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Abstract: Magnetic resonance imaging (MRI) classify cancers and other diseases. This is a multi-domain problem that calls for the 

segmentation of the affected regions, their representation as feature vectors, the development of region-specific classifiers, and post-

processing methods. The segmentation performance of current illness identification algorithms is either subpar or their complexity is 

increased when compared to differential-position MRI and functional magnetic resonance imaging (fMRI) datasets & samples. The 

additional challenge is that these algorithms can accurately classify fewer ailments. This article suggests the use of bio-inspired transfer-

learning methods to create a multimodal neurological disease prediction model. To accurately identify tumor-specific regions, the 

recommended approach first segments MRI and fMRI images with MRA CNN (Masked-Region Augmented Convolutional Neural 

Network). Gabor analysis, wavelet analysis, Frequency analysis, convolution analysis, and entropy analysis are applied to transform 

these regions into multidomain features. The feature sets are collected, and a Moth Flame Optimizer (MFO) analyses them to determine 

which feature sets have the most variance. These feature sets are then categorized as "tumor" or "non-tumor" with the Binary 

Convolutional Neural Network (BCNN) method. With this method, feature vectors are split into two groups and given a common 

example for each group. The BCNN employs most of the functions to detect tumors compared to conventional cancer detection 

algorithms, which improves classification accuracy by 4.9%, precision by 2.8%, recall by 3.5%, and time by 4.1%. Using MRIs of the 

brain and spinal cord to test the model, it may be successfully modified to fit different circumstances. 
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1. Introduction 

The capacity of multi-hidden layer NNs trained with DL 

(Deep Learning) to carry out difficult tasks is intriguing to 

many medical subspecialties [1]. Such specialized fields 

include radiography, pathology, and cancer analysis. Deep 

learning has significantly impacted the medical industry 

recently, notably in the detection of cancer via TD CNN 

LSTM (Time Distributed-CNN LSTM) [2]. The IoT 

(Internet of Things) may be able to transmit medical picture 

data more quickly due to DL and AI. [3, 4]. Deep learning 

networks via Tumor-Attentive Segmentation-Guided GAN 

(TAS GAN) often use item recognition as a diagnostic 

method [5], particularly for networks that have been trained 

to look for a particular kind of object. The healthcare sector 

may benefit from deep learning's advantages in text and 

picture processing [6]. [7] A number of computer-assisted 

treatment methods may help with the precise and reliable 

segmentation of MRI images. Problems including imprecise 

or undetectable structure borders, similar structures, low 

spatial resolution, low picture contrast as well as strength 

heterogeneity [8] may cause less-than-satisfactory 

outcomes, especially when working with 3D images. Since 

it enables the non-invasive examination of a range of spinal 

pathologies, the vertebral body segmentation in three-

dimensional MRI images [9] was the focus of much 

research. The logistic regression technique offers 

substantial quantitative study despite its low capacity for 

exact prediction [10]. Numerous essential bodily processes 

are carried out by the spine, which acts as the body's main 

fulcrum [11, 12]. By moving the body's center of gravity 

from the belly to the legs, which puts less pressure on the 

spinal column, this is achieved [13]. The lumbar region and 

the basic vertebral elements of the human spine are shown 

in Figure 1. The coccyx, the first twelve thoracic vertebrae 

(T1-T12), the first seven cervical vertebrae (C1-C7), the 

sacroiliac joints (S-Fused), and the first five lumbar 

vertebrae (L1-L5) are the five major components of the 

spine (4 fused). As per [14], degenerative spinal stenosis is 

the most frequent cause of lumbar pain. Both spinal 

dislocations and cancer present with this symptom, and both 

need surgery under real-time scenarios. Due to the high 

occurrence of degenerative spinal diseases [15, 16] in the 

general population, the cost of supporting those who have 

been given a paralysis diagnosis rises quickly. The 

population of industrialized countries often complains of 

low back discomfort, yet its underlying cause is not always 

clear. Due to the mechanical nature of the above-mentioned 

components, observing the spine move is a valuable 

diagnostic tool [17] for figuring out the source of a patient's 

back pain. Due to this, it is notoriously difficult to define the 

specific vertebral level in an imaging sequence to determine 

the cause of back pain [18, 19]. Researchers have described 
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the location of the tumour in the spinal region as well as the 

morphology of the vertebrae using Fourier descriptors with 

Deep Transfer Learning (DTL) [20] operations. These two 

factors are supposed to have a key role in the onset of back 

pain. To investigate the components of a superior 

transformation for the exact calibration of segmentation 

algorithms for the prediction of cancer areas, the authors of 

[21] developed the ATS-CDM (“Analytical Transform 

Assisted Statistical Characteristic Decomposition Model”). 

