

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3356

Effective Heuristics for Enhancing QoS in Fog Environment through

Migration and Replication Techniques

1Bekkouche Khawla, 2Brahimi Said

Submitted: 17/03/2024 Revised: 27/04/2024 Accepted: 05/05/2024

Abstract: Fog computing has arisen to address the needs of IOT (Internet of Things) applications that are currently unmet by existing

solution. However, inef- efficient service management in this dense and geographically dispersed environment degrade service accessibility

to users and lead to poor quality of service(QoS)in terms of response time ,congestion network, and the consumption of energy.

This paper introduce three fog service placement methods, which allows users to retrieve service in a faster and more efficient way, to

improve service accessibility by replicating service on fog nodes considering Fog Computing characteristics. In these three methods, we

take into account the prediction based on service history from fog to each service, we also show the results of simulation experiments using

IFOGSIM regarding the performance evaluation of our proposed heuristics.

Keywords: Fog Nodes, Migration, Accessibility, Duplication, Replica, Prediction.

1. Introduction

Connected objects are capable of perceiving the

environment, exchanging service with each other and with

the Cloud, and can therefore transmit information and

possibly receive commands and even behave intelligently

by providing adequate environmental services. Generally,

IoT service is processed and stored in the cloud [1, 2].

Fig. 1. Effective service replication and migration

The latter satisfies the majority of IoT application needs. In

terms of ubiquitous access, availability and scalability of

processing performance and storage capacity. However, as

the Cloud is a centralized data center paradigm, the service

generated and the queries sent by the connected objects are

transmitted to these centers in the core network. Thus, with

the growing number of connected objects and the amount of

service produced, sending all service to the cloud will

generate bottlenecks [1].

 This increases service transmission latency and,

subsequently, degrades the quality of service (QoS) [3].

The term fog computing was coined by Cisco [4]. The major

aim of fog computing is to increase efficiency, performance

and reduce the amount of service for processing, analysis

and storage transferred to the cloud.

Service processing and storage equipment are called ’Fog

Nodes’ in Fog computing. With regard to their

performance, these devices are heterogeneous in nature

[5]. These items can be modest or resource-rich devices as

set-top-boxes, switches and routers, access points.

In fog computing, it is a very important issue to prevent

degradation of service accessibility. To overcome this

problem a possible solution is by migrating replicas services

at fog nodes, which are not the owners of the original

service.

In Figure 1, if the replicas of services 1 and 2 are created

and migrated, every fog node can access both services.

Service replication is very useful for enhancing service

accessibility in this way.

In this paper, we present three methods for enhancing

quality of service (QOS) with the aim of reducing the

response times, minimizing the overall usage con-

sumption of the system without congestion of the network,

and enhancing service accessibility. Each method has its

advantages and what distinguishes it from the other

approaches.

2. Paper organization:

The rest of the paper is organized as follows: After a brief

summary of most relevant related work, Section III and IV

describe, respectively, our proposed solution as well as

simulation results. Finally, conclusions are given in

Section V.

1- (LICUS) Laboratory, the University of Skikda, Algeria, Computer
Sciences Department. E-mail: kh.bekkouche@univ-skikda.dz,
1- (LIRE) Laboratory , university of Constantine 2, Algeria, Computer

Science department, university of Guelma, 8 May 1945, Algeria. E-mail:

brahimi.said@univ-guelma.dz.

mailto:kh.bekkouche@univ-skikda.dz
mailto:brahimi.said@univ-guelma.dz.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3357

3. Related works:

Several research in the literature have looked into the

problem of where IoT service instances should be placed in

the fog.

Gupta et al developed IFogSim in the Fog and edge-

computing paradigms, the toolkit is used to simulate and

mimic IoT resource management approaches. The most

difficulty is developing resource management strategies

that determine ana- lytic application distribution among edge

devices, hence increasing throughput and lowering latency

[1].

Naas et al in [6] have extended IFogSim, a simulator of

fog and IoT environ- ments. The goal of this extension is to

create a platform for creating and evaluating data placement

techniques in a fog and IoT environment. The authors

contributed three original components. To lower overall

system latency, the first to define and compute data

location using a linear programming method. The second

step is to partition the infrastructure using graph theory to

reduce the time it takes to place data.

[7] Proposes hybrid-scheduling systems that combine

diverse scheduling crite- ria to cover various types of

applications such as workflows and batch processes.

