH
                    (1) 

s

l

s

l

s

l HHKMMLPH += )((
                             (2) 

One simple segmentation technique is to simply raise the encoded 

representation of characteristics 

j
P

IO

l kS
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
2

to full fidelity in 

order to anticipate the dense result. The scope of the coded 

component must first be modified from 
2P

IO

to P

K

P

I


in order to 

restore spatial harmony. The feature map is immediately bilinear 

up sampled to the greatest quality in order to condense the channel 

length of the 1x1 reconfiguration characteristic to the entire 

number of classes, anticipating the final segmentation outcome. 

This naive extending baseline is labeled m x m in the decoding 

scheme for the ensuing studies. 

The combination of converters with naive development leads to 

acceptable efficiency, but often low-level information is lost, 

resulting in lower quality image restoration. TransUnet solves this 

problem by using a CNN transformer encoder and a broadcast up-

sampler for accurate localization. 

CNN-Transformer: TransUnet uses a CNN-transformer hybrid 

technique instead of using only transformers as encoded data, 

where CNN is first used as a feature extractor to create a map of 

features for the input data. Instead of raw images, the patch anchor 

is applied to patches created from the CNN mapping of features. 

Our combined CNN-transformer-encoder is better than a 

transformer alone. We chose this design because it allows us to use 

high-quality CNN feature maps in the decoder in the meantime. 

Cascaded up sampler: Offer a cascaded upsampler (CUP) that 

consists of a number of expanding procedures, to decode the 

hidden feature 

j
P

IO

l kS



2

and generate 
D

P

K

P

I


the 

segmented mask in the end. After modifying the hidden feature 

sequence to take the form of
wY

P

K

P

I


, we produce CUP by 

falling several expanding blocks to achieve the whole solution 

from, where every component comprises a sequentially  a ReLU 

layer,  33 expanding operator and 33 convolutions layer. Using 

skip-connections, Cups and the whole encoder's            u-shaped 

architecture enables feature aggregate at various fidelity levels. 

Fig. 2 shows the architecture diagram for TransUnet. 

 

Fig. 2. Architecture diagram for TransUnet 

3.3.2. Segnet 

An encoding network and an associated decoding system, followed 

by a final pixel-wise categorization layer, form the two main 

components of SegNet [25]. The VGG16 system, which was 

originally developed for object recognition tasks, started with 13 

convolutional layers, and the coding network also consists of a 

total of 13 convolutional layers. This design allows us to use pre-

trained weights from VGG16 as a starting point for training 

SegNet. These weights have been optimized for categorization in 

large datasets. 

SegNet uses a tactic that omits the fully concatenated layers 

typically present in categorization systems, which has benefits 

beyond determining weights. Instead, it places a greater priority on 

maintaining high-resolution feature maps in the output of the 

lowest level encoder. Compared to other modern architectures, this 

not only preserves the geographic data, but also drastically reduces 

the number of parameters in the SegNet decoder network. The 

decoder consists of a total of 13 layers, as each layer in the network 

that makes up the encoder has a corresponding layer in the decoder 

network. The final output of the decoder is then provided with a 

multi-class softmax classifier. This classifier provides pixel-

accurate segment results, which are essential for applications such 

as semantic segmentation. It does this by assigning an individual 

class probability to each pixel. 

In SegNet, each coding layer uses a filter bank to create feature 

maps, which are standardized by batch normalization and 

enhanced with ReLU. The output is down sampled by a factor of 2 

using 2x2 Max Pooling to ensure translation invariance and 

insensitivity to spatial variations. However, this under sampling 

reduces the dimensions of the feature maps. 
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For applications with limited memory, it is impractical to store all 

features after down sampling. Instead, only the indices of the 

highest values in each 2x2 pooling window are stored, requiring 

only 2 bits per window. This method is more memory efficient than 

storing entire feature maps in float precision. 

 

Fig. 3. Architecture diagram for SegNet 

3.3.3. Dilated Hybrid Segmentation 

Dilated SegNet and Dilated TransUnet are neural network variants 

for image segmentation that use dilated convolutions to capture 

information at multiple levels. DHS, hybrid architecture, combines 

these models for improved segmentation accuracy. The encoder, a 

dilated SegNet, extracts features from the input images, while the 

decoder, a dilated TransUnet, creates the final segmentation map. 

