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Abstract: Heart disease is one of the leading causes of death worldwide, and cardiac arrhythmia is a major symptom of heart disease. 

Due to the inherent differences between raw time series data and classical features, it is not possible to take advantage of models such as 

convolutional neural network (CNN), which have a high ability to analyze ECG data. To overcome this limitation, this paper proposes a 

new idea for ECG classification. The proposed idea is to use separate inputs for raw data and classical features. Based on the proposed 

idea, two different models of the deep neural network are presented. A more complex architecture consists of a CNN with a Residual 

structure and an MLP. The second architecture is proposed by combining a CNN auto-encoder with an MLP to reduce the computational 

cost and the possibility of implementing the proposed idea in wearable devices that are limited in terms of processing capacity and 

energy consumption. Also, to approach the imbalance problem of existing ECG databases, new approaches have been proposed for 

oversample and undersample methods. Experimental results on the standard MIT-BIH Arrhythmia database showed a 14.73% increase in 

recall criterion by the first architecture and 1.27% by the second architecture, compared to the conventional architecture in the intra-

patient paradigm. In-Addition, the proposed oversampling and undersampling methods increased the first architectural recall for the 

VEB+ class by 6.98% and 2.33%, respectively in the intra-patient paradigm. 

Keywords: ECG signal, CNN, Deep learning, auto-encoder, arrhythmia, MLP. 

1- Introduction 

Today, with the improvement in quality of life, 

cardiovascular diseases have become the leading cause 

of death in humans. From 2013 to 2016 AD, 48% of 

individuals over the age of 20 (121.5 million people) in 

the United States were affected by cardiovascular 

diseases. Additionally, 31% of global mortality rates in 

2016 AD were attributed to these diseases. For this reson 

various machine learning methods have been proposed 

for arrythmia detection as we describe here: The softmax 

function, as discussed in [1], is pivotal in multi-class 

classification tasks, such as arrhythmia detection, where 

it's essential to differentiate between various types of 

heartbeats accurately. Catalani's work [2] exemplifies the 

application of machine learning techniques in arrhythmia 

classification, setting a foundation for subsequent 

research in the domain. Hannun et al.'s study [3] 

represents a landmark in utilizing deep neural networks 

for arrhythmia detection, showcasing the potential of 

these models to achieve cardiologist-level accuracy. Luo 

et al. [4] further the narrative by proposing a patient-

specific deep architectural model for ECG classification, 

emphasizing the importance of personalized healthcare 

solutions. The statistical reports by Virani et al. [5] and 

Benjamin et al. [6] provide a comprehensive overview of 

heart disease and stroke statistics, underlining the critical 

need for effective arrhythmia detection mechanisms. In a 

similar vein, Sannino and De Pietro [7] demonstrate the 

efficacy of deep learning approaches in ECG-based 

heartbeat classification, contributing to the growing body 

of evidence supporting AI in healthcare. Romanò's text 

atlas [8] and the interpretability analysis by Li et al. [9] 

offer insights into the practical aspects of ECG 

interpretation and the challenges of classifying heartbeats 

using machine learning models. Yao et al. [10] and the 

systematic review by Hong et al. [11] explore the 

advancements in arrhythmia detection algorithms, 

highlighting the role of attention mechanisms and 

convolutional neural networks in improving 

classification accuracy. Ebrahimi et al. [13] provide a 

critical review of deep learning methods for ECG 

arrhythmia classification, pointing out the challenges and 

opportunities in the field. The foundational texts by 

Francois [14], Géron [15], and Hastie et al. [16] are 

essential resources for understanding the underlying 

theories of machine learning and deep learning, which 

are crucial for developing sophisticated arrhythmia 

detection models. The significance of publicly available 

databases, such as the MIT-BIH Arrhythmia Database 

[17] and PhysioNet [18, 25], cannot be overstated, as 

they enable researchers to train, test, and validate their 

models on standardized datasets. Llamedo and Martínez 

[19] discuss the importance of feature selection in 

heartbeat classification, a theme that is echoed in the 

work of Halperin and Hart [20], Kannel et al. [21], and 
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Wolf et al. [22], who explore the epidemiological aspects 

of atrial fibrillation and its role as a risk factor for stroke. 

Recent studies, such as those by Pourbabaee et al. [23], 

Moody et al. [24], and Li and Boulanger [26], delve into 

the application of deep convolutional neural networks 

and data augmentation methods for enhancing the 

detection of arrhythmias, including atrial fibrillation. 