Because there is no single solution/criteria that fits all

types of queries in a fog environment, this feature is

especially critical for fog resource scheduling.

Huang et al.in [8] used a multi replicas model termed

‘iFogStorM’ technique to solve the installation of numerous

data replicas in a Fog Computing infrastructure. They

consider the following three data replication issues: The

number of replicas and their location. Furthermore,

considering the difficulty of deploying many repli- cas in a

large-scale infrastructure, The authors proposed a

heuristic method they dubbed "MultiCopyStorage." To

decrease the searching space for solving the target model,

the suggested method employs a greedy algorithm.

Vales et al. [9] suggested a hierarchical hybrid architecture

fog storage system. The suggested file system centralized

Meta data and policy administration while al- lowing for

dispersed data storage and distribution. Furthermore, the

authors devise a replication technique that replicates data

to edge devices based on node local- isation, which is

defined by the distance between users and the data, as well

as spatio-temporal data popularity.

The authors in [10] suggested a distributed data placement

technique based on dynamic replica formation, replacement,

and deletion driven by continuous monitor- ing of data

requests from edge nodes.The concept Edge, according to

the authors, encompasses the following paradigms: Fog

Computing , and Cloudlets. The storage nodes hosting the

replicas examine the observed request on the replicas and

act as local optimizer in this method. The authors used the

FLP to model this situation as a combinatorial

optimization problem .

In [11], Ahmed et al described an algorithm for routing

requests to the nearest node housing the data requested by

the user, which might be a connected object, while

balancing the workload. They presented a migration and

replication approach named "RMS - HaFC" to lower the

average response time and optimize the sys- tem’s total

energy consumption In comparison to the Centralized and

Decentralized approaches, this strategy has yielded

promising outcomes.

Despite the existence of a suggested contribution to the

placement performance optimization, it found that the issue

we are trying to fix is relatively recent.

This work was done with the goals of reducing response

time , lowering energy usage, congestion network and

guarantee the access to the service , So that whenever the user

requests the service, he finds it ..

4. Proposed Solution

1.1 Assumptions

In this section , we describe the general model, as well as we

give some details on our proposed methods, then we present

three replica placement methods for enhancing service

accessibility in the fog computing. The system environment

is assumed to be a fog layer where fog nodes access services

cached by other fog nodes as the originals by migrating

replica created by the node who is the owner of the

original service

.Each fog node caches replicas of the services in its storage

space. In the case, when a fog node requests access to a

service, the query is granted in two situations: (i) the

original/replica of the service is cached in the fog node. (ii)

The original/replica is cached by at least one fog node that

is linked to the query issue node through a one-

hop/multihop connection. As a result, the query issue node

first determines if it has the original/replica of the target

service.If it does, the query is automatically fulfilled. If it

does not,it diffuses a demand of target service. The query

is also effective if it receives a response from other node(s)

that carry the original/replica of the target service.

Otherwise, the query would be rejected.

In our system environment, we also assume that: F

represents the collection of all fog nodes in the system.

where k denotes the total number of fog node .

• F={F 1, F 2, F 3 ..Fk}.

• The set of service is denoted by S .

• Fj where j is fog identifier for each fog node in

the system. (1 ≤ j ≤ k).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3358

• All services are of the same size, a fog node can

cache at least one original service.

• Every fog node has G service storage space for

producing replicas, excluding the space for the original

service kept by fog node.

• We shall suppose, every fog node has service access

history and depending on this history in (t) time we predict

the future query of service (t+1) as shown in table 1 and 2

[13].

• The services have not been updated; this assumption has

been made for the purpose of simplicity.

• Also, suppose we have 10 users and each requests a

service from the nearby fog node.

Table 1 . Prediction based on service history.

service FN1 FN2 FN3 FN4 FN5 FN6

S1 63 23 15 20 29 22

S2 42 60 39 38 40 44

S3 33 42 48 23 43 35

S4 29 13 8 58 7 8

S5 49 39 41 36 69 18

S6 6 7 3 13 18 60

S7 36 30 35 31 38 30

S8 20 31 19 21 22 15

S9 16 14 17 15 22 19

S10 7 6 4 9 10 7

• Our aim is to find a solution that offers the best accessibility

of service and quality of service (network congestion, Energy

consumption and response time). When taking into account

the parameter of Prediction based on service history. For this

we propose three methods as mentioned below. We take in

the consideration that the service is replicating, migrating

and the replicas are caching based on the Prediction of query

of service from each fog node to each service. Finally, the

duplicate replicas are deleting between all two adjacent

nodes in the second method and between clusters in the third

method to give the other services a chance to deploy and

to be ready to use.