This approach leverages SegNet feature extraction and TransUnet 

modeling to improve segmentation tasks. The final result of our 

DHS model is a segmented image

seg

rTS
.Fig.4 shows the 

diagrammatic representation of the DHS for prostate cancer 

segmentation. 

 

Fig. 4. Diagrammatic representation of the DHS for prostate cancer 

segmentation 

 Justification for Using Dilated SegNet, Dilated TransUnet, and 

DHS Over Other Segmentation Methods in the following 

paragraphs  

3.3.4. Dilated SegNet 

Dilated SegNet introduces dilated convolutions to increase the 

receptive field without additional downsampling. This captures a 

broader context while preserving fine details. Standard SegNet is 

based on pooling, which can lead to loss of information .U-Net 

captures information at multiple levels through a symmetric 

encoder-decoder structure, but relies on pooling and 

upsampling,which can lead to information loss. Dilated SegNet 

avoids this by using dilated convolutions directly. 

3.3.5. Dilated TransUnet 

CNN-based models, such as SegNet and U-Net, are characterized 

by local features but have problems with global context. Dilated 

TransUnet incorporates transformers to capture both local and 

global context to improve segmentation performance, especially 

for complex scenes. Pure Transformer models can struggle with 

fine-grained details. Dilated TransUnet mitigates this problem by 

integrating CNNs and dilated convolutions that ensure detailed 

local feature extraction. By adding Dilated Convolutions, Dilated 

TransUnet can capture features at multiple scales, improving the 

ability to segment objects of different sizes. 

3.3.6. Dilated Hybrid Segmentation 

The hybrid DHS architecture leverages the strengths of Dilated 

SegNet and Dilated TransUnet captures detailed local features and 

a comprehensive global context. Single model architectures may 

be deficient in one aspect or another. Specialized models are often 

tailored to specific tasks, such as medical imaging or street 

segmentation. DHS combines methods, making it adaptive and 

robust for different segmentation tasks. Simple ensemble methods 

combine predictions from multiple models. DHS deeply integrates 

the architectures, and enables better feature fusion and interaction, 

leading to more coherent and accurate segmentation results. 
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3.4. Prostate cancer classification using Adaptive and attentive 

based Deep Learning Network 

3.4.1. Multiscale Densenet 

Multi-Scale DenseNet retains the dense connectivity of the original 

DenseNet architecture. In DenseNet, each layer is directly 

connected to every other layer in a feed-forward manner. This 

dense connectivity supports gradient flow, feature reuse, and 

allows the network to learn rich representations. The multiscale 

DenseNet is explained in more detail below. 

3.4.2. Multiscale Densenet:  

To improve prostate classification, a multilevel approach is used 

iteratively at different scales to improve feature extraction. This 

results in a richer, more comprehensive and complementary feature 

set and improves the adaptability of the model and the ability to 

identify relevant features across multiple spatial or temporal 

scales. 

3.4.3. DenseNet:  

DenseNet [26] aims to improve the connectivity of neural networks 

by creating dense connections between layers. In contrast to 

conventional CNNs, where information is transferred 

incrementally, DenseNet allows each layer within a block to 

receive input from all previous layers. This dense data flow 

improves feature reuse, training gradient flow and storage 

efficiency. 

Imagine that a network of convolutions made of layers propagates 

a single picture, denoted as ot , through the network's layers. Each 

layer referred to here as m  and the layer—involves a non-linear 

change symbolized by
(.)SL

. Batch Normalization (BN), 

Rectified Linear Unit (ReLU) and Convolution, 

pooling application are some of the procedures covered by this 

function. As shown in an undefined Eq. (13) popular feed forward 

network structures like AlexNet and VGG Net create links that link 

the thk
layer's outputs thk )1( −

and inputs. 

)1(1 −= kSLp
    (3) 

Skip-connections are a novel addition to ResNet's design. These 

connections use the identity equation to include the layer's results

thk )1( −
, represented as

)1( −k
, into the calculation process of 

the present layer. The subsequent Eq. (4) represents this technique. 

1)1(1 −+−= kkSLp
   (4) 

The skip link design initially developed by ResNet is significantly 

improved by the thick connection strategy that DenseNet uses. 

