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Abstract: Heart disease is one of the leading causes of death worldwide, and cardiac arrhythmia is a major symptom of heart disease.
Due to the inherent differences between raw time series data and classical features, it is not possible to take advantage of models such as
convolutional neural network (CNN), which have a high ability to analyze ECG data. To overcome this limitation, this paper proposes a
new idea for ECG classification. The proposed idea is to use separate inputs for raw data and classical features. Based on the proposed
idea, two different models of the deep neural network are presented. A more complex architecture consists of a CNN with a Residual
structure and an MLP. The second architecture is proposed by combining a CNN auto-encoder with an MLP to reduce the computational
cost and the possibility of implementing the proposed idea in wearable devices that are limited in terms of processing capacity and
energy consumption. Also, to approach the imbalance problem of existing ECG databases, new approaches have been proposed for
oversample and undersample methods. Experimental results on the standard MIT-BIH Arrhythmia database showed a 14.73% increase in
recall criterion by the first architecture and 1.27% by the second architecture, compared to the conventional architecture in the intra-
patient paradigm. In-Addition, the proposed oversampling and undersampling methods increased the first architectural recall for the
VEB+ class by 6.98% and 2.33%, respectively in the intra-patient paradigm.

Keywords: ECG signal, CNN, Deep learning, auto-encoder, arrhythmia, MLP.

1- Introduction heart disease and stroke statistics, underlining the critical
need for effective arrhythmia detection mechanisms. In a
similar vein, Sannino and De Pietro [7] demonstrate the
efficacy of deep learning approaches in ECG-based
heartbeat classification, contributing to the growing body
of evidence supporting Al in healthcare. Romano's text
atlas [8] and the interpretability analysis by Li et al. [9]
offer insights into the practical aspects of ECG
interpretation and the challenges of classifying heartbeats
using machine learning models. Yao et al. [10] and the
systematic review by Hong et al. [11] explore the
advancements in arrhythmia detection algorithms,
highlighting the role of attention mechanisms and
convolutional  neural  networks in  improving
classification accuracy. Ebrahimi et al. [13] provide a
critical review of deep learning methods for ECG
arrhythmia classification, pointing out the challenges and
opportunities in the field. The foundational texts by
Francois [14], Géron [15], and Hastie et al. [16] are
essential resources for understanding the underlying
theories of machine learning and deep learning, which
are crucial for developing sophisticated arrhythmia
detection models. The significance of publicly available
databases, such as the MIT-BIH Arrhythmia Database
[17] and PhysioNet [18, 25], cannot be overstated, as
they enable researchers to train, test, and validate their
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work of Halperin and Hart [20], Kannel et al. [21], and

Today, with the improvement in quality of life,
cardiovascular diseases have become the leading cause
of death in humans. From 2013 to 2016 AD, 48% of
individuals over the age of 20 (121.5 million people) in
the United States were affected by cardiovascular
diseases. Additionally, 31% of global mortality rates in
2016 AD were attributed to these diseases. For this reson
various machine learning methods have been proposed
for arrythmia detection as we describe here: The softmax
function, as discussed in [1], is pivotal in multi-class
classification tasks, such as arrhythmia detection, where
it's essential to differentiate between various types of
heartbeats accurately. Catalani's work [2] exemplifies the
application of machine learning techniques in arrhythmia
classification, setting a foundation for subsequent
research in the domain. Hannun et al.'s study [3]
represents a landmark in utilizing deep neural networks
for arrhythmia detection, showcasing the potential of
these models to achieve cardiologist-level accuracy. Luo
et al. [4] further the narrative by proposing a patient-
specific deep architectural model for ECG classification,
emphasizing the importance of personalized healthcare
solutions. The statistical reports by Virani et al. [5] and
Benjamin et al. [6] provide a comprehensive overview of
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Wolf et al. [22], who explore the epidemiological aspects
of atrial fibrillation and its role as a risk factor for stroke.
Recent studies, such as those by Pourbabaee et al. [23],
Moody et al. [24], and Li and Boulanger [26], delve into
the application of deep convolutional neural networks
and data augmentation methods for enhancing the
detection of arrhythmias, including atrial fibrillation.
Harrigan et al. [27], Das and Ari [28], and Goodfellow et
al. [29] contribute to the understanding of signal
processing techniques and the use of convolutional
neural networks in ECG classification. Xu and Liu [30],
Acharya et al. [31], and Gao et al. [32] further
demonstrate the potential of deep learning models,
including CNNs and LSTMs, in accurately identifying
arrhythmic events from ECG signals. The works of
Singh and Tiwari [33], Cao et al. [34], and Donoho [35,
36] explore various aspects of signal denoising and
augmentation, crucial for preparing ECG data for
analysis. Shaker et al. [37] leverage the power of
Generative Adversarial Networks (GANSs) to generalize
Convolutional Neural Networks (CNNs) for ECG
classification, showcasing the utility of synthetic data in
overcoming the limitations posed by imbalanced
datasets. This is complemented by the studies of Thakor
et al. [38] and Alfaras et al. [39], who focus on the
optimization of signal processing techniques and
machine learning models for efficient heartbeat
classification, illustrating the ongoing efforts to refine
the analytical capabilities of arrhythmia detection
systems. The works of Liu et al. [40], Alvarado et al.
[41], and Baghdadi [42] delve into the complexities of
ECG signal analysis, employing sophisticated models to
enhance the precision of arrhythmia detection. These
studies highlight the significance of addressing the
nuances of ECG signals, such as the variability in signal
quality and the presence of noise, which are critical
challenges in the development of reliable detection
systems. Yildirim's research [43, 44] introduces
innovative deep learning models, including bidirectional
LSTM network models and deep convolutional neural
networks, for the classification of ECG signals. These
approaches exemplify the shift towards more advanced
neural network architectures that offer improved
accuracy and efficiency in arrhythmia detection.
Mousavi and Afghah [45] and Jiang et al. [46] present
novel neural network systems designed to handle
imbalanced datasets, a common issue in medical data
analysis. Their work underscores the importance of
developing algorithms that are capable of distinguishing
between minority classes, such as rare arrhythmias,
without being overwhelmed by the majority classes. De
Chazal et al. [47] and Luz et al. [48] focus on the
automatic  classification of heartbeats using a
combination of ECG morphology and heartbeat interval