1.2 The replication and migration heuristics

The replication and migration phase enables to precisely

identify which services in the system need to be replicated

or migrated. This step allows defining the number of

replicas to produce while also identifying the fog node

that will be affected by the replication. To address these

issues, each services access history is investigated. The

benefit of such a technique is that it may be used to detect

whether service in a fog node has been recently requested

and is more likely to be requested again in the near future.

This stage is indispensable in our three methods.

The value of a service is a measurement of how many

queries have placed on it. It is crucial information since it

indicates the significance of the service. This estimate is

based the prediction of service access as shown in table 1.

In addition, we will figure out how many copies are

required for each service in each fog node. The following

is the formula for calculating the number of replicas of a

fog node:

in which:

TNSQ

Number of Replicas =V SDP (1)

TNSQ: The total number of service queries made by fog

nodesVSDP:The value of a service according to the

demand prediction.

1.2.1 • RMSAP (Replication and Migration and

Based on Service Ac- accessibility Prediction):

In this heuristic, we assume that six fog nodes (F1, F2, F3,

.. F6) exist.

The service is denoted by rectangles.

We also assume service access history of each fog node to

each service is shown in the Table 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3359

Fig. 2. Execution of RMSAP method.

Every fog node in the RMSAP method create service

replicas in descending order of frequencies from service

access prediction. A fog node may not connect to another

fog node that has a duplicate or original of a service that

the fog should store during replica caching. The memory

space for the replica is kept free in this situation. When

the fog node connects to another fog node that has the

original or the replica, the replica is generated at this

period. The blue arrow shows the replica migration from

the node hosting the original service to the node querying

this replica .

The execution of the RMSAP approach is shown in figure

2.

The steps of execution of RMSAP heuristic are below.

#Step 1: Initialization

fog nodes = ['F1', 'F2', 'F3', 'F4', 'F5', 'F6']

Services = {'S1', 'S2', 'S3', 'S4', 'S5'}

service_access_history = {

 'F1': {'S1': 5, 'S2': 3, 'S3': 7},

 'F2': {'S1': 2, 'S3': 4, 'S4': 6},}

Step 2: Service Replication Decision

Replica decision = {}

For fog node:

 Access history = service_access_history. Get (fog

node, {})

 Sorted services = sorted (access_history.items (),

Key=lambda x: x [1], reverse=True)

 Replica decision [fog node] = [service for service, _ in

sorted services]

Step 3: Replica Caching

For fog node, service list in replica_decision.items ():

 For service in service list:

 If not any (service in replicas [other fog] for other

fog! = fog node):

 Replicas [fog node].add (service)

Step 4: Resource Management

assuming each fog node has a limited capacity

fog_node_capacity,

 While l (replicas [fog node]) > fog_node_capacity:

 Replicas [fog node] () # Remove least recently used

or some criteria

Print ("Final replicas stored in fog nodes: » replicas)

However, fog nodes typically have limited resources that,

making it difficult for them to have duplicates of all

services.

1.2.2 RMSAPC (Replication and Migration based

on Service Accessibility Prediction and contiguous fog

nodes):

The RMSAPC approach eliminates replica duplication

across directly connected fog nodes to overcome the

problem with the first technique that there are numerous

replica duplication after migration of all services.

Similar to the RMSAP technique, this approach first

determines the migration and the replication of service

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3360

mentioned in section 4.2. The algorithm of deleting the

duplication of this heuristic is explained as follows:

1- Each fog node uses the RMSAP approach to

identify the migration of the replicas.

2- Each fog node transmits its fog identifier as well as

information on service ac- cess history. After all fog nodes

have completed their diffusion, each fog will be able to

determine its directly connected fog node based on the

received fog identifiers.

3- The following operation is repeated, in each fog

node that is connected to the others. When a service item

(original/replica) is duplicated between two fog nodes that

are directly connected, and one of them is the original, the

fog that holds the replica query the migration of another

replica.

4- If there are both replicas between two nodes, the fog

with the lower access his- tory to the service change the

replica to another replica. When changing the replica, a new

service duplicated is selected for migration from among

the services whose replicas are not assigned at either of the

two fog nodes, where the access history to this service is

the highest between all possible services.