Harrigan et al. [27], Das and Ari [28], and Goodfellow et 

al. [29] contribute to the understanding of signal 

processing techniques and the use of convolutional 

neural networks in ECG classification. Xu and Liu [30], 

Acharya et al. [31], and Gao et al. [32] further 

demonstrate the potential of deep learning models, 

including CNNs and LSTMs, in accurately identifying 

arrhythmic events from ECG signals. The works of 

Singh and Tiwari [33], Cao et al. [34], and Donoho [35, 

36] explore various aspects of signal denoising and 

augmentation, crucial for preparing ECG data for 

analysis. Shaker et al. [37] leverage the power of 

Generative Adversarial Networks (GANs) to generalize 

Convolutional Neural Networks (CNNs) for ECG 

classification, showcasing the utility of synthetic data in 

overcoming the limitations posed by imbalanced 

datasets. This is complemented by the studies of Thakor 

et al. [38] and Alfaras et al. [39], who focus on the 

optimization of signal processing techniques and 

machine learning models for efficient heartbeat 

classification, illustrating the ongoing efforts to refine 

the analytical capabilities of arrhythmia detection 

systems. The works of Liu et al. [40], Alvarado et al. 

[41], and Baghdadi [42] delve into the complexities of 

ECG signal analysis, employing sophisticated models to 

enhance the precision of arrhythmia detection. These 

studies highlight the significance of addressing the 

nuances of ECG signals, such as the variability in signal 

quality and the presence of noise, which are critical 

challenges in the development of reliable detection 

systems. Yildirim's research [43, 44] introduces 

innovative deep learning models, including bidirectional 

LSTM network models and deep convolutional neural 

networks, for the classification of ECG signals. These 

approaches exemplify the shift towards more advanced 

neural network architectures that offer improved 

accuracy and efficiency in arrhythmia detection. 

Mousavi and Afghah [45] and Jiang et al. [46] present 

novel neural network systems designed to handle 

imbalanced datasets, a common issue in medical data 

analysis. Their work underscores the importance of 

developing algorithms that are capable of distinguishing 

between minority classes, such as rare arrhythmias, 

without being overwhelmed by the majority classes. De 

Chazal et al. [47] and Luz et al. [48] focus on the 

automatic classification of heartbeats using a 

combination of ECG morphology and heartbeat interval 

features, further advancing the field by integrating 

multiple data dimensions into the classification process. 

This multi-feature approach is indicative of the trend 

towards creating more holistic models that consider 

various aspects of the ECG signal for a more accurate 

diagnosis. Mathews et al. [49] and Golpayegani [50] 

explore the application of deep learning and neural 

networks in ECG beat classification, demonstrating the 

versatility of these technologies in extracting meaningful 

patterns from complex data. Kachuee et al. [51] and Al 

Rahhal et al. [52] highlight the potential of transfer 

learning and deep learning approaches, respectively, in 

improving the classification of electrocardiogram 

signals, emphasizing the benefits of leveraging pre-

trained models and deep architectures for enhancing 

performance. The contributions of Amirshahi and 

Hashemi [53], Saadatnejad et al. [54], and Hadaeghi [55] 

exemplify the integration of advanced computational 

models into wearable devices for continuous monitoring, 

pointing towards the future of personalized healthcare 

and the potential for real-time arrhythmia detection. Data 

augmentation techniques, as explored by Hatamian et al. 

[56] and the synthetic minority over-sampling techniques 

discussed by Chawla et al. [57] and He et al. [58], 

address the critical issue of class imbalance in training 

datasets. These methodologies enable the development 

of models that are more robust and generalizable, 

thereby improving the accuracy of arrhythmia detection 

across diverse patient populations. Generative models, 

such as those described by Goodfellow et al. [59], 

Delaney et al. [60], and Radford et al. [61], offer 

innovative solutions for generating synthetic ECG 

signals that can enhance the training of machine learning 

models. These approaches underscore the creative use of 

AI to overcome data limitations, paving the way for 

more sophisticated and capable arrhythmia detection 

systems. The ongoing research and development in heart 

arrhythmia detection underscore a pivotal shift towards 

harnessing computational intelligence to address critical 

healthcare challenges.  