features, further advancing the field by integrating
multiple data dimensions into the classification process.
This multi-feature approach is indicative of the trend
towards creating more holistic models that consider
various aspects of the ECG signal for a more accurate
diagnosis. Mathews et al. [49] and Golpayegani [50]
explore the application of deep learning and neural
networks in ECG beat classification, demonstrating the
versatility of these technologies in extracting meaningful
patterns from complex data. Kachuee et al. [51] and Al
Rahhal et al. [52] highlight the potential of transfer
learning and deep learning approaches, respectively, in
improving the classification of electrocardiogram
signals, emphasizing the benefits of leveraging pre-
trained models and deep architectures for enhancing
performance. The contributions of Amirshahi and
Hashemi [53], Saadatnejad et al. [54], and Hadaeghi [55]
exemplify the integration of advanced computational
models into wearable devices for continuous monitoring,
pointing towards the future of personalized healthcare
and the potential for real-time arrhythmia detection. Data
augmentation techniques, as explored by Hatamian et al.
[56] and the synthetic minority over-sampling techniques
discussed by Chawla et al. [57] and He et al. [58],
address the critical issue of class imbalance in training
datasets. These methodologies enable the development
of models that are more robust and generalizable,
thereby improving the accuracy of arrhythmia detection
across diverse patient populations. Generative models,
such as those described by Goodfellow et al. [59],
Delaney et al. [60], and Radford et al. [61], offer
innovative solutions for generating synthetic ECG
signals that can enhance the training of machine learning
models. These approaches underscore the creative use of
Al to overcome data limitations, paving the way for
more sophisticated and capable arrhythmia detection
systems. The ongoing research and development in heart
arrhythmia detection underscore a pivotal shift towards
harnessing computational intelligence to address critical
healthcare challenges.

2- Problem statement

In this section, the proposed problem is described. In
Section 1, the data preparation, extraction of classical
features, and the construction of training and evaluation
sets are explained. Section 2 introduces two new
methods to address the imbalance in the training set. In
Sections 3 and 4, our proposed deep learning models for
heartbeat classification, using deep learning alongside
classical features, are presented. Section 5 explains how
to determine hyperparameters and train the proposed
models.
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2-1- Data Preparation

In this paper, similar to the majority of work conducted
in this field, the MIT-BIH database is utilized as the
database. Furthermore, according to the ANSI/AAMI
EC57:1998 recommendation, 4 records containing paced
beats, most of which belong to class Q, are excluded
(other records do not contain Q beats), and classification
into 4 classes of AAMI (N, V, S, and F) is performed.
Before dividing this database into training and evaluation
sets, several preprocessing steps have been applied to the
available records (Fig. 3-1). These preprocessing steps
include noise removal from the records, segmentation
into independent beats, and normalization.
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Fig. 3-1: Preprocessing steps performed on data prior to
dividing them into training and evaluation sets.

3-1-1- ECG Preprocessing and Beat Segmentation

Initially, according to the proposed method in [38] and
[37], a second-order Butterworth filter with a frequency
range of [0.5-45Hz] is used to eliminate low and high-
frequency noise. The Butterworth filter is designed to
have a flat frequency response within the passhand as
much as possible. This filter has less computational
complexity compared to wavelet-based methods. Fig. 3-2
illustrates the original ECG signal (before filtering) and
the filtered signal along with the frequency response of
the Butterworth filter with the mentioned characteristics.

Fig. 3-2: (a) ECG signal before and after filtering, (b)
frequency response of the Butterworth filter.

After noise removal from the records, RRI features are
extracted for each heartbeat. These features are as
follows:

e  Pre RRI: The distance between the R-peak of the
current beat and the R-peak of the previous beat.

e Post RRI: The distance between the R-peak of the
current beat and the R-peak of the next beat.

e Local RRI: The local average RR-Interval for the
current beat.

e Global RRI: The average of RR-Intervals for all
beats in a record.

These features are calculated using the following
equations: 3-1, 3-2, 3-3, and 3-4.

oy, =6p — 0,4

Bn =0nt1—On
_ ?:—j yn+i
In j+k+1
gre = Zne‘*’ Yn
]

In these relationships, n refers to the beat number,
6,,represents the R-Peak location, a,denotes the Pre RRI
feature, B,indicates the Post RRI feature, and
ly,represents the Local RRI feature of the nth heartbeat.
Additionally, i and j refer to the number of left and right
neighbors in the Local RRI feature, while y one of the
Local RRI or Global RRI features is represented by gyy
in the ¥ record. |¥|denotes the number of beats present
in the W record. These features are utilized further for
segmentation and classification purposes. In this context,
considering the objective of the problem, similar to most
conducted tasks, the R-Peak locations determined by the
database itself are employed. After noise removal and
feature extraction of the RRI records, according to the
suggested method [37], the records are divided into
independent beats. In this method, the range of each beat
is determined by placing its R-Peak position within the

[?PreRRI.g PostRRI] interval (Equation 3-5). This

segmentation method, in addition to being dynamic and
accurate, unlike methods that require detection of P and
T wave locations, does not add much processing load to
the system. Especially considering that Pre-RRI and
Post-RRI features are also used during classification. The
results of applying this method are shown in Fig. 3-3.

Xn = W[en—%an.en+§ﬁn]

After the beat segmentation, the data of each beat are
normalized between 0 and 1 using Equation 3-6. In this
equation, x, and X, are the original and normalized
samples at moment t within the beat (X).

_ Xy —min(X)
X = max(X) — min (X)
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Fig. 3-3: Segmentation of ECG record into individual
beats.

In the context of the input length of the model needing to
be constant, the length of all pulses is set to 300 samples.
If the length of a pulse is less than 300 samples, same
padding is applied at the beginning and end of the pulse
to increase its length. Conversely, if the length of a pulse
exceeds 300 samples, samples are removed from the
beginning and end of the pulse to decrease its length.
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3- Proposed method

3- 3- Proposed Model One: CNN - Hybrid with
Residual Structure

As mentioned in Section 2, deep learning models have
shown higher efficiency compared to classical feature
extraction methods. However, several decades of
research have been devoted to classical features, and
some of them have proven to be important. For example,
RRI features are not only used in automated systems but
also by physicians in disease diagnosis. For this reason,
in some studies, a combination of these features with
deep learning has been employed, which was discussed
in Section 2.6.3.
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Fig. 3-8: (a) Previous model architectures and (b) Proposed model architecture for incorporating classical features
alongside deep learning.

The architectural and proposed methods for combined
utilization of classical features and deep learning are
shown in Fig. 3-8, this architecture enables the design of
two independent sub-networks, each suitable for its own
type of input. The general equations of conventional
models and the proposed model are given in equations 3-
8 and 3-9, respectively. In these equations, P represents
the prediction vector (output of the model), F is the
model function, X is the raw pulse data vector, R is the
vector of classical features, and the operation of
concatenating two vectors is denoted by #. Essentially,

the previous models are single-variable functions
(vector-type) and therefore behave uniformly with all
elements of the input vector. However, the proposed
model is a two-variable function, allowing it to interact
differently and independently with the inputs. The
proposed model is illustrated with more detail in Fig. 3-9
and will be discussed further in the subsequent section.

P=F(X #R)
P =F(X.R)
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Fig. 3-9: Proposed composite CNN model.