  

Fig 1. Various perspectives on the spinal cord and their 

significance 

Recent research on differential-position MRI scans has 

shown that current cancer diagnosis algorithms either need 

to be more complicated or segment pictures inaccurately. 

This quickly reduces the number of diseases that these 

algorithms can correctly identify. The study's findings 

suggest that to overcome the challenges previously 

mentioned, a multi-domain feature processing approach is 

needed for the CNN-based categorization of spinal cord 

malignancies. In the last stage, the model's validity was 

examined by contrasting it with other methods on a variety 

of factors, such as accuracy, recall, and latency. The study's 

conclusions are completed by clinical observations on the 

recommended model and suggestions for enhancement for 

various applications. 

2. Literature Review 

In this section, we discuss different models used for the 

identification of Neurological disorders via analysis of 

fMRI images. These include, 

1. DL Models [8, 9, 10]: Deep learning models have been 

widely used for predicting neurological disorders, such 

as AD (Alzheimer's Disease), PD (Parkinson's 

Disease), and MS (Multiple Sclerosis), using MRI 

datasets & samples. These models include CNNs, 

RNNs (“Recurrent Neural Networks”), and 

autoencoders. These models have revealed high 

accuracy in predicting neurological disorders compared 

to traditional ML (Machine Learning) models. 

2. Support Vector Machine (SVM) Models [15, 16, 17, 

18]: SVM models have also been used for predicting 

neurological disorders, like AD, PD, and MS, using 

MRI datasets & samples. SVM models have shown 

high accuracy in predicting neurological disorders, and 

they are widely used in clinical settings. 

3. Deep Forest Models: Deep Forest models [19, 20] have 

been used for predicting neurological disorders, like 

AD and PD, using MRI datasets & samples. Deep forest 

models have shown high accuracy in predicting 

neurological disorders and have the advantage of being 

easy to interpret and fast to train for different use cases. 

4. Bayesian Models [21, 22, 23, 24]: Bayesian models 

have been used for predicting neurological disorders, 

like AD and MS, using MRI datasets & samples. 

Bayesian models have shown high accuracy in 

predicting neurological disorders and have the 

advantage of being able to manage missing data and 

uncertainty levels. 

5. Ensemble Models [25, 26, 27]: Ensemble models, such 

as stacked autoencoder models, have been used for 

predicting neurological disorders, like AD and MS, 

using MRI datasets & samples. Ensemble models [28, 

29, 30] have shown high accuracy in predicting 

neurological disorders and have the advantage of being 

able to combine different types of models to improve 

prediction performance levels. 

From this analysis, it can be found that DL models have 

shown the highest accuracy in predicting neurological 

disorders using MRI data, followed by SVM, random forest, 

Bayesian, and ensemble models. However, each model has 

different benefits & drawbacks, and the choice of a model 

depends on the specific needs of the application scenarios. 

In the next section, the design of an efficient DL model has 

been discussed, which uses a fusion of CNN, ensemble 

feature analysis, and bioinspired optimizations. 

3. Proposed Design of an efficient Multimodal 

Prediction model for Neurological disorders using 

Bioinspired Transfer-learning operations 

According to the study of existing models used for the 

prediction of neurological disorders, it can be found that 

these models are either highly complex or have lower 

efficacy when evaluated in real-time scenarios. To address 

these problems, this section explains the design of an 

effective Multimodal Prediction model for Neurological 

disorders using Bioinspired Transfer-learning operations. 

As per Figure 2, the model first segments MRI and fMRI 

images using a MRA CNN. These regions are converted 

into multidomain characteristics using convolution analysis, 

entropy analysis, Wavelet analysis, Gabor analysis, as well 

as frequency analysis. The feature sets are collected, and a 

MFO analyses them to determine which feature sets have 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3281–3290  |  3283 

the most variance levels. These feature sets are then 

categorized as "tumour" or "non-tumour" with the BCNN 

method, which is highly efficient for binary classification 

tasks.  

A MRACNN-based segmentation layer receives the raw 

MRI image to carry out these procedures. MRACNN is a 

saliency map segmentation technique based on medical 

imaging that helps identify RoI areas. Entropy values—

which are reliant on retrieved convolutional features—are 

used to extract these RoI areas. Bit-plane slicing techniques 

are used to divide the raw input picture to retrieve these 

characteristics. 