2- Problem statement 

In this section, the proposed problem is described. In 

Section 1, the data preparation, extraction of classical 

features, and the construction of training and evaluation 

sets are explained. Section 2 introduces two new 

methods to address the imbalance in the training set. In 

Sections 3 and 4, our proposed deep learning models for 

heartbeat classification, using deep learning alongside 

classical features, are presented. Section 5 explains how 

to determine hyperparameters and train the proposed 

models. 
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2-1- Data Preparation 

In this paper, similar to the majority of work conducted 

in this field, the MIT-BIH database is utilized as the 

database. Furthermore, according to the ANSI/AAMI 

EC57:1998 recommendation, 4 records containing paced 

beats, most of which belong to class Q, are excluded 

(other records do not contain Q beats), and classification 

into 4 classes of AAMI (N, V, S, and F) is performed. 

Before dividing this database into training and evaluation 

sets, several preprocessing steps have been applied to the 

available records (Fig. 3-1). These preprocessing steps 

include noise removal from the records, segmentation 

into independent beats, and normalization. 

 

Fig. 3-1: Preprocessing steps performed on data prior to 

dividing them into training and evaluation sets. 

3-1-1- ECG Preprocessing and Beat Segmentation 

Initially, according to the proposed method in [38] and 

[37], a second-order Butterworth filter with a frequency 

range of [0.5-45Hz] is used to eliminate low and high-

frequency noise. The Butterworth filter is designed to 

have a flat frequency response within the passband as 

much as possible. This filter has less computational 

complexity compared to wavelet-based methods. Fig. 3-2 

illustrates the original ECG signal (before filtering) and 

the filtered signal along with the frequency response of 

the Butterworth filter with the mentioned characteristics. 

 

Fig. 3-2: (a) ECG signal before and after filtering, (b) 

frequency response of the Butterworth filter. 

After noise removal from the records, RRI features are 

extracted for each heartbeat. These features are as 

follows: 

• Pre RRI: The distance between the R-peak of the 

current beat and the R-peak of the previous beat. 

• Post RRI: The distance between the R-peak of the 

current beat and the R-peak of the next beat. 

• Local RRI: The local average RR-Interval for the 

current beat. 

• Global RRI: The average of RR-Intervals for all 

beats in a record. 

These features are calculated using the following 

equations: 3-1, 3-2, 3-3, and 3-4. 

α𝑛 = 𝜃𝑛 − 𝜃𝑛−1 

 

β𝑛 = 𝜃𝑛+1 − 𝜃𝑛 

 

𝑙𝛾𝑛 =
∑ 𝛾𝑛+𝑖
𝑘
𝑖=−𝑗

𝑗 + 𝑘 + 1
 

 

𝑔𝛾Ψ =
∑ γ𝑛𝑛∈Ψ

|Ψ|
 

In these relationships, n refers to the beat number, 

𝜃𝑛represents the R-Peak location, α𝑛denotes the Pre RRI 

feature, β𝑛indicates the Post RRI feature, and 

𝑙γ𝑛represents the Local RRI feature of the nth heartbeat. 

Additionally, i and j refer to the number of left and right 

neighbors in the Local RRI feature, while γ one of the 

Local RRI or Global RRI features is represented by 𝑔γΨ 

in the Ψ record. |Ψ|denotes the number of beats present 

in the Ψ record. These features are utilized further for 

segmentation and classification purposes. In this context, 

considering the objective of the problem, similar to most 

conducted tasks, the R-Peak locations determined by the 

database itself are employed. After noise removal and 

feature extraction of the RRI records, according to the 

suggested method [37], the records are divided into 

independent beats. In this method, the range of each beat 

is determined by placing its R-Peak position within the 

[
−1

3
𝑃𝑟𝑒𝑅𝑅𝐼 .

2

3
 𝑃𝑜𝑠𝑡𝑅𝑅𝐼] interval (Equation 3-5). This 

segmentation method, in addition to being dynamic and 

accurate, unlike methods that require detection of P and 

T wave locations, does not add much processing load to 

the system. Especially considering that Pre-RRI and 

Post-RRI features are also used during classification. The 

results of applying this method are shown in Fig. 3-3. 

𝑋N = 𝚿
[𝜃𝑛−

1
3
α𝑛.𝜃𝑛+

2
3
β𝑛 ]

 

After the beat segmentation, the data of each beat are 

normalized between 0 and 1 using Equation 3-6. In this 

equation, 𝑥𝑡 and 𝑥̅𝑡 are the original and normalized 

samples at moment t within the beat (X). 

𝑥̅𝑡  =
𝑥𝑡 −min (𝑋)

𝑚𝑎𝑥(𝑋) − min (𝑋)
 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1775–1796  |  1778 

 

Fig. 3-3: Segmentation of ECG record into individual 

beats. 