3-3-1- Sub-network 1: Automatic Feature Extraction
Sub-network

Subnetwork 1 is responsible for automatically extracting
features from raw input data (e.g., heartbeat) using deep
learning. Considering the success of CNN in previous
research, it has been used in this study as well. The
proposed CNN is inspired by the proposed networks (51)
and (3) and consists of one standard convolutional block
and five residual convolutional blocks. The structure and
advantages of residual blocks are explained in Section 2.
To prevent overfitting of the model on input data,
especially when the model is trained on a balanced
dataset augmented by data augmentation, a Dropout
layer has been used after the input and the first
convolutional block. During model training, the Dropout
layer randomly removes some neurons from the input
layer (setting their values to zero), thus introducing
changes in the model's structure. Each residual
convolutional block utilizes two serial convolutional
layers, a skip connection, and a MaxPool layer for spatial
feature reduction. The number of filters in the
convolutional layers in the first (standard convolution),
second, and third (residual convolution) blocks is 32,
while in the fourth and fifth blocks, it is 64, and in the
last block, it is 128. Considering the halving of feature
spatial dimensions after each MaxPool layer and the
input heartbeat length (300 samples), the output
dimensions of the first subnetwork are 9x128 (1152
features). The change in feature space from the input
layer to the last subnetwork 1 block is illustrated in Fig.
3-10. It is expected that this network, due to its high

number of layers (11 convolutional layers) and the
residual structure, learns high-level features from input
heartbeats.

! *300x 1

7 +300x 32

’ =150 x 32
*75x 32
=37 x 64
=18 x 64
9 x 128

¥

Fig. 3-10: Dimensions alteration of the feature space
after each block in the subnetwork for automatic feature
extraction (subnetwork 1).

3-3-2- Subnetwork for classical feature analysis
(Subnetwork 2)

This sub-network is responsible for analyzing the classic
features of the input. The network consists of 2 dense
layers along with a skip connection. The number of
neurons in the two dense layers is 16 and 8 respectively.
The skip connection allows the input features of this sub-
network to be directly deposited into sub-network 3. At
the end of this sub-network, a Dropout layer is placed.
The input layer of this model consists of 5 neurons,
which will be explained further. Four RRI features
described in the previous section, along with the duration
of the heartbeat (length of the heartbeat before it reaches
300 samples), are considered as the input feature vector
of this sub-network (Fig. 3-11). The reason for selecting
these features as input to the proposed model is that these
features become independent during signal segmentation
into individual heartbeats, and although the model is
strong, it has no chance of learning them.

| PreRRI | Post-RRI |

Local-RRI | Global-RRI | Beat duration |

Fig. 3-11: Input Feature Vector below Network 2

3-3-3 subnetwork classifier (Subnetwork 3)

This subnetwork plays the role of a classifier model. The
input to this network is two output vectors from previous
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subnetworks, which are concatenated at the beginning of
this subnetwork. This network consists of three dense
layers along with a skip connection and a dropout layer.
The output layer is also a dense layer with 4 neurons and
the SoftMax activation function. For all convolutional
and dense layers in the proposed model, unlike most
previous models that use the ReLU activation function,
the proposed method uses the Leaky ReL.U function. The
derivative of the ReLU function is O when its input is
less than 0, which causes some neurons to always remain
in the negative value without any change. These neurons
are commonly referred to as "dead neurons." One of the
methods to prevent this phenomenon is to use the Leaky
ReLU function (Equation 3-10). This function also has a
non-zero derivative (a) for inputs smaller than zero,
allowing the neurons to learn even with negative values.
In Equation 3-10, a is a predefined constant value. Fig.
3-12 illustrates the Leaky ReL.U function.

X. x>0

LeakyReLU(x) = {ax <0

Leaky Relu 8

Fig. 3-12: ReLU and Leaky ReLU Functions (& = 0.2)
3-4- Proposed Model - Combined Auto-Encoder

In the previous section, a combined CNN with a residual
structure was proposed using skip connections, resulting
in a model with a large number of layers. However,
increasing the number of layers and the use of skip
connections impose computational and memory
requirements, posing challenges for implementing low-
power and small wearable devices. Therefore, in this part
of the research, a simpler combined model without the
residual structure is proposed. The proposed model
consists of an auto-encoder for feature extraction from
the pulse signals and a MLP for classifying the pulse
type based on the extracted features from the encoder
and the classical features used in the previous section. As

B

,_____ﬂ

/

| |

W

explained in Section 2, the methods that have been used
so far for classification have initially trained the auto-
encoder independently and then used its encoder as a
feature extraction model (Fig. 3-13). In this case,
considering that the main goal of the auto-encoder is to
reconstruct the input signal as accurately as possible, it is
possible for the encoder to learn features that are
important for reconstruction but not suitable for
classification, or to not learn features that are important
for classification but not useful for reconstruction. To
investigate this issue, we trained two auto-encoders, one
composed of dense layers and the other composed of
convolutional layers, only on one class of pulses (using
the training dataset) and calculated their reconstruction
errors on all four classes in the evaluation set. To
calculate the reconstruction error, we used the mean
absolute error (MAE) function according to Equation 3-
11. In this equation, Eag is the reconstruction error of the
auto-encoder, X is the input pulse, X is the reconstructed
pulse, and |X]| is the length of the pulse.(]I-Qréﬂ)grams of
reconstruction errors for the existing samples in the
evaluation dataset are shown in Fig. 3-14 for the auto-
encoder with dense layers and in Fig. 3-15 for the auto-
encoder with convolution layers, for four types of beats:
N, V, S, and F. Although the models have only been
trained on the normal class samples in the training set, it
is expected that the reconstruction errors for other
classes, as they have different characteristics, would be
high. However, based on the presented histograms in
Fig. 3-14 and Fig. 3-15, the model's errors are
approximately within the same range for all four classes.
This may be due to the learned features by the encoder
being specific to reconstructing heartbeat signals and not
suitable for proper classification. Fig. 3-16 illustrates
several reconstructed heartbeat samples by the
convolutional auto-encoder trained on class N. As
observed in this Fig., the auto-encoder is successful in
reconstructing samples from all classes.

Fig. 3-13: Common Usage of Auto-Encoder for Classification.
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Fig. 3-14: Histogram of reconstruction errors for N, V, S, and F beats in a compact trained auto-encoder applied to the N

Lo

class.

: Histogram of reconstruction errors for N, V, S, and F beats of the auto-encoder trained on class N.

a 100 200 300 @

Fig. 3-16: Sample reconstructed beats generated by Auto-Encoder Convolution trained on class N.