 

Fig 2. Design of the suggested model for identification of 

neurological tumours 

Each of the slices is then given to an entropy estimation unit, 

which calculates pixel-level entropy via “(1),” 

𝐸(𝑖) = − ∑ ∑ 𝑝(𝑃(𝑟, 𝑐)) ∗ log(𝑝(𝑃(𝑟, 𝑐))) … (1)

𝑀

𝑐=1

𝑁

𝑟=1

 

Where i indicates the bit slice number for the input MRI 

pictures, and p(P(r,c)) indicates the probability of pixel 

vector at r,c position. For each slice of the input picture, 

these entropy values are utilized as upper bounds, and bit-

level thresholding is carried out. For the purpose of creating 

the final MRACNN map, all of these slices are blended. 

Figure 3, which displays the input image, its saliency mask, 

as well as final saliency image, shows the results of an initial 

MRACNN-based saliency detection model as follows, 

 

Fig 3. Results from the initial MRACNN operations 

A CNN model powered by Google's neural network is again 

given access to these areas for feature extraction, and pixel-

level classification is carried out. Figure 4 depicts the 

internal architecture of the CNN model that is being 

employed for final segmentation operations. 

 

Fig 4. Design of the GoogLeNet Model for fine 

segmentation of images 

Each pixel is divided into two categories, foreground and 

backdrop, as seen from the model. A significant number of 

photos' worth of ground truth data are utilized, and an 

inception module is provided with them, to carry out this 

work. This module creates a saliency mask for the final 

segmentation using the provided ground truth data. Figure 5 

illustrates the internal model architecture for the inception 

module, which combines many filters to provide the output 

for the spinal cord mask. Equation (2) is used by the 

inception module for internal pooling to increase 

segmentation efficiency levels, 

𝑃(𝑞, 𝑝) =  ∑ log(𝐶(𝑝, 𝑞) ∗ 𝐺(𝑞, 𝑝)) … (2) 

Where G represents “the ground truth image patch (q, p), P 

denotes the result of pooling, and C indicates the 

convolutional operation on the input image patches.  
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Fig. 5. Inception Model used by the GoogleNet Process 

A filter concatenation unit, which utilizes the following 

“(3),”, is supplied with extracted pooling features. 

𝐹(𝑝, 𝑞) =
√(

𝑃(𝑞,𝑝)

𝑘
+ 𝑑) ∗ (𝑎 ∗ 𝐵(𝑝, 𝑞) + 𝑐)

4
⁄ … (3) 

Where F stands for concatenated filter output, P for pooling 

output, and B for base image patch for (p, q), whereas a, c, 

d, and k indicate the inception constants and are tweaked via 

the hyperparameter tuning process. A” huge number of 

segmentation masks are produced by the cascading 

connection of many inception modules. The final MRI 

segmentation mask sets are created by overlapping all of 

these masks. These masks are converted into multidomain 

features, which assists in efficient classification into 

different tumour categories. To perform this task, a set of 

transforms is used as follows, 

• Initially, Frequency Patterns are estimated via Fourier 

Analysis, which is done via “(4),” 

𝐷𝐹𝑇(𝑖) = ∑ 𝑥(𝑗)

𝑁𝑓

𝑗=1

∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓
) − √−1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓
)] … (4) 

Where, 𝑥 signifies the pixel levels of segmented regions, 

while 𝑁𝑓 denotes the total number of pixels in the image 

sets. 

• Similarly, the Entropy levels are estimated via “(5),” 

𝐷𝐶𝑇(𝑖) =
1

√2 ∗ 𝑁𝑓

∗ 𝑥(𝑖) ∑ 𝑥(𝑗)

𝑁𝑓

𝑗=1

∗ cos [
√−1 ∗ (2 ∗ 𝑖 + 1) ∗ 𝜋

2 ∗ 𝑁𝑓
] … (5) 

• After this, a set of convolutional features is estimated 

using “(6),” which helps in the identification of 

windowed features. 

𝐶𝑜𝑛𝑣(𝑖) = ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
) … (6)

𝑚

2

𝑎=−
𝑚

2

 

Where, 𝑚, 𝑎 denotes the different dimensions of windows 

& strides, while 𝐿𝑅𝑒𝐿𝑈 presents the Leaky Rectilinear Unit 

that keeps positive feature sets by “(7),” 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0 , 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥)

= 𝑥 … (7) 

here, 𝑙𝑎 represents an activation constant applied to convert 

negative features to positive value sets. 