In the context of the input length of the model needing to 

be constant, the length of all pulses is set to 300 samples. 

If the length of a pulse is less than 300 samples, same 

padding is applied at the beginning and end of the pulse 

to increase its length. Conversely, if the length of a pulse 

exceeds 300 samples, samples are removed from the 

beginning and end of the pulse to decrease its length.  

3- Proposed method 

3- 3- Proposed Model One: CNN - Hybrid with 

Residual Structure 

As mentioned in Section 2, deep learning models have 

shown higher efficiency compared to classical feature 

extraction methods. However, several decades of 

research have been devoted to classical features, and 

some of them have proven to be important. For example, 

RRI features are not only used in automated systems but 

also by physicians in disease diagnosis. For this reason, 

in some studies, a combination of these features with 

deep learning has been employed, which was discussed 

in Section 2.6.3. 

 

Fig. 3-8: (a) Previous model architectures and (b) Proposed model architecture for incorporating classical features 

alongside deep learning. 

The architectural and proposed methods for combined 

utilization of classical features and deep learning are 

shown in Fig. 3-8, this architecture enables the design of 

two independent sub-networks, each suitable for its own 

type of input. The general equations of conventional 

models and the proposed model are given in equations 3-

8 and 3-9, respectively. In these equations, P represents 

the prediction vector (output of the model), F is the 

model function, X is the raw pulse data vector, R is the 

vector of classical features, and the operation of 

concatenating two vectors is denoted by ⧺. Essentially, 

the previous models are single-variable functions 

(vector-type) and therefore behave uniformly with all 

elements of the input vector. However, the proposed 

model is a two-variable function, allowing it to interact 

differently and independently with the inputs. The 

proposed model is illustrated with more detail in Fig. 3-9 

and will be discussed further in the subsequent section. 

𝑃 = 𝐹(𝑋 ⧺ 𝑅) 

𝑃 = 𝐹(𝑋. 𝑅) 
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Fig. 3-9: Proposed composite CNN model. 

3-3-1- Sub-network 1: Automatic Feature Extraction 

Sub-network 

Subnetwork 1 is responsible for automatically extracting 

features from raw input data (e.g., heartbeat) using deep 

learning. Considering the success of CNN in previous 

research, it has been used in this study as well. The 

proposed CNN is inspired by the proposed networks (51) 

and (3) and consists of one standard convolutional block 

and five residual convolutional blocks. The structure and 

advantages of residual blocks are explained in Section 2. 

To prevent overfitting of the model on input data, 

especially when the model is trained on a balanced 

dataset augmented by data augmentation, a Dropout 

layer has been used after the input and the first 

convolutional block. During model training, the Dropout 

layer randomly removes some neurons from the input 

layer (setting their values to zero), thus introducing 

changes in the model's structure. Each residual 

convolutional block utilizes two serial convolutional 

layers, a skip connection, and a MaxPool layer for spatial 

feature reduction. The number of filters in the 

convolutional layers in the first (standard convolution), 

second, and third (residual convolution) blocks is 32, 

while in the fourth and fifth blocks, it is 64, and in the 

last block, it is 128. Considering the halving of feature 

spatial dimensions after each MaxPool layer and the 

input heartbeat length (300 samples), the output 

dimensions of the first subnetwork are 9x128 (1152 

features). The change in feature space from the input 

layer to the last subnetwork 1 block is illustrated in Fig. 

3-10. It is expected that this network, due to its high 

number of layers (11 convolutional layers) and the 

residual structure, learns high-level features from input 

heartbeats. 

 

Fig. 3-10: Dimensions alteration of the feature space 

after each block in the subnetwork for automatic feature 

extraction (subnetwork 1). 

3-3-2- Subnetwork for classical feature analysis 

(Subnetwork 2) 

This sub-network is responsible for analyzing the classic 

features of the input. The network consists of 2 dense 

layers along with a skip connection. The number of 

neurons in the two dense layers is 16 and 8 respectively. 

The skip connection allows the input features of this sub-

network to be directly deposited into sub-network 3. At 

the end of this sub-network, a Dropout layer is placed. 

The input layer of this model consists of 5 neurons, 

which will be explained further. Four RRI features 

described in the previous section, along with the duration 

of the heartbeat (length of the heartbeat before it reaches 

300 samples), are considered as the input feature vector 

of this sub-network (Fig. 3-11). The reason for selecting 

these features as input to the proposed model is that these 

features become independent during signal segmentation 

into individual heartbeats, and although the model is 

strong, it has no chance of learning them. 