With this method, the feature maps from the layer and all levels 

before it are concatenated into a structure called a dense block. As 

a result, the map features of the earlier layers are combined to 

create the input for the final layer 11....., −mo ppp
. Eq. (5) 

beautifully illustrates this procedure. 

 111 ....., −= mo pppDFp
  (5) 

DenseNet offers a crucial tactic to solve the problem of decreasing 

signal strength due to increasing layer thickness and to improve 

overall performance. The design reduces signal attenuation by 

combining feature maps from different layers within a dense block. 

However, as the depth of net work increases, a problem arises. The 

number of channels in the overall feature map increases sharply, 

which significantly increases the size of the network. DenseNet 

solves this problem by inserting a bottleneck layer between each 

layer in the dense block. The methods that make up this bottleneck 

layer are Rectified Linear Unit (ReLU), Batch Normalization 

(BN), 1x1 convolutional filters (conv), 2 BN, ReLU, and 3x 3 

convolutions. Fig 5 shows the architecture diagram for Multiscale 

DenseNet. 

 

Fig. 5. Architecture diagram for Multiscale Densenet 

3.4.4. Attention Mechanism 

Machine learning and deep learning approaches often rely on the 

attention mechanism [26], especially for tasks such as automatic 

translation and text summarization. This mechanism helps the 

models to focus on specific data elements when generating results. 

The attention mechanism consists of three parts: Query, Key and 

Value. 

The query represents what the model is interested in at a given 

time, derived from its hidden state, and is used to compute attention 

values. The key is compared to the query to determine which parts 

of the input data are relevant. The value associated with the 

attention values represents the information to focus on in the 

output, using the attention values as a guide (Equation 6). 

( )













=

v

t

e

lm
softnmlAttention max,,

  (6) 

The variable  
nandml,

 is the query, key, and value matrixes. 

The attention mechanism works by calculating attention scores, 

often using some similarity metric between the query and key.  

3.4.5. D.AAMDNet for Classification 

The choice of the AAMDNet classifier for the prostate cancer 

classification system can be justified in the following paragraphs. 

3.4.5.1. Advanced architecture 

AAMDNet, a state-of-the-art deep learning model, provides a 

sophisticated architecture that excels in feature extraction and 

pattern recognition, which is critical for distinguishing between 

cancerous and non-cancerous regions in medical imaging. 

3.4.5.2. Improved performance 
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Empirical results show significant performance improvements 

over other models. AAMDNet achieves 57% higher accuracy than 

Unet, 55% than Resunet, 67% than TransUnet and 48% than 

SegNet. This underlines its superior ability to accurately classify 

prostate cancer. 

3.4.5.3. Efficient processing of complex data 

AAMDNet is designed to process complex and high-dimensional 

data effectively. Images of prostate cancer often show subtle 

differences between cancerous and non-cancerous tissue, requiring 

a robust model that can capture these nuances. 

3.4.5.4. Robust training mechanism 

The architecture of AAMDNet enables efficient training and better 

convergence. This robustness ensures that the model can 

generalize well from the training data to unseen data, which is 

critical in medical applications where data variety and 

representation are critical. 

3.4.5.5. Integration with segmentation models 

AAMDNet can effectively utilize segmented images generated by 

advanced segmentation models such as TransUnet and SegNet. 

This integration ensures that the classifier works with well-defined 

regions of interest, increasing the accuracy of the classification 

process.  

3.4.5.6. Scalability and adaptability 

AAMDNet is scalable and adapted to different data sets and 

different sizes of input screens. This flexibility is important to 

accommodate the diversity of medical imaging data and to ensure 

that the model remains effective in different clinical environments. 

3.4.5.7. Improvement over traditional models 

Traditional models often unable to handle the intricacies of 

medical image classification due to their simpler architecture. 

AAMDNet's advanced design overcomes these limitations and 

provides a more refined and accurate approach to prostate cancer 

classification. 

By choosing AAMDNet, the prostate cancer classification system 

utilises a state-of-the-art model that not only outperforms existing 

methods, but also provides a reliable and efficient solution for real-

world medical applications. 