• Similarly, Gabor components are estimated via “(8),” 

which represents spatial features for individual 

segmented pixels. 

𝐺(𝑥, 𝑦) = 𝑒
−𝑥`2+𝜕2∗𝑦′2

2∗∅2 ∗ cos (2 ∗
𝑝𝑖

𝜆
∗ 𝑥′) … (8) 

Where, 𝑥, 𝑦 indicates the pixel index and pixel values, while 

𝜕, ∅ & 𝜆 denotes the angles & wavelengths used for 

evaluation of high variance feature sets. 

• These features are cascaded with Haar Wavelet 

features, which are predicted  in terms of Approximate 

& Detail components via “(9),”and“(10),” as follows, 

𝑊(𝑎) =
𝑥(𝑖) + 𝑥(𝑖 + 1)

2
… (9) 

𝑊(𝑑) =
𝑥(𝑖) − 𝑥(𝑖 + 1)

2
… (10) 

A fusion of these features is done to form an augmented 

MFV (MRI Feature Vector), which may comprise inherent 

redundancies. These redundancies are decreased via the use 

of a MFO, which helps in the selection of highly variant 

feature sets. This is done according to the following process, 

• Initially, a set of 𝑁𝑀 Moths is generated, each of which 

contains a set of 𝑁 stochastic features. 

• These features are selected using an augmented 

stochastic operation via “(11),” 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑀 ∗ 𝑁(𝑀𝐹𝑉), 𝑁(𝑀𝐹𝑉)) … (11) 
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Where 𝑁𝑀 represents an entropy-like learning metric for 

the MFO process. 

• For the selected feature sets, Moth fitness levels are 

estimated via “(12),” 

𝑓𝑚 =
1

𝑁
∑ 𝑀𝐹𝑉(𝑖) − ∑

𝑀𝐹𝑉(𝑗)

𝑁

𝑁

𝑗=1

… (12)

𝑁

𝑖=1

 

• This process is repeated for 𝑁𝑀 Moths, and then 

an iteration threshold is determined by “(13),” 

𝑓𝑡ℎ =
1

𝑁𝑀
∑ 𝑓𝑚(𝑖) ∗ 𝐿𝑀 … (13)

𝑁𝑀

𝑖=1

 

• Based on this threshold, Moths with 𝑓 > 𝑓𝑡ℎ are 

removed via the flaming process, and replaced 

with new Moths, whereas “other Moths are directly 

passed to the next set of iterations. 

• This process is continued for all 𝑁𝑀 Moths and” 

𝑁𝐼 Iterations, which assist in the continuous 

configuration of Moth sets. 

 

Fig 6. Design of the CNN Layers for the detection of 

tumors 

The moth with the highest fitness is selected once all 

iterations are finished, and its configuration is utilized to 

choose the features. The selected features are processed via 

an augmented BCNN that combines Max Pooling, 

Convolutional, as well as Drop operations, with FCNN 

(“Fully Connected Neural Network”) layers for 

identification of tumour classes. The design of the proposed 

CNN Model is revealed in Fig. 6, where a set of 

Convolutional Features are extracted by eq. 6, and chosen 

via Max Pooling operations. The final selected features are 

classified via a FCNN Layer, which estimates the final 

tumour class via “(14),” 

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖)

𝑁𝑓

𝑖=1

+ 𝑏(𝑖)) … (14) 

here, 𝑓, 𝑤 & 𝑏 indicate the extracted features, their 

respective weights & individual biases. The CNN Model 

tunes the values of these weights and biases to estimate 

‘tumour’ and ‘non-tumor’ classes with high-efficiency 

levels. The next section of the article estimates these 

efficiency levels in terms of Recall (R), Accuracy (A), 

Precision (P), AUC (“Area Under the Curve”), and f1 

Measure. 

4. Result evaluation & comparison 

In this work, MRI and fMRI images are segmented using a 

MRA CNN in the proposed method. Using Gabor analysis, 

frequency analysis, Wavelet analysis, convolution analysis,  

and entropy analysis the characteristics of these regions are 

transformed into multidomain characteristics. A MFO 

collects the feature sets and analyses them to determine 

which feature sets have the most variance. Using the BCNN 

technique, these feature sets are then categorized as 

"tumour" or "non-tumor" levels. The suggested model's 

performance was measured in terms of A, P, R, Delay (D), 

AUC, and f Measure. Equation (15) was used to calculate 

the proportion of correctly identified classes that were 

evaluated as a measure of accuracy for different scenarios. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (15) 

Here, TP indicates True positive (Number of samples that 

were suitably identified). TN denotes the negative (Number 

of samples that were accurately detected). FP signifies the 

False positive (Number of incorrectly identified samples). 

