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Abstract: The accurate and rapid diagnosis of nutrient deficiencies in crops is essential for effective agricultural management. 

Conventional methods, which rely on visual inspection of crop symptoms are limited by subjectivity and require significant 

expertise, making them impractical for widespread use by farmers. In this study, we propose a novel approach utilizing digital 

imaging and deep learning to quantitatively analyze crop symptoms for nutrient deficiencies, specifically targeting paddy crops. Our 

methodology involves segmenting the foreground of the crop image by removing background noise using GrabCut, refining the input 

image to enhance clarity and improve the accuracy of nutrient deficiency detection. We introduce a novel approach combining deep 

learning architectures, specifically MobileNet and a fine-tuned variant of MobileNet, for nutrient deficiency classification. To address 

overfitting, we integrate dropout layers and optimize hyperparameters, including learning rates and optimizers. The performance of 

these models is assessed using established metrics, including accuracy, precision, recall, and F1 score. Notably, the base MobileNet 

model achieves an accuracy of 89.65%, while the fine-tuned MobileNet variant attains 93.10%, demonstrating significant 

improvement and superiority. This integrated approach presents a promising solution for efficient nutrient management in paddy 

cultivation, contributing to increased yields and sustainable agricultural practices. Additionally, our system recommends appropriate 

fertilizers based on the nutrient deficiency findings, augmenting precision agriculture and crop management practices. 

Keywords: Nutrient Deficiency detection, Precision Agriculture, Image Segmentation, Deep Learning, MobileNet, Support Vector 

Machine (SVM), Fertilizer Recommendation 

1. Introduction 

Rice is a crucial staple for many in Asia but faces numerous 

challenges due to urbanization, industrialization, 

environmental factors, an aging workforce, labor shortages, 

and outdated farming techniques. Effective management 

practices are vital for maintaining rice cultivation and 

boosting productivity. Deficiencies in nitrogen (N), 

phosphorus (P), and potassium (K) in rice manifest through 

specific symptoms, yet visual diagnoses are subjective and 

expertise-dependent. Digital imaging offers a more 

objective and precise method for detecting nutrient stress 

symptoms, making it more practical for widespread use by 

farmers[1,2,3]. 

Nitrogen plays a vital role in rice growth, but both 

insufficient and excessive nitrogen use can harm yields. 

Deficiency reduces grain count and weight, while overuse 

weakens stems and leaves. Proper nitrogen management is 

critical for optimal productivity and environmental 

protection [1,4,5]. Utilizing advanced image analysis and 

machine learning, we aim to create a diagnostic tool for 

accurately identifying nutrient deficiencies in rice. This 

involves using deep learning algorithms to analyze images 

and classify deficiency symptoms with high accuracy [2,3]. 

Field trials and experimental validation will assess our 

method's effectiveness, helping farmers make informed 

decisions about fertilizer use and crop management, thus 

enhancing the sustainability and resilience of rice 

production systems[1,3,5]. 

2. Related Work 

2.1 Segmentation of Agricultural Images 

Semantic segmentation has significantly advanced image 

understanding in various fields, including agriculture[6]. 

Combining deep learning with traditional techniques has 

greatly improved agricultural image processing, 

transforming automation in crop analysis and pest 

identification. This paper reviews recent advancements in 

traditional and deep learning based semantic segmentation 

for agricultural images, highlighting challenges such as 

robustness, generalization, and limited labeled samples. 

Innovative solutions discussed include dataset 

augmentation and multimodal information integration. 
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2.2 Nutrient deficiencies in paddy crops 

Nutrient deficiencies in rice pose significant threats to crop 

health, yield, and quality[7]. Symptoms like leaf 

discoloration and reduced grain quality have traditionally 

been identified through manual examination, often leading 

to delayed diagnosis and irreversible crop damage. Early 

and accurate detection systems are essential due to the 

significant impact on yield and the economic importance of 

rice. Predictive technologies are crucial for timely 

fertilization and irrigation decisions, ensuring crop 

sustainability. Key components include soil analysis, 

remote monitoring, crop modeling, and data-driven 

insights. Enhancing these strategies with sensor technology, 

decision support systems, IoT integration, and collaborative 

knowledge sharing improves deficiency detection and 

mitigation[8]. 

To address manual detection challenges, the model 

proposed in [9] uses an automatic robotic vehicle to detect 

nutrient deficiencies by capturing plant leaf images. This 

model is trained using images from various plants and 

locations, extracting features like edges and ridges. A 

Convolutional Neural Network (CNN) identifies nutrient 

deficiencies and their severity, providing fertilizer 

recommendations based on the detected deficiencies. 