To ensure that the encoder pays attention to important
features for beat classification during training, our
proposed Auto-Encoder combines two separate input
vectors and two separate output vectors. The encoder's
output is connected to both the decoder for beat
reconstruction and the MLP for beat type determination.
The overall structure of the proposed Auto-Encoder is
shown in Fig. 3-17. In this architecture, the model learns
in an integrated manner, and therefore, from the
beginning of the training process, the loss value in beat
classification affects the weights of the connections
under the encoder network (through backpropagation).
Considering that the goal of designing this model is its
implementation in wearable devices, we have tried to
avoid using layers and structures that would complicate
the model or have a large number of layers. The

proposed model's encoder consists of three convolutional
blocks. To reduce the dimensionality of the input vector,
MaxPool layers with a stride of 2 are used in the first two
blocks. As a result, the output length of the encoder is
one-fourth of the input pulse length. For the proposed
decoder model, we have used four convolutional blocks.
In the first two blocks, two UpSample layers are
included to increase the vector length and bring it to the
original pulse length. Each UpSample layer repeats each
element of its input vector once. Therefore, the output
vector length is twice its input (Fig. 3-18). For the
classifier subnetwork in the proposed model, we have
used an MLP with four dense layers (including the
output layer). The details of the proposed hybrid auto-
encoder are shown in Fig. 3-19.
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Fig. 3-19: Proposed Auto-Encoder Integration

3 -5- Determining Hyper-parameters and Model
Training

To determine the optimal hyper-parameters in the
proposed model, we have employed a grid search
technique. In grid search, all possible combinations in
the search space are examined. The searched meta-
parameters include the learning rate, number of training
epochs, batch size, and the dropout rates of the layers.
The grid search operation to find suitable hyper-
parameters for the model is carried out independently for
all three patterns. The network training is performed
using the Adam optimizer, and the Cross-Entropy
function is used to calculate the loss. Here, we have not
utilized any technique for early stopping of the training
process.

4- Results and Analysis

4-1- Tools used for implementation and evaluation of
proposed methods

In this paper, the Python programming language (version
3.7) based on the Windows 10 operating system has been
used to write all programs. The hardware platform used
is a PC with the following specifications: Intel Core i5

processor, 8 gigabytes of memory, and NVIDIA
GeForce GTX960 - 4GB graphics processor.

4-2- Metrics used in evaluating the performance of
proposed methods:

When evaluating classifier models, the class assigned by
the dataset itself to the data, known as the true class, and
the class predicted by the model for each input data,
known as the predicted class, are considered. In binary
classifiers (two classes: positive (P) and negative (N)),
TP (True Positive) and TN (True Negative) represent the
number of positive and negative samples correctly
classified, respectively. FP (False Positive) represents the
number of negative samples incorrectly classified as
positive, and FN (False Negative) represents the number
of positive samples incorrectly classified as negative.
These numbers are used to measure the performance of
classifier models.

4-3- Investigation of constructed sets

For the pre-processing and extraction of classical
features, two features, Local RRI and Global RRI, have
been calculated based on the Pre RRI feature (in Eq. 3-3
and Eq.3-4, y =a is considered). Additionally, a
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neighborhood in Local RRI has been defined as 10
adjacent beats (in Eq. 3-3, = 5.i = 5). Summary of the
number of samples in each data set in three patterns:
Inter-Patient, Intra-Patient and Patient-Specific is given
in Table 3-4. As mentioned before, in the Inter-Patient
pattern, 22 records were used for the training set (DS1 in
Table 2-1) and 22 other records (DS2 in Table 2-1) were
used for the evaluation set. In the Intra-Patient pattern,
50% of the samples from each beat were randomly

selected for the training set, and the remaining 50% were
used for the evaluation set. In the Patient-Specific
pattern, 22 records from DS1 were used for training the
general models, and the initial 20% of each record in
DS2 were used for training the specific models (22
specific models), while the remaining 80% of each
record were used for evaluating the specific models.
Based on Table 4-3, approximately 90% of all beats in
the datasets belong to the normal class.

Table 4-3: Summary of the constructed training and evaluation datasets in three patterns: Inter-Patient, Intra-Patient, and
Patient-Specific.

Evaluation collection / Dedicated training- Education collection / general
evaluation education Pattern Row
F S V N F S V N
388 3221 1833 44235 415 3788 943 45845  Inter-Patient 1
401 3504 1388 45040 402 3505 1388 45040 Intra-Patient 2
388 3221 1833 4435 415 3788 943 45845 Patient- 3
Specific

4 -4- Evaluation of the First Model: Hybrid CNN
with Residual Structure

In this section, a proposed Hybrid CNN model is
evaluated using three patterns: Inter-Patient, Intra-
Patient, and Patient-Specific. Subsequently, the obtained
results for each pattern are presented and discussed.

4-4-1-Model Evaluation in Inter-Patient Pattern

In the Inter-Patient pattern, the proposed model was
evaluated on the reference (imbalanced) training set and
the balanced training set achieved by increasing the
proposed samples using SMOTE, SVMSMOTE,
ADASYN, and reducing the conventional and proposed
training samples. Additionally, an experiment was
conducted on the robustness of the model against the
reference set imbalance by assigning weights to the
existing classes (Row 2). After training the model in
each of these scenarios, the performance of the model
was evaluated on the evaluation set without any
manipulation or changes. The confusion matrix of the
three reference experiments, the proposed sample
increase, and the proposed sample reduction are
presented in Table 4-4. The following conclusions can be
drawn from this table:

1- According to Table 4-4 (a), in the case where the
model has been trained on a reference training set where
the number of samples N is much larger than other
classes, it has made a significant number of false normal
predictions for V, S, and F beats, indicating a bias
towards these classes. Therefore, model retrieval in this
scenario is low for the V, S, and F classes (Row 1, Table
4-5).

2- When the model is trained on the balanced dataset by
increasing the proposed samples, it prevents the model
from biasing towards class N. As a result, the number of
FN cases for classes V and S compared to the previous
state decreased significantly from 747 and 328 to 173
and 83, respectively. Following this, the recovery of
these two classes increased from the reference state of
0.57 and 0.48 to 0.82 and 0.84, respectively. However,
considering the increase in false positive alerts (FP) for
normal beats from 251 and 78 to 809 and 127, it can be
concluded that the examined data augmentation
techniques are not successful in generating new useful
information and only prevent model bias.

Table 4-4: Confusion Matrix (a) in the reference training set, (b) after oversampling, and (c) after under-sampling in the
Inter-Patient pattern.

(A)

Predicted
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N 43787
= v 747
-]
g s 328
F 112
(B) Predicted
N Y, S F
N | 38836 809 127 4466
= V 173 1513 136 14
>
g2 s| s 314 2721 103
F 149 4 7 228

251 78 122
1045 38 6
1075 1562 256
3 2 271
© Predicted
N V S F
N | 36502 823 259 6654
= \Y 250 1448 62 76
§ S 204 297 2649 71
F 76 3 7 302

Table 4-5: Precision (PRE) and CNN-based Retrieval (REC) of the proposed combined model in the Inter-Patient pattern

for four AAMI classes.