 The process begins with the input of a segmented image

seg

rTS
 , 

which is then forwarded to a multiscale analysis module. The 

multiscale module processes the image and generates a multiscale 

representation that is used by an attention mechanism. This 

enhanced representation is then fed into a DenseNet model for 

classification. The performance of DenseNet is influenced by the 

number of hidden neurons, the epochs and the steps per epoch. The 

optimization of these parameters is crucial for the balance between 

model complexity and generalization. Fine-tuning these 

parameters improves the accuracy, precision and MCC of the 

model and maximizes the predictive power and overall 

effectiveness. The objective function of the proposed system is 

described in Eq. (7). 

 
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Here the term 

den

AA

den

AA

den

AA HNandSPNE ,
defines the hidden 

neuron count, no of epochs and steps per epoch in DenseNet and 

the range is [5 - 255], [5 - 50] and [100 - 500]. Also the term 

McandAc Pr,
defines the accuracy, precision and MCC. 

The mathematical formulation of 
McandAc Pr,

is described 

in Eq. (8), Eq.(9) and Eq.(10).    
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"The variable  LK ' represents instances of 'false negatives,' while 

the parameter PM denotes occurrences of 'false positive values.' 

The metrics LS and IU define 'true negatives' and 'true positives,' 

respectively. Fig. 6 shows the diagrammatic representation of the 

suggested AAMDNet for classification. 

 

Fig. 6. Diagrammatic representation of the recommended AAMDNet for 

classification 

3.5. Enhanced Capuchin Search Algorithm 

The ECapSA approach introduces a novel strategy that prioritizes 

the maximization of variables to increase the reliability of 

optimization tasks, using the CapSA [27] algorithm as a standard. 

Effective search algorithms must be efficient in both time and 

space and quickly find optimal or near-optimal solutions. 

However, the high computational complexity can make some 

algorithms impractical for real-time or resource-constrained 

applications. Performance can also depend on the choice of 

parameters, making configuration difficult. To address these 

challenges, the recommended method uses Eq. (11) to calculate 

random values that help determine new positions. 

( )
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     (11) 

In the equation presented above, the variables "best fitness value" 

and "worst fitness value" are denoted as 
fB

 and 
fW

 

respectively, while the term   signifies a randomly generated 
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position. The mathematical expression for ECapSA is depicted 

below. 

In the CapSA algorithm, the capuchin monkey population is 

divided into two groups: the alpha group (leaders and 

accompanying capuchins) and the followers. The leaders find food 

sources and guide the followers, who update their position by 

following the leaders or other followers. Inspired by the intelligent 

foraging behavior of capuchin monkeys, CapSA offers parallels 

between their problem-solving abilities and the optimization of 

search algorithms in computer science and engineering. 

The formula for calculating the velocity of the tha
 capuchin in the 

thb
dimension within the CapSA algorithm is represented as 

described in Eq.(12). 

2211 )()(  a

bb

a

b

a

best

b

a

b

a kUrkkrEC −+−+=
 (12) 

Here, 

b

aC
 is the tha

 capuchin's current velocity in the thb
 

dimensions, 

a

bk
is the tha

 alpha capuchin's current place in the 

thb
 dimensions, 

a

bestk
is the place with the ideal fitness discovered 

thus quite for the tha
 capuchin in the thb

 dimensions, 1r  and 2r  

are two speed variables that regulate the impacts.  The term   

defines the random number, in conventional approaches the 

random number ranges from 0, 1 and this leads to many optimal 

and convergence problems.  

In order to mitigate these errors, employ the proposed formulation 

outlined in Equation (1). The formula for updating the current 

velocity of the tha
 capuchin in the thb

 dimension based on its 

previous velocity, as described in Eq. (13), can be expressed as 

follows: 

2)/()( sklsm −−= 
   (13) 

The position of alpha capuchins in the CapSA algorithm, the term 

a

bk
is defined in line with the definition given in Eq. (14), more 

especially as they take part in doing so. 
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Here, abT
 stands for the likelihood that the capuchins' tail will 

give balance, s  stands for the strength of the force of gravity, this, 

according to Eq. (15), equals 9.81 and represents the point at which 

the capuchins will jump. 