2.3 Deep Learning in Agriculture 

Integrating deep learning into agriculture has revolutionized 

operations like precision farming and pest surveillance. 

Convolutional Neural Networks (CNNs) are especially 

impactful, analyzing visual data to detect patterns 

imperceptible to humans. CNNs have proven effective in 

identifying plant diseases, categorizing crop varieties, and 

forecasting yields[9,10]. However, using CNNs to detect 

nutrient deficiencies in rice crops remains a promising area 

for further exploration. 

3.THE PROPOSED PADDY CROP NUTRITION 

DEFICIENCY DETECTION AND 

RECOMMENDATION  MODEL 

3.1 Framework Overview 

Our research focuses on predicting nutrient deficiencies in 

paddy crops by integrating transfer learning and  

hyperparameter tuning. We present two novel approaches 

using digital imaging techniques, employing GrabCut[11] 

for foreground segmentation to remove background noise 

and improve image clarity. This preprocessing step 

enhances the accuracy of deficiency detection. 

We evaluate MobileNet[12] architectures, with fine tuned 

MobileNet. To prevent overfitting, we integrate dropout 

layers and use GridSearchCV for hyperparameter tuning. 

MobileNet achieves 89.65% accuracy, while the optimized 

MobileNet attains 93.10%, outperforming other model. The 

system also recommends appropriate fertilizers based on 

detected deficiencies, supporting precision agriculture and 

crop management practices. 

3.2 Overview of Models 

Once the image is refined, MobileNet architecture model 

extract relevant features from the segmented crop images 

and classifies. MobileNet is a deep convolutional neural 

network, renowned for its ability to capture intricate 

patterns and details within images, making it highly suitable 

for identifying subtle symptoms of nutrient deficiencies. 

3.3 Proposed Model 

The Model introduces Two extra phases involving Initial 

training with frozen layers and  Finetuning[14] . This 

additional step entails: 

Fine-tuning a pre-trained model involves two main steps: 

➢ Initial Training with Frozen Layers: Training 

the added custom layers while keeping the pre-

trained layers (base model) frozen. 

➢ Fine-Tuning: Unfreezing some layers of the pre-

trained model and re-training the entire model (or 

parts of it) to fine-tune the pre-trained layers 

alongside the custom layers. 

 

Fig 1.   Proposed Model for Paddy crop nutrition       

deficiency detection and recommendation system 

By incorporating these steps, proposed model significantly 

enhances the performance and accuracy of the nutrient 

deficiency detection. The optimized Mobilenet, equipped 

with the best parameters identified during tuning, delivers 

more precise detections. This provides farmers with a more 
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reliable tool for diagnosing and managing nutrient 

deficiencies in paddy crops, contributing to better 

agricultural productivity and sustainability through precise 

nutrient management and fertilization strategies.  

3.4 Introduction to the Models 

GrabCut is an image segmentation algorithm that separates 

the foreground from the background using a combination of 

graph cuts and iterative energy minimization, starting with 

a bounding box and refining segmentation through color 

and edge information. MobileNet designed for mobile and 

embedded applications, uses depthwise separable 

convolutions to reduce parameters and computation, 

offering efficiency and speed while maintaining accuracy, 

making it suitable for real-time applications on devices with 

limited resources. 

3.4.1 Initial Training with Frozen Layers 

In this step, we freeze the layers of the pre-trained 

MobileNet model to only train the custom layers added on 

top. 

We load the MobileNet model with pre-trained weights 

(weights='imagenet') but without the top layers 

(include_top=False). We add a global average pooling 

layer, a fully connected layer with 512 units, a dropout 

layer, and a final dense layer for classification. We freeze 

all the layers of the MobileNet base model to ensure that 

only the custom layers are trained initially. We compile the 

model with a learning rate of 0.0001 and use 

categorical_crossentropy as the loss function since it's a 

multi-class classification problem. We train the model for 

10 epochs, where only the custom layers are trained. 

3.4.2 Fine-Tuning 

In this step, we unfreeze some of the deeper layers of the 

MobileNet model and re-train the entire model, including 

the previously frozen layers. We unfreeze the last 20 layers 

of the MobileNet base model. This allows the last 20 layers, 

along with the custom layers, to be trained. We re-compile 

the model with a smaller learning rate (0.00001) to fine-

tune the weights without causing drastic changes that could 

disrupt the pre-trained weights. We continue training for 

another 10 epochs, this time fine-tuning both the previously 

frozen layers and the custom layers. 