Total S \Y N
REC PRE REC PRE REC PRE REC PRE REC PRE Description Row
069 069 070 041 048 093 057 044 099 097 Reference Dataset 1
073 061 058 008 078 082 062 057 093 098 Class Weight 2
059 055 052 002 064 087 044 035 074 097 SMOTE DA 3
069 052 049 005 073 084 076 020 08 0.98 SVMSMOTE DA 4
076 054 082 003 067 08 08 033 071 0.99 ADASYN DA 5
062 052 015 001 093 066 056 042 0.82 0.99 Traditional Under-sampling 6
078 063 059 005 084 091 083 057 088 0.99 Proposed Oversampling 7
DA
080 062 078 004 082 089 076 056 0.83 099 ProposedUnder-sampling 8

The results in Tables 4-5 are presented as bar charts in
Fig. 4-1. Based on Tables 4-5 and Fig. 4-1, the following
conclusions can be drawn:

1- The experiment demonstrated a decrease in both
accuracy and recall measures for class F when increasing
the sample size.

2- The techniques for dealing with database
imbalance include model regularization, strengthening
the training set, and reducing the training set examples
(rows 2 to 8 in Table 4-5). However, these approaches

significantly reduced the accuracy for class F from 0.41
in the reference condition (row 1 in Table 4-5) to less
than 0.1 (almost zero). Considering that class F is closely
related to class N in terms of morphology, when
preventing the model from being biased towards class N,
a greater number of normal beats are mistakenly labeled
as class F. For example, in the sample expansion
experiment, 4466 normal beats have been misclassified
as class F. This number was 122 in the reference
experiment.

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(22s), 1775-1796 | 1784



»

0.3
»
»
»

1
=Y

7
=3

1
3
2
0.1
o

m Reference Dataset Class Weight

- SV PASROTE - ADASYMN

PRE REC P RE REC PRE REC
] v s

Oversampling

raditional Under

[ - I‘.‘
REC

PRE
r

SMOTE

sampling = Proposed Undersampling

Fig. 4-1: Proposed Hybrid Precision (PRE) and CNN-based Retrieval (REC) in Inter-Patient Pattern for Four AAMI

The results obtained from these experiments are
presented in Table 4-6 for four classes (N, AAMI, V, S,
and F) based on two evaluation metrics: F1 and
Accuracy (ACC). Based on Table 4-6, the following
conclusions can be drawn:

1. According to Row 1 of Table 4-6, when the model is
trained on the reference training set, it achieves an
overall F1 score of 69.0 and an accuracy of 94.0.
Comparing this row with Rows 2 to 6 of Table 4-6, it can
be observed that all methods for addressing the
imbalanced training set had a negative impact on the
overall accuracy and F1 score. The main reason for the
decrease in the overall F1 score is the significant
reduction in the F1 score for class F, which, as explained
earlier, is caused by the decreased precision of class F in
these experiments.

2. Rows 7 and 8 of Table 4-6 demonstrate that only in
two proposed methods of oversampling and under-

Classes.

sampling in this paper, there is a slight improvement in
the overall F1 score. In these experiments, the F1 scores
for classes V and S have increased, but similar to
previous experiments, the F1 score for class F had a
significant ~ decrease, almost  neutralizing  the
improvement in the F1 scores for classes V and S.

3. In general, the only methods that were able to increase
the recall for classes V and F, which are medically
important, while maintaining the overall F1 score
(compared to the reference state), were our two proposed
methods of under-sampling and oversampling. The
SMOTE method and its derivatives generate new data by
using neighborhoods, which means that the generated
data may not be accurate. However, our proposed
oversampling method generates new data by making
small changes to the existing samples of each class,
resulting in a lower probability of generating incorrect
data. Our proposed under-sampling method only
balances the dataset and does not generate any new data.

Table 4-6: F1 and Accuracy of the Hybrid CNN Model in the Four AAMI Classes in the Inter-Patient Pattern.

Improvement( Total F S \% N
%)
ACC F1 ACC F1 | F1 | F1 | F1 | F1 Description Row
- - 0.94 0.69 052 0.64 050 0.98 Reference Dataset 1

-4.25 -4.34 090 066 014 0.80 0.60 0.95 Class Weight 2

-2340 -1739 064 072 0.04 074 039 0.84 SMOTE DA 3

-15.95 -1449 073 079 0.08 0.78 032 0.88 SVMSMOTE DA 4

-24.46  -8.69 0.67 071 0.06 0.73 0.48 0.83 ADASYN DA 5

-13.82 -18.84  0.93 0.81 002 0.78 048 0.90 Traditional Under- 6
sampling

-7.44 1.44 0.84 0.87 009 088 0.68 0.93 Proposed Oversampling 7

DA

-12.76 144 0.82 082 0.08 085 066 0.9 Proposed Under- 8

sampling

In table 4-7, the results of the experiments conducted in
this section are presented for the two classes VEB+ and
SVEB+ introduced in section 1-8. These results are

obtained by transforming the confusion matrix of the
four AAMI classes into the confusion matrix of the two
mentioned classes, and no changes have been made to
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the models, and no further experiments have been
performed. The best retrieval value for the VEB+ class
was obtained by training the model on the balanced
dataset using ADASYN. After that, the proposed under-
sampling and oversampling methods rank second and
third, respectively (Fig. 4-2). The proposed oversampling
method has increased the retrieval value of the VEB+
class by 31.67% compared to the reference training set.
The performance of the proposed under-sampling
method is almost similar to the proposed oversampling
method in all metrics. However, in this method, the

training speed of the network is much higher than all
data augmentation methods and even the reference case,
because the number of samples that the model trains on
in each iteration is significantly less (50,991 samples in
the reference case, 183,380 samples in the augmentation
case, and 8,146 samples in the proposed under-sampling
case). This can contribute to speeding up the
development of new methods. The proposed under-
sampling method increased the retrieval value of the
VEB+ class by 36.67%.

Table 4-7: Results of the experiments conducted in the Inter-Patient pattern for the VEB+ and SVEB+ classes.

Total VEB+ SVEB+

ACC F1 REC PRE|F1 REC PRE | F1 REC PRE Description Row

059 074 078 071 050 044 057 097 096 0.98 Reference Dataset 1

091 069 077 063 039 028 062 095 093 0098 Class Weight 2

073 057 061 053 014 008 044 084 074 0.97 SMOTE DA 3

080 065 076 056 024 014 076 088 080 0.98 SVMSMOTE DA 4

072 066 079 056 022 013 086 0.83 0.71 0.99 ADASYN DA 5

084 061 069 056 022 014 056 091 0.85 0.97 Traditional Under- 6
sampling

088 071 084 061 036 024 083 093 088 0.99 Proposed Oversampling 7

DA

083 069 083 059 031 019 076 091 0.83 0.99 Proposed Under- 8

sampling
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Fig. 4-2: Results of the experiments conducted in the Inter-Patient pattern for the two classes SVEB+ and VEB+.