During the diffusion period of identifiers between fog

nodes.A fog node may not connect to another fog node that

possesses an original or a replica of a service that the fog

need. In this instance, the replica’s memory space is

temporarily filled with one of the replicas that have been

migrated since the last diffuse period but are not currently

being migrated.

This temporary allocated replica is picked from among the

available replicas with the highest access history to the

replica . The memory space is kept free if there is not a

plausible replica to be temporarily assigned. The memory

space is filled with the right replica when a service access

whose replica to be transferred succeeds.

Fig. 3. Execution of RMSAPC method.

Although the RMSAPC approach does not totally reduce

duplicate duplication be- tween two directly connected fogs,

it does provide the most service accessibility than RMSAP

method .

Figure 3 depicts an example of using the RMSAPC

approach . A green rectan- gular in Figure 3 denotes a

replica that assigned to avoid replica duplication after all

migration . We note that duplicate replicas do not exist

completely between fog 3 and fog 4,and between fog 4 and

fog 6 . Every combination of two contiguous fog nodes

results in a change in replica as indicated in the diagram

below.

Node1-Node2: S2 → S7(Node1), S5 → S8(Node2).

Node1 − Node3 : S5 → S8(Node3). Node2 − Node4 :

S2 → S7(Node4). Node3 − Node4 : NOredundancy.

Node4 − Node5 : S5 → S8(Node1). Node4 − Node6 :

NOredundancy.

Node5 − Node6 : S2 → S7(Node1), S5 → S8(Node6).

1.2.3 RMSAPCC (Replication and Migration Based

on Service accessi- bility Prediction with Connectivity

based on Clusters :)

The RMSAPC approach, on the other hand, does not

totally eliminate replica du- plication between nearby

nodes. Figure 3 shows replica duplication between ; node 2

and ; node4 (service 8)and between ; node3 and ; node4,

and (service 7) replica duplication between ;4 and ;5.

Moreover when the the user is near to the every two adjacent

nodes and request the service 9 or 10. He do not find them

because they have not major access frequency between the

set of chosen services ,it means there is just 6 kinds of services

in the RMSAP method and 8 in the RMSAPC method .

The algorithm of RMSAPCC heuristic is as follows:

1. First , each fog node diffuses its identifier as well as

information based on service access prediction . After all fog

nodes have completed their diffusion, each node will

determine the linked fog nodes based on the received node

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3361

identifiers.

2. Each fog node is assigned to a cluster.

3. In each cluster, the access frequency of the cluster to

each service is determined as the sum of cluster access

frequencies to the service of fog nodes . The fog node in

the cluster with the lowest suffix of node identifier

performs this calculation.

4. Replicas of services are cached in the order of the

access frequencies history of the cluster until all fog nodes

in the memory space of the clusters is complete . Replicas

of services that fog node hold as originals are not cached here.

Each replica is stored on a fog node with the highest access

frequency to the service among nodes with enough free

memory to construct it.

5. If there is still free memory space at fog nodes in

the cluster after caching replicas of all kinds of services,

replicas are cached in the order of access frequencies until

the memory space is complete. Each replica is stored at a

fog node whose service item access frequency is the highest

among nodes memory space to build it and do not keep the

replica or its original. The replica is not cached if there is

no such fog node.A fog node may not connect to another fog

node having an original or a replica of one that the node

should cache. In this case, the memory space for the replica

is temporary filled with another replica, and it is filled with

the proper one when a service access to the corresponding

service succeeds. Table II is extension the of table I, and it

depicts the access frequencies history of the two clusters .

The execution of the RMSAPCC method is shown in

figure 4 . In this example, two clusters consisting of

cluster1(green nodes) and cluster2 (blues nodes)are

created.

The purple color in the rectangle in this figure represents a

copy that is cached in the second cycle. The RMSAPCC

method caches all ten types of copy across the entire of all

fog nodes.The service is expected to be more accessible

since many several types of replicas can be exchanged.

Fig. 4. Execution of RMSAPCC method.