4. RESULTS AND DISCUSSION 

In this study, the experiments were conducted using Google 

Colab, leveraging its resources such as GPU acceleration 

and ample memory. The coding environment utilized was 

Jupyter Notebook with Python 3.7. The dataset was 

processed and analyzed using  MobileNet and fine tuned 

Mobilenet( Optimized Mobilenet). Subsequently, a 

comprehensive comparison and evaluation were carried out, 

assessing the performance of each model using key metrics 

such as accuracy, precision, recall, and F1 score. 

4.1 Dataset 

The dataset used in our study is sourced from Kaggle, this 

dataset comprises 1156 images focusing on nitrogen 

deficiency (N_deficiency), phosphorus deficiency 

(P_deficiency), and potassium deficiency (K_deficiency) in 

rice plants. These images are categorized based on the type 

of nutrient deficiency, providing a diverse dataset for 

training and evaluating our models. The dataset is publicly 

available on Kaggle [16] and has been utilized in various 

research papers, including the referenced paper [17].  

Table 1.  Image Dataset Description 

Dataset Classes Size 

 

Rice 

Potassium deficiency ( 

K_deficiency) 

383 

       Nitrogen deficiency   

             (N_deficiency) 

440 

Phosphorus deficiency ( 

P_deficiency) 

333 

 

Fig 2. The different characteristics of rice leaves under 

NPK deficiencies. 

4.2 Experimental findings 

4.2.1 Experimental outputs of Foreground  

segmentation : 

The table demonstrates the effectiveness of GrabCut 

segmentation, an advanced image processing technique. In 

the "Image Before Segmentation" column, original images 

show complex scenes with foreground objects amidst 

cluttered backgrounds. However, in the "Image After 

Segmentation" column, GrabCut segmentation meticulously 

extracts foreground objects, resulting in clean and precise 

delineation from background noise. This process enhances 

image clarity and focus, making them suitable for 

applications like object recognition, image editing, and 

medical image analysis. GrabCut segmentation proves 

valuable for enhancing visual understanding and facilitating 

advanced image processing tasks.  
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Real time Field 

image before 

segmentation 

Image after 

segmentation 

                    (a)         

                               

          (b)        

              

                 (c)                        

               

 

             (d) 

 

 

 

               (e) 

 

 

 

             

                 (f) 

Fig 3.  Sample results of segmentation 

4.2.2  Hyperparameter Tuning 

Table 2: Hyperparameters Descriptors 

 

In our proposed model, the hyperparameters are set as 

follows: epochs - 10, batch size - 32, learning rate - 0.0001, 

optimizer - Nadam, and dropout - 0.3. These parameters 

play a crucial role in training the model and optimizing its 

performance.  

         

4.2.3 Optimizing Model Performance: Dropout Settings 

and Optimizer Analysis 

The plotted data highlights that a dropout rate of 0.3 

consistently yields high accuracy, demonstrating its efficacy 

in preventing overfitting[20]. Furthermore, the Nadam 

optimizer consistently outperforms other optimizers in 

terms of accuracy. These results emphasize the critical role 

of hyperparameter selection in optimizing model 

performance.  

 

(a) 

 

                                                (b) 

Fig 4. a & b Optimizing Model Performance: Dropout  

Settings and Optimizer Analysis 

4.2.4 Model Performance Analysis: Training and 

Validation Metrics 

The plotted data reveals the dynamic progression of model 

training and validation across epochs. In Plot 1, the 

accuracy steadily increases with each epoch, reflecting the 

model's improved performance over training iterations. 

Meanwhile, Plot 2 illustrates a consistent decrease in both 

training and validation loss as epochs advance, indicating 

the model's ability to minimize errors and converge 

effectively during training. These trends underscore the 

iterative nature of model optimization, wherein successive 

epochs contribute to refining the model's performance and 

enhancing its predictive capabilities.          

 

                                    (a) 
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                                    (b) 

Fig 5. a & b Model Performance Analysis: Training  and 

Validation Metrics 

4.3 Comparative analysis of Proposed Models 

 To evaluate the performance and generalizability 

of our proposed models, experiments were carried out using 

a dataset consisting of 1156 images of paddy. This dataset 

consists of 9 classes, including 8 diseased classes and 1 

healthy class. All images are standardized to a size of 

256x256 pixels with 3 channels. The dataset is partitioned 

into training and testing sets at a ratio of 8:2. Evaluation 

metrics encompass precision, recall, F1-score, and the 

number of parameters[18]. 