4-4-2- Model Evaluation in the Intra-Patient Pattern.

The model is evaluated in the Intra-Patient pattern. In the
Intra-Patient pattern, the proposed model is tested on a
reference training set (imbalanced) and a balanced set
using techniques such as SMOTE, SVMSMOTE,
ADASYN, proposed oversampling, and traditional
under-sampling. The performance of the model in terms
of F1 score and accuracy is separately evaluated on the
evaluation set, as shown in Tables 4-8. Additionally,
precision and recall metrics for the four classes N, V, S,
and F are listed in Table 4-10. The confusion matrix for
the reference experiment, proposed oversampling, and

proposed under-sampling is presented in Table 4-9.
Based on these tables, the following conclusions can be
drawn:

1. According to Table 4-8, data augmentation techniques
did not have any significant impact on F1 score and
accuracy. However, both traditional and proposed under-
sampling methods decreased the overall F1 score by
19.35% and 6.45% respectively, and decreased precision
by 5.05% and 2.02% compared to the reference case.

2. According to Table 4-10, the only method that
improved the recall for the F class is the proposed
oversampling method, which increased it from 0.77% to
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0.91%. The precision and recall for classes N, V, and S
did not change significantly with data augmentation

methods, but the under-sampling methods had a negative
impact on these metrics.

Table 4-8: F1 scores and the accuracy of the combined CNN model in the four AAMI classes in the Intra-Patient pattern.

Improvement( Total F S \% N
%)
ACC F1 ACC F1 | F1 | F1 | F1 | F1 Description Row
- - 0.99 093 084 097 091 1.00 Reference Dataset 1
- -1.07 0.99 092 0.82 097 091 1.00 SMOTE DA 2
- - 0.99 093 0.83 097 091 1.00 SVMSMOTE DA 3
- - 0.99 093 0.84 097 091 1.00 ADASYN DA 4
-5.05 -19.35 094 075 038 084 063 0.97 Traditional Under- 5
sampling
- -1.07 0.99 0.92 081 097 0.92 100 Proposed Oversampling 6
DA
-2.02 -6.45 0.97 0.87 078 092 0.74 0.98 Proposed Under- 7
sampling

Table 4-9: Confusion matrix in (a) reference training set, (b) oversampled dataset, and (c) under-sampled dataset (pattern:
Intra-Patient).

(A) Predicted
N V S F
N 44890 72 73 6
= % 130 1233 25 1
§ S 49 14 3421 20
F 55 0 36 310
(B) Predicted © Predicted
N V S F N V S F
N | 44767 96 80 98 N 43754 781 480 26
= V| 94 1280 13 2 = V| 250 1201 43 0
§ S 51 26 3389 38 § S 25 28 3447 4
F 27 0 8 366 F 67 7 50 277

Table 4-10: Proposed Combined Precision (PRE) and CNN Retrieval (REC) in the Intra-Patient Pattern for Four AAMI

Classes.
Total F S \ N
REC PRE | REC PRE|REC PRE|REC PRE |REC PRE Description Row
091 09 077 092 098 09 089 093 100 0.99 Reference Dataset 1
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094 091 08 079 097 097 094 0.88
093 092 084 082 09 098 094 0.87
092 094 084 084 096 098 0.89 0.94
087 066 082 025 078 090 091 0.48
095 090 091 073 097 097 092 0.91
089 084 069 090 098 086 093 0.61
3- As mentioned in Section 2.2, in the Intra-Patient

pattern, the model is familiarized with unique features of
all records during training, which means the imbalance
issue of the training set has a greater impact than the lack
of information. Thus, augmenting the training set and
preventing model bias towards class N while maintaining
the F1 score of other classes improves their recall. In
other words, since the number of class N data points is
large and the Intra-Patient model can utilize information
from all patients, it gains a relatively good understanding
of normal heartbeats of different individuals. Therefore,
even when the model is not biased towards this class
(due to the augmented training set), it can correctly
identify the majority of these normal heartbeats (Table 4-
9). Consequently, FP remains low for other classes
compared to the baseline experiment, resulting in little
decrease in accuracy for classes V, S, and F.

4- In the Intra-Patient model, the sample reduction
methods have resulted in a decrease in overall model
performance in all four measures. In Table 4-9, the
confusion matrix of the reference experiments shows the

0.99 1.00 SMOTE DA 2
0.99 1.00 SVMSMOTE DA 3
1.00 0.99 ADASYN DA 4
Traditional Under- 5
0.95 0.99 sampling
Proposed over-sampling 6
0.99 1.00 DA
Proposed Under- 7
0.97 1.00 sampling

proposed increase and decrease in samples in the Intra-
Patient pattern. In the reference experiment of this
pattern, 130 and 55 samples from classes V and F,
respectively, have been misclassified as class N. These
values have decreased to 94 and 27 samples,
respectively, in the sample increase experiment.
However, the number of misclassified normal beats in
these two classes has not changed significantly
(considering the total number of normal samples).

The results in the VEB+ and SVEB+ classes are
presented in Table 4-11 and Fig. 4-3. In this case, similar
to the classification in the four AAMI classes, the data
augmentation methods have no effect on F1 and overall
accuracy. The proposed sample augmentation methods,
SMOTE and SVMSMOTE, have increased the recall of
the VEB+ class and the precision of the SVEB+ class
while maintaining a constant F1 and overall accuracy.
The proposed sample augmentation and reduction
methods have increased the recall for the VEB+ class by
6.98% and the precision for the SVEB+ class by 2.33%,
respectively.

Table 4-11: Results of experiments conducted in the Intra-Patient pattern in the VEB+ and SVEB+ classes.

Total VEB+ SVEB+

ACC F1 REC PRE F1 REC PRE | F1 REC PRE Description Row
099 09 093 09 090 086 093 1.00 1.00 0.99 Reference Dataset 1
099 094 09 093 08 092 086 100 099 1.00 SMOTE DA 2
099 094 09 093 089 092 086 1.00 099 1.00 SVMSMOTE DA 3
099 09 094 09 09 088 092 100 1.00 1.00 ADASYN DA 4

Traditional Under- 5
098 089 091 08 078 084 073 099 099 0.99 sampling

Proposed Oversampling 6

099 094 09 093 08 092 086 1.00 099 1.00 DA

Proposed Under- 7
098 087 093 08 075 088 065 099 098 1.00 sampling
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Fig. 4-3: Results of experiments conducted in the Intra-Patient pattern for two classes, VEB+ and SVEB+.