FN denotes the False negative (Number of samples 

incorrectly designated as negative). Similarly, Precision 

determines the proportion of correctly recognized positive 

classes in all images labelled as 'tumours' and is calculated 

using “(16),” 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (16) 

Precision represents the percentage of correctly identified 

negative classes, whereas recall, which is computed by 

“(17),”, indicates the proportion of correctly recognized 

positive classes across all positive classes in the datasets and 

samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (17) 
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Likewise, the F-measure presents a harmonic mean of recall 

and precision and is utilized to assess the method's overall 

performance, which is determined by “(18),” 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
… (18) 

On the other hand, AUC is a measure of a binary 

classification model's performance. It displays the 

likelihood that a classifier will choose a group of randomly 

chosen positive instances over a collection of randomly 

selected negative examples. Delay is a measure of how long 

it takes to extract and quantify tumor classifications using a 

certain set of procedures. It is an important parameter to take 

into account when assessing the viability and practicability 

of a cancer classification technique, and “(19),”provides an 

estimate for it. 

𝐷 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡) … (19) 

Where 𝑡𝑠 represents the completion and beginning 

timestamps for the classification operations. Based on this 

assessment, 25k recordings of the chosen images were 

examined, of which 5k were utilized for testing and 

validation procedures and 15k were used for training. Figure 

7 depicts a comparison of the model's performance with TD 

CNN LSTM [2], TAS GAN [4], and DTL [20] under 

various test sample numbers (NTS). 

As per the present assessment, it can be shown that the 

suggested model may raise the accuracy of tumour detection 

by 4.5% compared to TD CNN LSTM [2], 3.4% compared 

to TAS GAN [4], and 5.9% compared to DTL [20], making 

it very beneficial for a broad range of clinical circumstances. 

The usage of MRACNN with multidomain features and 

CNN procedures, which helps in the detection of high-

density image sets for several MRI and fMRI data, improves 

this accuracy. Similar to Fig. 7, figure 8 displays the 

precision levels as follows 

 

Fig 7. Average accuracy levels for classification of Tumours 

 

Fig 8. Average precision levels for classification of 

Tumours 

According to this assessment, it can be shown that the 

suggested model is able to enhance the precision of tumour 

detection by 6.5% when compared with TD CNN LSTM 

[2], 2.5% when compared with TAS GAN [4], and 4.5% 

when compared with DTL [20]. Therefore, it is extremely 

valuable for a variety of clinical settings. TD CNN LSTM 

[2] is the reference model. The use of MFO in conjunction 

with CNN, which helps in the detection of high-density 

feature sets for a variety of MRI and fMRI data, contributes 

to the enhancement of these precision levels. Similarly, the 

recall levels may be seen as follows when looking at Figure 

9, which can be observed as follows, 

 

Fig 9. Average recall levels for classification of Tumours 

As per the findings of this study, it can be shown that the 

suggested model is able to raise the recall of tumour 

identification by 5.9% when compared with TD CNN 

LSTM [2], 3.5% when compared with TAS GAN [4], and 

4.5% when compared with DTL [20]. This gives it the 

ability to be very beneficial in a broad range of clinical 

circumstances. This recall is improved as a result of the use 
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of MRACNN with multidomain features and MFO 

procedures, both of which help in the detection of high-

density images and feature sets for different MRI and fMRI 

data. Figure 10 provides more insight into the F1 levels, 

which may be summarised as follows, 

 

Fig 10. Average F1 levels for classification of Tumours 

The study demonstrates that the proposed model can 

enhance the F1 tumor identification by 8.3% compared to 

TD CNN LSTM [2], 4.5% compared to TAS GAN [4], and 

3.9% compared to DTL [20]. This gives it the ability to be 

very beneficial in a broad range of clinical circumstances. 

The precision and recall levels of this F1 have been 

increased as a result of the adjustments made. Similarly, the 

AUC values may be seen as follows when looking at figure 

11, which can be observed as follows, 

 

Fig 11. Average AUC levels for classification of Tumours 

As per the findings of this study, it can be shown that the 

suggested model is able to enhance the area under the curve 

(AUC) of tumour detection by 9.4% when compared with 

TD CNN LSTM [2], 10.5% when compared with TAS GAN 

[4], and 8.5% when compared with DTL [20]. This enables 

it to be very beneficial for a broad range of clinical settings. 