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     (15) 

Alpha capuchins in the CapSA are characterized as being at the 

location given by Eq. (16) as they use a jumping technique to 

forage for nourishment on the banks of rivers: 
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The following Eq. (17) defines the vantage point of an alpha 

capuchin when travelling normally and looking for nourishment on 

the ground: 

b
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a Ckk +=
     (17) 

The definition of Eq. (18), which describes how alpha the 

capuchins hang on trees in pursuit of nourishment, can be recast in 

the following manner: 
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The location of alpha the capuchins while scaling trees to forage 

for food is described by the Eq.(19) that follows: 
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The definition of Eq.(20)'s depiction of the alpha capuchins' 

haphazard movement in seeking sources of food can be restated as 

follows: 

()))((  −+=b

ak
   (20) 

 In the wild, capuchin monkeys forage efficiently by running, 

jumping, climbing and swinging, taking into account food 

availability, energy expenditure and environmental conditions. 

CapSA mimics these behaviors to develop an optimization 

algorithm for solving complex problems in different domains.  

4. Results and Discussions 

4.1.  Experimental setup 

The Python-based implementation of Evolutionary CapSA 

(ECapSA) for prostate cancer classification was carefully 

executed, followed by a series of comprehensive experiments. The 

developed model was trained for 50 iterations with a population 

size of 10 individuals. In this particular configuration, the 

chromosome length was set to 3 to ensure an optimal balance 

between complexity and computational efficiency. 

Several advanced optimization methods were compared. These 

included traditional optimization methods such as Mine Blast 

Optimization (MBO)-AAMDNet [28], which simulates the 

blasting process to efficiently explore the search space; Chameleon 

Swarm Optimization (CSO)-AAMDNet [29], inspired by the 

adaptive and dynamic behaviour of chameleons; Archimedes 

Optimization Algorithm (AOA)-AAMDNet [30], which is based 

on Archimedes' principle to optimize solution search; and CapSA-

AAMDNet a tailored optimization approach to improve 

classification accuracy. 

4.2. Resultant images 

The EcapSA-based prostate cancer classification system model has 

been executed, and it has generated a set of resulting images, which 

are presented in Fig. 7. 
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Description Resultant images 

Images 1 2 3 4 5 

 Dataset 1 

Original 

     

Ground 

Truth 

     

TransUnet 

Based 

Segmentation 

[32] 

     

Segnet 

Based 

Segmentation 

[33] 

     

DHS 

based 

segmented 

image 

     

 Dataset 2 

Original 

     

Ground 

Truth 

     

TransUnet 

based segmentation [32] 

     

Segnet 

based segmentation 

[33] 
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Description Resultant images 

Images 1 2 3 4 5 

 Dataset 1 

DHS based segmented image 

     

Fig. 7. Resultant images of two datasets for the enhanced CapSA based prostate cancer classification system model 

4.3. Analysis of cost functions for two datasets using different 

algorithms  

The proposed model was analyzed in detail using two different 

data sets, with a cost measure serving as the primary evaluation 

metric. The results of this analysis are shown in Fig. 8. A cost 

function was used to evaluate the profitability and efficiency of the 

developed model. This cost function was developed to estimate the 

overall profitability of the model considering various operational 

and computational costs. 

In the experiments conducted, the cost measure was compared with 

different model designs over a range of iteration numbers from 0 

to 50. In addition, the cost function was adjusted in a range from 

2.5 to 6.0 to evaluate the performance of the model under different 

economic conditions. The graphical representation of these results 

can be seen in Fig. 8 and 9, which illustrate the cost-effectiveness 

of the model. 

An important observation in Fig. 9 is the significant decrease in the 

cost function of the developed model when the iteration value is 

set to 10. This shows that the model quickly reaches an optimal 

state with minimal iterations.  

The model shows a 72% reduction in the cost function compared 

to Mine Blast Optimization (MBO)-AAMDNet. This significant 

reduction underscores the model’s ability to minimize costs while 

maintaining or improving performance. Compared to Chameleon 

Swarm Optimization (CSO)-AAMDNet, the proposed model 

shows a 63% reduction in the cost function. This comparison 

underlines the economic advantage of the new model over 

conventional optimization methods. 

Compared to Archimedes Optimization Algorithm (AOA)-

AAMDNet, the developed model achieves a cost reduction of 74. 