TABLE 2. Prediction based on service history Of Clusters.

service FN1 FN2 FN3 FN4 FN5 FN6 C1 C2

S1 63 23 15 20 29 22 121 51

S2 42 60 39 38 40 44 179 84

S3 33 42 48 23 43 35 146 78

S4 29 13 8 58 7 8 108 15

S5 49 39 41 36 69 18 165 87

S6 6 7 3 13 18 60 27 78

S7 36 30 35 31 38 30 132 68

S8 20 31 19 21 22 15 91 37

S9 16 14 17 15 22 19 62 41

S10 7 6 4 9 10 7 26 17

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3362

5. Simulation and Result Analysis

To meet the objectives of our work,we extended the

iFogSim as shown in Figure 5. This Toolkit is made up of

numerous classes that we can categorize as follows:

(i) set of components that allow the the physical

equipment of the infrastructure to be modeled.

(ii) a set of components that allow the logical parts of

the simulated scenario to be modeled (for example the

instances of IoT services and their dependencies, ...).

(iii) a set of components that allow the management

of the processing in fog nodes. These resources are

controlled to improve service latency, network traffic,

power consumption, and system running costs by placing

and scheduling service instances in physical components.

(iv) A set of components that we have created to

model the principal parts of our contribution, such as

configuration and service management. These are classes

that represent the logical aspects of our contribution (for

example, configuration and service management), as

indicated in the diagram below.

Fig. 5. Design Of IFOGSIM Extension [12].

• MAJOR CLASS: this is the core class, and it

provides a collection of options for configuring a Fog and

Cloud platform. The logical aspects of the simulated

scenario that will be deployed in the infrastructure are

likewise created using this class.

• ORGANIZER CLASS: This class has a

comprehensive view of the infras- tructure. It specifies a

collection of service management strategies for use in the

simulated infrastructure. We can also use this class

to start our replication and migration approach.

• SERVICE CLASS: (i.e. service deployed in the

simulated infrastructure .) It specifies a set of attributes

such as its name (for example, service 1), size (in bytes),

fog node name hosting the service , and it is type (i.e.

original or replica)

.In each node there is an array of services.

The units (sensor, fog devices, and actuator) in the iFogSim

Toolkit communi- cate with one another using preset

events. There are events for launching a service instance in

a Fog node, connecting a sensor, and sending service to

another compo- nent, for example.

It is worth noting that we have simulating the extra events

for specific situations.

To highlight the participation of our methods, we will

focus on the three met- rics:(response time, energy

consumption and network congestion). In order to

evaluate the behavior of our three propositions and to

discuss its results obtained through simulation. a series of

simulation were launched by the following several

parameters.

Table 3 . Parameters in simulation

Parameter Value

Total number of fog nodes 20

Server bandwidth 8000 Mbps

Access frequency of each fog nodes (1 + 0, 01k)

Number of queries [100, 300, 500, 700, 900]

Number of service 100

Service size 200 KO

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3363

1.3 Average response time

The average response time obtained with the methods

applied is measured in this experiment. The average response

time for all queries in the simulation is represented by this

measure. The formula is as follows:

where:

Average response time = TNQ T (2)

The total number of queries is represented by TNQ.

T: denotes the amount of time that has passed between

the user sending "i" query and receiving a response from

the required service.

Fig. 6. Response Time metric.

Figure 6 shows a considerable reduction in response time

when we use our third technique, which is due to the

replication mechanism we used to enhance response time

and which practically eliminates duplication while allowing

a high number of services to be deployed.

1.4 Energy consumption

We used the metric provided by the iFogSim simulator to

analyze the energy use. Figure 7 depicts the simulation

results schematically, with the x axis representing the

variation in the number of queries and the y axis

representing the energy used

. As shown in the simulation results the the third method

can be considered as environmental approach among the

other ones.

1.5 Network congestion

The x-axis indicates the number of queries, and the y-axis

depicts the amount of service transmitted through the

network measured in KO, in this series of simulations shown

by Figure 8. In all three our techniques, we see a

difference in the use of the network. It is worth noting that

the iFogSim simulator has this measure as well. The

RMSAP and RMSAPC methods have higher Utilisation

of the network than the RMSAPCC approach. We can

justify this by that fog nodes exchange more information

in a wide range .

Fig. 7. Consumption of energy.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3364

Fig. 8. Congestion Network.

1.6 Additional metric S: Summary of

metrics at the same time.

This summary is calculated by the sum of the three previous

metrics. In comparison," our third technique delivers a very

large benefit by evaluating the three metrics at the same

time, as shown in Table 4. Even the other two procedures

have positive results. This demonstrates the effectiveness of

our replica placement methods we proposed.

TABLE 4. Rate comparisons of each approach versus RMSAPCC approach.

Approach RMSAP vs.