4-4-3- Evaluation of the Patient-Specific Model in the
Pattern

In this pattern, a general model is trained on the general
reference (non-equilibrium) training sets and balanced
using the two proposed methods of oversampling and
under-sampling. Then, in each of these three
experiments, the general model is independently trained
and evaluated on each of the 22 training-evaluation
record sets described in Section 4-3. The results are
presented in Table 4-12 for the F1 and accuracy metrics
and in Table 4-13 for the precision and recall metrics for
the N, V, S, and F classes in the three database

conditions; reference database, under-sampled, and
oversampled. Table 4-14 presents the results of the
experiments for the two classes VEB+ and SVEB+ in the
reference database, under-sampled, and oversampled
conditions for the four metrics: accuracy, recall, F1, and
precision. Based on the obtained results, in this pattern,
whether the training set is balanced or unbalanced does
not significantly affect the overall results. In the case
where the general model is trained on the reference
training set, the recall value for the SVEB+ class is 0.77,
which increases to 0.82 in the oversampling experiment.
Considering the importance of correctly detecting this
type of beat, this finding can be desirable and significant.

Table 4-12: F1 and accuracy of the conducted experiments in the Patient-Specific pattern for the four classes N, V, S, and

Improvement( Total F S N
%)
ACC F1 ACC F1 | F1 | F1 | F1 | F1 Description Row
- - 0.99 091 080 097 086 0.99 Reference Dataset 1
-1.01 0 0.98 0.91 0.99 Proposed Under-sampling 2
0.82 097 0.84 DA

-1.01 -1.09 0.98 090 081 096 084 099 Proposed Over-sampling DA 3

Table 4-13: Precision and retrieval of experiments conducted in the Patient-Specific model across four classes N, V, S, and
F.
Total F S \
REC PRE |REC PRE|REC PRE|REC PRE | REC PRE Description Row
088 094 080 080 097 098 076 099 100 0.99 Reference Dataset 1
088 094 083 081 09 098 0.73 0.99 1.00 0.99 Proposed Under-sampling 2
DA

089 091 075 004 08 097 084 084 099 0.99 Proposed Oversampling DA 3

Table 4-14: Results of experiments conducted in the Patient-Specific pattern for the VEB+ and SVEB+ classes.

Total VEB+ SVEB+
AC F1 REC PRE F1 RE PRE | F1 RE PR Description Ro
C C C E w
0.99 092 0.88 097 085 077 095 099 100 0.99 Reference Dataset 1
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0.99 0.92 0.87 097 084 075 096 0.99

0.98 091 091 092 083 082 085 0.99

4-4-4- Comparing three construction patterns for
creating training and evaluation datasets.

To compare the three patterns of dataset creation,
training, and evaluation, the results obtained from the
proposed hybrid CNN model in experiments based on
three training patterns, namely Inter-Patient, Intra-
Patient, and Patient-Specific, are presented in Table 4-
14. As expected, the results of the Intra-Patient pattern
are significantly better than those of the Inter-Patient
pattern. For example, in the reference experiment, the F1
and accuracy values for the Inter-Patient pattern are 0.69

1.00 0.99 Proposed Under- 2
sampling
0.99 0.99 Proposed Over-sampling 3

and 0.94, respectively, while for the Intra-Patient pattern,
they are 0.93 and 0.99, respectively. The Patient-Specific
pattern also shows a noticeable superiority over the Inter-
Patient pattern, with results close to the Intra-Patient
pattern as well (Fig. 4-4). Similar trends can be observed
in the classification of beats into the VEB+ and SVEB+
classes (Table 4-16). Considering these results and the
fact that the Intra-Patient pattern is not easily
implementable in practice, the utilization of the Patient-
Specific pattern in developing automated arrhythmia
detection systems tailored to each individual provides
significant help in improving their performance.

Table 4-15: Comparison of results for the Inter-Patient, Intra-Patient, and Patient-Specific patterns in the classification of
the four AAMI classes.

Total F S V N
ACC F1 | F1 | F1 | F1 | F1 Description Row
0.94 069 052 064 050 0.98 Inter-Patient 1
0.99 093 084 097 091 1.00 Intra-Patient 2
099 091 080 097 086 0.99 Patient-Specific 3

m Patient-Specific

Total

F1

F

F1

F1

F1

F1

= Intra-Patient

Inter-Patient

Fig. 4-4: Comparison of the results for three patterns.

Table 4-16: Comparison of results for three Inter-Patient, Intra-Patient, and Patient-Specific patterns in two classes VEB+

and SVEB+.
Total VEB+ SVEB+
AC F1 REC PRE F1 RE PRE F1 RE PR Description Ro
C C C E W
095 074 078 071 050 060 044 097 096 0.98 Inter-Patient 1
099 095 093 096 09 086 093 100 100 0.99 Intra-Patient 2
099 092 0.88 097 085 0.77 095 099 100 0.99 Patient-Specific 3

In order to evaluate the efficiency of the proposed
architecture compared to the case where only deep
learning is used, we re-evaluated the performance of the
proposed model by removing the second sub-network
(related to classical features). Additionally, we evaluated

the performance of the proposed model in [7], which
incorporates both classical features and deep learning in
a conventional manner, on our own dataset. The results
of these two experiments, along with the results obtained
from the proposed model in the Intra-Patient pattern, are
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shown in Table 4-17. Our proposed model achieves a an increase of 71.3% and 18.21% respectively.
higher F1 score compared to these two experiments, with
Table 4-17: Comparison of the performance of the proposed model (row 3) to a model that solely utilizes deep learning
(row 2) and a model that combines classical features and deep learning in a conventional manner (row 1).

Total
ACC F1 REC PRE #
98.35% 89.69% 89.68% 89.70% 1
96.55% 76.76% 68.66% 87.03% 2
99.04% 93.02% 90.84% 95.30% 3
4-5- The second model evaluation: Auto-Encoder is lower compared to the previous proposed model
Fusion (Combined CNN with Residual Structure). The use of

increased samples has led to a decrease in F1 and
accuracy in both classification scenarios for the four
AAMI classes and the two VEB+ and SVEB+ classes.
However, similar to the previous model, it has improved
the recall for the V, S, F, and VEB+ classes. According
to Table 4-21, the results of this model are inferior to the
results of the first model (Combined CNN) but this
model is much simpler and requires fewer computational
and memory resources for implementation. Therefore, it
can easily be used in wearable devices.

A proposed Auto-Encoder model has been applied to the
Intra-Patient pattern on the reference training set and the
balanced training set by increasing the samples, training,
and separately evaluating them. The results of these
experiments are presented in Table 4-18 and Table 4-19
for four classes (AAMI), and in Table 4-20 for the VEB+
and SVEB+ classes. Comparing the results in Table 4-18
and Table 4-19 demonstrates that the overall
performance of this model in the reference training mode

Table 4-18: F1 Score and Accuracy of the Integrated Auto-Coder-Encoder Model in Four AAMI Classes.

Total F S Vv N
ACC F1 | F1 | F1 | F1 | F1 Description Row
0.98 084 061 093 084 0.99 Reference Dataset 1

0.96 078 024 096 082 0.98 Proposed Oversampling DA 2

Table 4-19: Precision and Recall of the Integrated Auto-Coder-Encoder Model in Four AAMI Classes.