The cost function of the proposed model is 75% lower than that of 

CapSA-AAMDNet. This reduction indicates a significant 

improvement in economic efficiency and positions the new model 

as a cost-effective alternative. The results clearly show that the 

recommended model has a significantly lower cost function 

compared to the other models. 

 

Fig. 8. Cost function analysis of the suggested ECapSA based prostate 

cancer classification system model regarding Dataset 1 

 

Fig. 9. Cost function analysis of the suggested ECapSA based prostate 

cancer classification system model regarding Dataset 2 

4.4. ROC analysis of the two datasets for the developed model 

over various classifiers 

The ROC curve (Receiver Operating Characteristic) is an 

important tool for evaluating the accuracy of a system. Figure 10 

shows the analysis of the ROC curve of the proposed model 

applied to two datasets and compared with existing classifiers. In 

this analysis, the performance of the model is evaluated by varying 

the rate of true-positive (TPR) and false-positive (FPR) results 

from 0 to 1. 

Figure 10 shows that the proposed model performs significantly 

better than conventional models at a false positive rate of 0.2. 
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Specifically, it shows a 29% improvement over ResNet, a 30% 

improvement over Inception, a 31% improvement over MobileNet, 

and an impressive 31.5% improvement over AAMDnet. These 

results emphasise the improved efficiency and effectiveness of the 

recommended model.  

 

Fig. 10. Cost function analysis of the suggested ECapSA based prostate 

cancer classification system model regarding Dataset 1 

 

Fig. 11. Cost function analysis of the suggested ECapSA based prostate 

cancer classification system model regarding Dataset 2 

4.5. Segmentation analysis of the developed model for two 

datasets over distinct classifiers 

The segmentation performance of the proposed system for two 

datasets is evaluated in detail in Figures 10 and 11. These figures 

provide a comprehensive statistical comparison between the 

proposed model and several existing classifiers. The evaluation 

includes various statistical measures such as the best, worst, mean, 

standard deviation and median for accuracy, Dice coefficient and 

Jaccard index. 

Figure 12 focuses on the best performance measures and shows 

that the proposed system has significant improvements over other 

models. Looking at the best accuracy measure, the recommended 

system shows remarkable progress: 

• An 87% increase in accuracy compared to Unet. 

• An 85% increase compared to Resunet. 

• A 97% increase compared to TransUnet. 

• An impressive 98% increase compared to Segnet. 

These significant improvements underline the superior efficiency 

and effectiveness of the developed model. The comparison shows 

that the proposed system excels not only in accuracy, but also in 

other critical segmentation performance metrics. This 

comprehensive analysis confirms the advanced capabilities of the 

proposed model and shows that it has the potential to outperform 

traditional segmentation methods in various datasets and 

performance metrics. 

 

(a) 

 

(b) 

 

(c) 

Fig. 12. Statistical analysis  for suggested ECapSA based prostate cancer 

segmentation system model regarding contrasted with distinct traditional 

classifier in dataset 1 concerning “(a) Accuracy, (b) Dice coefficient, (c) 

Jaccard” 



International Journal of Intelligent Systems and Applications in Engineering                                              IJISAE, 2024, 12(23s), 278–294  |  289 

 

(a) 

 

(b) 

 

(c) 

Fig. 13. Statistical analysis  for suggested ECapSA based prostate cancer 

segmentation system model regarding contrasted with distinct traditional 

classifier in dataset 2 concerning “(a) Accuracy, (b) Dice coefficient, (c) 

Jaccard” 

4.6. K-fold of performance of two datasets for the developed 
model over distinct algorithms and classifiers 

The K-fold evaluation of the recommended system for different 

models and classifiers is shown in Figures 12 and 13. These figures 

illustrate the K-fold evaluation of the proposed model using the 

original dataset compared to different algorithms and classifiers. In 

addition, Figures 14 and 15 show the K-fold evaluation of the 

recommended model using the second dataset compared to 

different optimization models and classifiers. 