RMSAPCC

RMSAPC vs.

RMSAPCC

benefit 5,34% 20%

6. Conclusions and Future Work

In this article, we discussed replication and migration to cloud

computing to improve service accessibility with the goal of

reducing response time, network congestion, and power

consumption. We have suggested three approaches that

take into account the prediction of access to services. In

the RMSAP heuristic, a fog node migrates aftershocks that

we predict to have high accessibility. In the RMSAPC

heuristic, the replicas are pre-migrated based on the

RMSAP method, and then the replica duplication is

eliminated between all contiguous fog nodes to allow other

replicas to be positioned at the desired location. Finally,

we have suggested the RMSAPCC method as an extension

of the RMSAPC approach, which eliminates the duplication of

replicas between, clusters and shares many types of services

that users need. the simulation results were motivating.

References

[1] GUPTA, HaRSHIT And VaHID DasTjERDI,

AmIR And GHOSH, SoUMya K and- BUyya,

RajkUMAR, IFOGSIM: A toolkit for modeling

and simulation ofresource management techniques

in the Internet of Things, Edge and Fogcomputing

environ- ments, ,Software: Practice and Experience,

47, 9, p-p=1275–1296, Wiley Online Li- brary.

2017.

[2] ZHAnC, BEn and MOR, NITESH And KOLB,

JOHn and CHAn, DOUCLAS S and-

LUTz,KEn and ALLMAn,ERIC And

WawRzynEk,JOHn and LEE,EdwaRD And

Kubiatowicz, John, The cloud is not enouch:

Saving iot from the cloud, 7thUSENIX

Workshop on Hot Topics in Cloud Computing

(HotCloud 15),2015.

[3] Sarkar, Subhadeep and Chatterjee, Subarna and

Misra, Sudip, IEEE Tran-sactions on Cloud

Computing, Assessment of the Suitability of Fog

Com-puting in the Context of Internet of Things, 6,

1, p-p46–59, ,IEEE 2015.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3356–3365 | 3365

[4] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog

computing and its rolein the internet of things. In

Proceedings of the First Edition of the

MCCWorkshop on Mobile Cloud Computing-MCC

’12, Helsinki, Finland, 17August 2012; pp. 13–15.

[5] S. YI, Z. HaO, Z. QIn, and Q. LI. FOC

COMPUTInC: Platform and applications.In Hot

Topics in Web Systems and Technologies (HotWeb),

2015 ThirdIEEE Workshop on, pages 73–78. IEEE,

2015.

[6] M.I. NaaS, J. BOUkHOBza, P.R. PaRVÉDy

and L. LEMARCHAnd, An ExTEn- SIOn TO

IFOCSIM TO EnaBLE THE DESICn Of DaTA

PLACEMEnT STRATECIES, In: 2nd IEEE

International Conference on Fog and Edge

Computing, ICFEC 2018, Washington DC,USA,

May 1–3, 2018, 2018, pp. 1–8.

[7] Mahmud, Redowan and Buyya, Rajkumar,

Modelling and simulation of fog and edge computing

environments using iFogSim toolkit, Fog and edge

computing: Principles and paradigms,1–35,2019,

Wiley.

[8] T. Huang, W. Lin, Y. Li, L. He and S. Peng, A

latency-aware multiple data replicas placement

strategy for fog computing, Journal of Signal

Processing Systems 91(10) (2019), 1191–1204.

[9] R. Vales, J. Moura and R.N. Marinheiro, Energy-

aware and adaptive fog storage mechanism with data

replication ruledby spatio-temporal content

popularity, Journal of Network and Computer

Applications 135 (2019), 84–96.

[10] Redowan Mahmud and Rajkumar Buyya. Modelling

and simulation of fog and edge computing

environments using ifogsim toolkit. CoRR,

abs/1812.00994,2018.

[11] Berkennou, A., Belalem, G., Limam, S. (2020). A

replication and migration strategy on the hierarchical

architecture in the fog computing environment.

Multiagent and Grid Systems, 16(3), 291-30

[12] BEKKOUCHE, Khawla, et al. Effective Strategy

Based on Migration and Replication Techniques for

Service Management in Fog Environment. T

Regulatory Science (TRS), 2023, p. 1531-1549.

[13] Hara, T., & Madria, S. K. (2006). Data replication

for improving data accessibility in ad hoc networks.

IEEE transactions on mobile computing, 5(11),

1515-1532.