The usage of MFO with 1D CNN, which helps in the 

identification of high-density feature sets for various MRI 

and fMRI data, has boosted this AUC. Similarly, the delay 

levels in Fig. 12 can be seen as follows: 

 

Fig 12. Average Delay levels for classification of Tumours 

As per this evaluation, it can be shown that the proposed 

model may raise the speed of tumor detection by 8.3% 

compared to TD CNN LSTM [2], 8.5 percent compared to 

TAS GAN [4], and 4.9% compared to DTL [20], making it 

very beneficial for a broad range of clinical circumstances. 

The use of MFO and correlative analysis with multidomain 

features, which help in the fast detection of high-density 

feature sets for several MRI & fMRI data, improves speed. 

The suggested approach is helpful for many real-time 

clinical and on-field situations as a result of these 

improvements. 

5. Conclusion and future scope 

The suggested multimodal prediction model for 

neurological disorders using bioinspired transfer learning, 

as demonstrated in the paper, has the potential to 

considerably improve the precision, accuracy, and speed of 

tumor detection in MRI and fMRI data. The model 

incorporates various advanced techniques, including 

MRACNN with multidomain features, CNN procedures, 

and MFO, to identify high-density images and feature sets 

for a variety of imaging datasets & samples. 

One of the main benefits of the suggested model is that it 

performs significantly better in terms of speed, accuracy, 

and precision than current state-of-the-art models including 

TD CNN LSTM, TAS GAN, and DTL. These 

enhancements are especially beneficial in real-time clinical 

and on-field situations, where fast and accurate detection of 

neurological disorders is critical for real-time scenarios. 

The need for such a model arises from the increasing 

prevalence of neurological disorders and the growing 

demand for accurate and timely diagnosis. The proposed 

model addresses this need by providing a highly efficient 

and effective tool for detecting tumors in MRI and fMRI 

data, thereby facilitating early diagnosis and treatments. 
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The potential use cases for the proposed model are 

numerous and varied, ranging from routine clinical 

applications to emergencies, where fast and accurate 

detection of neurological disorders can mean the difference 

between life and death. Additionally, the model can be 

further extended to incorporate other modalities, such as 

EEG and MEG, to enhance its prediction capabilities. 

In conclusion, the proposed multimodal prediction model 

for neurological disorders using bioinspired transfer 

learning is a substantial contribution to the area of medical 

imaging and has the potential to revolutionize the way 

neurological disorders are diagnosed and treated. Its 

superior accuracy, precision, and speed, along with its 

potential for various real-world applications, make it a 

highly promising tool for healthcare practitioners, 

researchers, and policymakers. 

Future Scope 

The proposed multimodal prediction model for neurological 

disorders using bioinspired transfer learning has shown 

promising results in the detection of tumours in MRI and 

fMRI data. However, there is still scope for further 

improvement and future work in this area. Some potential 

areas of future research are: 

1. Exploration of other imaging modalities: While the 

proposed model incorporates MRI and fMRI data, there 

are other imaging modalities, like PET and CT, that can 

provide complementary information. Future work 

could study the integration of these modalities to 

improve the accuracy and precision of the model. 

2. Investigation of transfer learning methods: The 

proposed model uses transfer learning to leverage pre-

trained models for feature extraction. Future work 

could investigate other transfer learning methods, such 

as domain adaptation and cross-modal transfer 

learning, to further enhance the model's performance. 

3. Clinical data integration: Incorporating clinical data, 

like medical history, patient demographics, and 

symptoms, can provide additional context and improve 

the model's prediction capabilities. Future work could 

explore the integration of clinical data into the proposed 

model to enhance its accuracy and precision. 

4. Evaluation on larger datasets: The suggested model was 

evaluated on a relatively small dataset. To test the 

model's robustness and generalizability, larger datasets 

may be used in future research. 

5. Development of a user-friendly interface: A user-

friendly interface for the suggested model can make it 

easier for healthcare practitioners to use the model in 

clinical settings. Future work could develop such an 

interface and evaluate its usability in clinical settings. 

Thus, the proposed multimodal prediction model for 

neurological disorders using bioinspired transfer learning 

has shown promising results and has potential for various 

real-world applications. Further research in the areas 

mentioned above can enhance the model's performance and 

utility in clinical settings. 
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