The K-fold measure, which ranges from 1 to 5, is used to evaluate 

the performance of the model when applied to new data. Figure 

14(a) shows that the recommended model shows a significant 

improvement in accuracy at a K-fold measure of 3, and in 

particular achieves the following values: 

• A 26% increase over MBO-AAMDNet 

• A 28% increase compared to CSO-AAMDNet 

• A 28.6% increase compared to AOA-AAMDNet 

• A 30% increase compared to CapSA-AAMDNet 

These significant improvements underline the robustness and 

effectiveness of the recommended model when confronted with 

new data. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Fig. 14. K-fold analysis of the recommended ECapSA based prostate 

cancer classification system model contrasted with distinct traditional 

algorithm in dataset 1 concerning “(a) Accuracy, (b) FDR, (c) FNR, (d) 

FPR and (e) Precision” 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 15. K-fold analysis of the recommended ECapSA based prostate 

cancer classification system model contrasted with distinct traditional 

classifier in dataset 1 concerning “(a) Accuracy, (b) FDR, (c) FNR, (d) 

FPR and (e) Precision 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 16. K-fold analysis of the recommended ECapSA based prostate 

cancer classification system model contrasted with distinct traditional 

algorithm in dataset 2 concerning “(a) Accuracy, (b) FDR, (c) FNR, (d) 

FPR and (e) Precision 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Fig. 17. K-fold analysis of the recommended ECapSA based prostate 

cancer classification system model contrasted with distinct traditional 

classifier in dataset 2 concerning “(a) Accuracy, (b) FDR, (c) FNR, (d) 

FPR and (e) Precision” 

4.7. K-fold comparative analysis of two datasets for the 
developed model over distinct algorithms and 

classifiers 

 The K-fold performance evaluation of the developed model on 

two datasets with conventional algorithms and classifiers is 

summarized in Table II and Table III, respectively. These tables 

provide a detailed comparison of the performance of the model 

with different conventional algorithms and classifiers, which 

illustrates the effectiveness of the developed model. 

In particular, the evaluation of the second dataset shows 

remarkable performance, with the recommended model achieving 

an accuracy of 99.49%. This outstanding performance far 

outperforms other conventional models and highlights several 

important points: 

4.7.1.  Accuracy 

The accuracy of 99.49% in the second data set shows that the 

developed model correctly identifies and segments the data with 

an exceptionally high precision. This is a clear indication of the 

model's advanced ability to process complex data sets and deliver 

reliable results. 

4.7.2. Comparison with conventional models 

The performance of the recommended model is significantly better 

compared to conventional models. The accuracy metrics of 

conventional models fall in comparison, highlighting the advanced 

algorithms and optimization techniques of the developed model 

that contribute to its higher performance. 

4.7.3. Robustness and reliability  

The high accuracy rate in the second data set in Table III confirms 

the robustness and reliability of the recommended model. It proves 

the ability of the model to perform consistently well even with 

different and potentially difficult datasets. 

4.7.4. Comprehensive evaluation 

The K-fold performance evaluation methodology provides a 

comprehensive assessment of the model's capabilities. Splitting the 

data into multiple subsets and assessing the model's performance 

across these subsets ensures that the model's high performance is 

not due to over fitting, but reflects the model's efficiency. In 

summary, the K-fold performance evaluation summarized in Table 

II and Table III clearly demonstrates the superior performance of 

the developed model. Its impressive accuracy of 99.49% on the 

second data set is a testament to its advanced design and 

effectiveness, setting a new benchmark for segmentation models 

in this field. 

Table II: K-Fold Comparative Analysis of the Developed Ecapsa Based 

Prostate Cancer Classification System Model Over Distinct Algorithms 

for Two Datasets 

TERMS MBO-

AAMD 

Net [27] 

CSOAAMD 

Net [28] 

AOA-

AAMD 

Net [29] 

CapSA-

AAMD 

Net [26] 