Accuracy = (Tn+Tp) / (Tn+Fp+Tp+Fn) ,  Precision = Tp / 

(Tp+Fp) , Recall = Tp / (Tp+Fn),  

F1 Score= 2 * ( Precision * Recall ) / ( Precision + Recall ) 

In binary classification, technical terms such as Tp (True 

Positive), Tn (True Negative), Fp (False Positive), and Fn 

(False Negative) are utilized to assess classifier 

performance. True Positive (Tp) denotes correctly classified 

positive samples, True Negative (Tn) indicates correctly 

classified negative samples, False Positive (Fp) represents 

misclassified positive samples, and False Negative (Fn) 

signifies misclassified negative samples. 

4.3.1 Analyzing the Performance Metrics of Two Models 

for Paddy Crop Nutrition deficiency detection 

The experimental comparison results are presented in Table 

2. These experiments were conducted using a designated 

experimental environment, ensuring consistency and 

reproducibility in the results obtained.The results offer 

valuable insights into the efficacy of the proposed models 

for the given task. Here, we provide a comparative analysis 

of their performance.    

Table 3.The Metrics from the Comparison Experiments 

Dataset Indicator MobileNet Proposed 

Model 

 

Rice  

Accuracy 89.65 93.10 

Precision 90.39 93.11 

Recall 89.65 93.10 

F1 Score 89.57 93.09 

The histograms provided in the report offer a visual 

representation of the performance metrics of all the models 

aforementioned in diagnosing nutrient deficiencies in paddy 

crops. Each histogram depicts the distribution of scores 

across key metrics, including accuracy, precision, recall, 

and F1-score. 

4.4 Comparative Analysis: Histograms Illustrating the 

Performance of Two Models 

These histograms provide valuable insights into the 

performance consistency and variability of each model, 

enabling stakeholders to make informed decisions 

regarding agricultural management strategies and crop 

health optimization. Fig 6 

 

Fig 6. Histogram of Performance Before vs. After        

Optimization 

4.5 Model Comparison: Confusion Matrices for 

Comprehensive Evaluation 

 

Fig 7. Confusion Matrix Generated Using  MobileNet 
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Fig 8. Confusion Matrix Generated Using Proposed Model 

The confusion matrices demonstrate that proposed model 

provides better classification performance across most 

classes compared to other Model.  

4.6 Pie Chart Analysis: Comparing Overall Model 

Performance for Comprehensive Insight 

The below depicted pie charts represent the detection 

accuracy of MobileNet, and the Proposed Model. 

MobileNet demonstrates a significant increase in correct 

detections. However, the Proposed Model exhibits the 

highest proportion of correct detections, indicating superior 

accuracy. 

 

                                       (a) 

 

(b) 

Fig 9. a & b Pie Chart Analysis: Comparing Overall Model 

Performance for Comprehensive Insight 

5. PROPOSED MODEL OUTPUT IMAGES AND 

RECOMMENDATIONS 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig 10. a,b,c & d Sample out put results of the proposed 

model 

Displayed above are the output results showcasing the 

outputs for the Proposed model. Sample Images are given 

with Healthy, K_deficiency( Potassium deificiency) , 

N_deficiency(Nitrogen Deficiency), and P_deficiency( 

Potassium Deficiency), and predicted the nutrition 

deficiency and recommended accordingly.  
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6. Conclusion 

In conclusion, this study introduces innovative digital 

imaging methods for quantitative symptom analysis, 

addressing limitations of conventional visual inspection 

techniques in diagnosing crop nutrient deficiencies. 

Leveraging GrabCut segmentation and deep learning, 

particularly with MobileNet architecture, we achieve 

notable accuracy. The Finetuned MobileNet outperforms 

other model, attaining a remarkable accuracy of 93.10%. 

Notably, MobileNet model achieves an accuracy of 89.65% 

highlighting the comparative performance of these models. 

The integrated approach not only enhances nutrient 

deficiency classification but also recommends appropriate 

fertilizers, supporting precision agriculture and sustainable 

crop management practices. These findings underscore the 

potential of advanced imaging and machine learning 

techniques in revolutionizing agricultural practices for 

increased efficiency and productivity. 

7. Future Scope 

Future research could focus on optimizing hyperparameters 

and exploring additional deep learning architectures to 

further improve accuracy and efficiency across various 

models. Integrating real time monitoring systems and IoT 

technologies could enable automated nutrient management 

systems for timely interventions. Expanding this research to 

other crops and agricultural contexts could provide valuable 

insights for sustainable agricultural practices on a broader 

scale, ultimately contributing to global food security and 

environmental sustainability. 
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