Total F S \Y N
REC PRE |REC PRE|REC PRE|REC PRE | REC PRE Description Row
080 089 053 072 09 09 078 090 100 0.98 Reference Dataset 1
Proposed Over-sampling 2
08 072 061 015 097 09 087 077 096 0.99 DA

Table 4-20: Results of the Integrated Auto-Coder-Encoder Model in VEB+ and SVEB+ Classification.

Total VEB+ SVEB+
AC F1 REC PRE | F1 RE PRE|F1 RE PR Description Row
C C C E
099 09 086 093 080 073 088 099 100 0.99 Reference Dataset 1
098 196 0.99 Proposed Over-sampling 2
096 080 0.89 073 059 082 046 DA
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4 - 6 - Comparison of proposed methods with
previous research

Table 4-21 compares the best results obtained from two
proposed models in the Intra-Patient pattern with
previous works conducted in this pattern. Our proposed
method performs better than the majority of current
works by combining classical features with deep learning
in a hybrid model. Additionally, most studies conducted
in this pattern usually use over 80% of the available data
for training their models and the rest for evaluation.
However, here we have divided the data into 50% for
training and 50% for evaluation. As a result, our model
has been trained on a significantly smaller dataset and
evaluated on a much larger one. To validate the proposed
architecture of separating classical features from raw
data in the hybrid approaches, the results of the proposed
hybrid architecture are compared with the results of

Model 9 (Row 8 in Table 4-21), which, as explained in
section 2-3-7, utilized a bidirectional LSTM network for
classification based on a combined feature vector
composed of raw data and classical features. The
proposed hybrid CNN model (Row 19 in Table 4-21)
increased the overall retrieval rate by 73.14%. Moreover,
the proposed hybrid encoder model (Row 21 in Table 4-
21), although having a simpler structure compared to
Model 9, increased the overall retrieval rate by 22.1%. In
table 4-22, the results of our proposed hybrid CNN
model have been compared with existing works in the
Patient-Specific pattern. Our proposed method has
achieved the best retrieval and F1 scores. In this pattern,
row 1 of table 4-22 (row 54) has employed the
conventional hybrid architecture. The proposed hybrid
CNN model (row 13 of table 4-22) has improved the
overall accuracy, retrieval, and F1 measures by 0.13%,
10.42%, and 6.10% respectively compared to model 54.

Table 4-21: Comparison of the proposed method with previous works in the Intra-Patient pattern.
The ratio of the Number
ACE - REC PR Model number (.Jf samples of of Work Row
% % % % the training set to the classes
total samples
99.39 - - - Wavelet-LSTM - 5 [43] 1
9520 9245 9352 9252 CNN 70% 13 [44] 2
85.00 - 90.00 - CFT, FFT - DNN - 5 [42] 3
98.00 93.69 97.70 90.00 CNN 21% 5 [37] 4
9340 - - - CNN 2 5 [51] 5
99.9 98.80 9835 99.25 CNN 81% 2 [30] 6
94.20 - 95.30 - DNN 80% 4 [50] 7
99.49 - 79.18 - CFE - BiLSTM 90% 5 [9] 8
91.66 - 88.29 - CNN 97% 4 [2] 9
99.04 93.02 90.84 95.30 Hybrid CNN 50% 4 Proposed | 19
99.29 94.66 93.01 96.37 Hybrid CNN 50% Proposed | 20
97.92 84.38 80.15 89.08 Hybrid AE 50% 4 Proposed | 21
98.68 89.75 86.43 93.33 Hybrid AE 50% 1 Proposed | 22

Table 4-22: Comparison of results obtained by the proposed method with other studies conducted on the Patient model.

ACC F1 REC PRE Number
Model of Work Row
% % % % classes
98.75 87.15 79.95 96.95 Wavelet-LSTM 2 [54] 1
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97.50 - 63.34 - CFE - DNN 5 [28] 2
97.90 88.00 80.20 97.30 4 [53] 3
9750 85.14 8590 84.40 CFE - DNN 4 [4] 4
98.75 90.87 88.12 93.80 Hybrid CNN 4 Proposed | 12
98.75 9247 88.28 97.08 Hybrid CNN 2 Proposed | 13

5- Conclusion

In this paper, first, the importance of timely diagnosis of
cardiac arrhythmias in detecting heart diseases and
preventing sudden cardiac death caused by them was
discussed, along with an introduction to cardiac
arrhythmias and electrocardiogram (ECG) analysis. The
existing challenges in automated arrhythmia diagnosis
from ECG signals were described, and a comprehensive
review of previous methods for ECG analysis was
presented, categorized into three groups: classical
methods, feature-based automatic methods, and a
combination of classical and automatic features.
Furthermore, a novel architecture for combining classical
features with deep learning based on independent sub-
networks, each suitable for a specific type of input, was
introduced. Based on this architecture, two new models
were proposed: a combined CNN model with a residual
structure and a combined auto-encoder model. The impact
of imbalanced training datasets on the model's
performance was also explored using several methods for
sample reduction and augmentation. Most of the examined
balancing methods prevented model bias towards the
majority class (normal) and improved the recovery of
other classes, which can be clinically significant
considering the importance of these classes. The
performance of the proposed models was evaluated in
three patterns: Inter-Patient, Intra-Patient, and Patient-
Specific. Although the best results were obtained in the
Intra-Patient pattern, as mentioned in Section 2, the results
of this pattern are not practically significant. Based on the
obtained results, the Patient-Specific pattern, by semi-
automating the classifier, significantly improves its
efficiency. This indicates that the use of the Patient-
Specific pattern in automatic arrhythmia detection devices
leads to overall performance enhancement. To validate the
results of the proposed architecture properly, two
additional experiments were conducted. One experiment
utilized the proposed combined CNN model without the
use of the sub-network related to classical feature analysis,
as a model that solely relies on automated feature
extraction. The other experiment used a model that
combines classical features and deep learning in the
conventional way (unified feature vector). The results
showed that our proposed architecture-based combined
CNN model outperformed both other models. In the end,

the results obtained from the two proposed models were
compared with the latest research findings in this field.
The combined CNN model with a residual structure
achieved better results than the latest research findings in
this area. It is worth mentioning that this improvement in
performance has been achieved without adding any
significant processing overhead compared to previous
methods. This is because classical features used in
classification have been employed, which were already
extracted in previous stages (such as heartbeat
segmentation). Additionally, since the number of these
classical features is small (only 5 classical features are
used in the proposed models), the model has not become
significantly more complex compared to a scenario where
only deep learning is utilized. The proposed combined
encoder model aims to provide a simple implementation
of a combined architecture that can be used in wearable
devices. The results obtained from this model can be
compared with recent research findings. Therefore, this
model demonstrates that the introduced combined
architecture in this paper can achieve good results even in
simple models with a small number of layers.
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