Proposed 

ECapSA-

AAMDNet 

Accuracy 88.83 90.60 92.89 94.16 96.44 

Sensitivity 89.42 90.38 93.26 94.23 96.15 

Specificity 88.62 90.68 92.75 94.13 96.55 

Precision 73.80 77.68 82.20 85.21 90.90 

FPR 11.37 9.31 7.24 5.86 3.44 

FNR 10.57 9.61 6.73 5.76 3.84 

NPV 95.89 96.33 97.46 97.84 98.59 

FDR 26.19 22.31 17.79 14.78 9.09 

F1-Score 80.86 83.55 87.38 89.49 93.45 

MCC 0.73 0.77 0.82 0.85 0.91 

 Dataset-2 

Accuracy 89.56 88.18 92.05 93.53 96.30 

Sensitivity 89.91 89.47 92.54 93.42 96.05 

Specificity 89.47 87.83 91.92 93.56 96.37 

Precision 69.49 66.23 75.35 79.47 87.60 

FPR 10.52 12.16 8.07 6.43 3.62 

FNR 10.08 10.52 7.45 6.57 3.94 

NPV 97.08 96.90 97.88 98.15 98.91 

FDR 30.50 33.76 24.64 20.52 12.40 

F1-Score 78.39 76.11 83.07 85.88 91.63 

MCC 0.72 0.69 0.78 0.82 0.89 

Table III: K-Fold Comparative Analysis of the Developed Ecapsa Based 

Prostate Cancer Classification System Model Over Distinct Classifiers for 

Two Datasets 

TERMS Resnet 

[34] 

Inception 

[35] 

Mobile 

Net [36] 

AMD 

Net 

Proposed 

ECapSA-

AAMDNet 

 Dataset-1 

Accuracy 88.57 92.38 90.35 94.16 96.44 

Sensitivity 89.42 92.30 91.34 94.23 96.15 

Specificity 88.27 92.41 90 94.13 96.55 

Precision 73.22 81.35 76.61 85.21 90.90 

FPR 11.72 7.58 10 5.86 3.44 

FNR 10.57 7.69 8.65 5.76 3.84 

NPV 95.88 97.10 96.66 97.84 98.59 

FDR 26.77 18.64 23.38 14.78 9.09 
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F1-Score 80.51 86.48 83.33 89.49 93.45 

MCC 0.73 0.81 0.77 0.85 0.91 

 Dataset-2 

Accuracy 90.76 88.73 92.42 94.36 96.30 

Sensitivity 90.78 88.59 92.54 94.29 96.05 

Specificity 90.76 88.77 92.39 94.38 96.37 

Precision 72.37 67.78 76.44 81.74 87.6 

FPR 9.23 11.22 7.60 5.61 3.62 

FNR 9.21 11.40 7.45 5.70 3.94 

NPV 97.36 96.68 97.89 98.41 98.91 

FDR 27.62 32.21 23.55 18.25 12.4 

F1-Score 80.54 76.80 83.73 87.57 91.63 

MCC 0.75 0.70 0.79 0.84 0.89 

5. Conclusion 

An ECapSA-based classification system for prostate cancer was 

developed that uses hybrid deep learning models to identify 

diseases. First, input images were collected from public online 

sources to obtain a diverse and representative dataset. A 

combination of advanced computer vision techniques, in particular 

TransUnet and SegNet, was applied to accurately segment the 

prostate regions in the input images. Effective segmentation was 

critical for isolating areas of interest and improving subsequent 

classification. The AAMDNet was implemented as a classification 

model, using the segmented images as input to the AAMDNet, 

which categorized them into cancerous and non-cancerous 

categories. The goal was to achieve high classification accuracy by 

utilizing the power of deep learning. Finally, the performance of 

the proposed approach was validated using various evaluation 

metrics. The metrics used to evaluate the effectiveness of the 

model included sensitivity, specificity, F1 score, accuracy. 

 A thorough evaluation ensured that the model was reliable and 

accurate in classifying prostate cancer. The effectiveness of deep 

learning models such as AAMDNet depends heavily on the 

quantity and quality of the training data. When looking at the 

accuracy measure, it is clear that the recommended system shows 

significant improvements over other models. In particular, it 

achieves a 57% increase in accuracy compared to Unet, a 55% 

increase compared to Resunet, a 67% increase compared to 

TransUnet and an impressive 48% increase compared to Segnet. 

This confirms that the developed model has a higher efficiency 

compared to the other models. If the data set used was small or not 

representative of the population, this could lead to biased or 

inaccurate results. Addressing the limitations and exploring these 

future areas can contribute to the continuous improvement and 

effectiveness of the proposed prostate cancer classification system. 

It is important to work closely together with healthcare 

professionals and follow ethical guidelines throughout the 

development and deployment process. 
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