 

Fig. 3-11: Input Feature Vector below Network 2 

3-3-3 subnetwork classifier (Subnetwork 3) This subnetwork plays the role of a classifier model. The 

input to this network is two output vectors from previous 
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subnetworks, which are concatenated at the beginning of 

this subnetwork. This network consists of three dense 

layers along with a skip connection and a dropout layer. 

The output layer is also a dense layer with 4 neurons and 

the SoftMax activation function. For all convolutional 

and dense layers in the proposed model, unlike most 

previous models that use the ReLU activation function, 

the proposed method uses the Leaky ReLU function. The 

derivative of the ReLU function is 0 when its input is 

less than 0, which causes some neurons to always remain 

in the negative value without any change. These neurons 

are commonly referred to as "dead neurons." One of the 

methods to prevent this phenomenon is to use the Leaky 

ReLU function (Equation 3-10). This function also has a 

non-zero derivative (a) for inputs smaller than zero, 

allowing the neurons to learn even with negative values. 

In Equation 3-10, a is a predefined constant value. Fig. 

3-12 illustrates the Leaky ReLU function. 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥.               𝑥 > 0
𝑎𝑥.              𝑥 ≤ 0

 (10-3) 

 

Fig. 3-12: ReLU and Leaky ReLU Functions (𝛼 = 0.2) 

3-4- Proposed Model - Combined Auto-Encoder 

In the previous section, a combined CNN with a residual 

structure was proposed using skip connections, resulting 

in a model with a large number of layers. However, 

increasing the number of layers and the use of skip 

connections impose computational and memory 

requirements, posing challenges for implementing low-

power and small wearable devices. Therefore, in this part 

of the research, a simpler combined model without the 

residual structure is proposed. The proposed model 

consists of an auto-encoder for feature extraction from 

the pulse signals and a MLP for classifying the pulse 

type based on the extracted features from the encoder 

and the classical features used in the previous section. As 

explained in Section 2, the methods that have been used 

so far for classification have initially trained the auto-

encoder independently and then used its encoder as a 

feature extraction model (Fig. 3-13). In this case, 

considering that the main goal of the auto-encoder is to 

reconstruct the input signal as accurately as possible, it is 

possible for the encoder to learn features that are 

important for reconstruction but not suitable for 

classification, or to not learn features that are important 

for classification but not useful for reconstruction. To 

investigate this issue, we trained two auto-encoders, one 

composed of dense layers and the other composed of 

convolutional layers, only on one class of pulses (using 

the training dataset) and calculated their reconstruction 

errors on all four classes in the evaluation set. To 

calculate the reconstruction error, we used the mean 

absolute error (MAE) function according to Equation 3-

11. In this equation, EAE is the reconstruction error of the 

auto-encoder, X is the input pulse, 𝑋 ̅ is the reconstructed 

pulse, and |X| is the length of the pulse. Histograms of 

reconstruction errors for the existing samples in the 

evaluation dataset are shown in Fig. 3-14 for the auto-

encoder with dense layers and in Fig. 3-15 for the auto-

encoder with convolution layers, for four types of beats: 

N, V, S, and F. Although the models have only been 

trained on the normal class samples in the training set, it 

is expected that the reconstruction errors for other 

classes, as they have different characteristics, would be 

high. However, based on the presented histograms in 

Fig. 3-14 and Fig. 3-15, the model's errors are 

approximately within the same range for all four classes. 

This may be due to the learned features by the encoder 

being specific to reconstructing heartbeat signals and not 

suitable for proper classification. Fig. 3-16 illustrates 

several reconstructed heartbeat samples by the 

convolutional auto-encoder trained on class N. As 

observed in this Fig., the auto-encoder is successful in 

reconstructing samples from all classes. 

𝐸𝐴𝐸 =
∑|𝑋 − 𝑋̅|

|𝑋|
 

 

Fig. 3-13: Common Usage of Auto-Encoder for Classification. 
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Fig. 3-14: Histogram of reconstruction errors for N, V, S, and F beats in a compact trained auto-encoder applied to the N 

class. 

 

Fig. 3-15: Histogram of reconstruction errors for N, V, S, and F beats of the auto-encoder trained on class N. 

 

Fig. 3-16: Sample reconstructed beats generated by Auto-Encoder Convolution trained on class N. 

To ensure that the encoder pays attention to important 

features for beat classification during training, our 

proposed Auto-Encoder combines two separate input 

vectors and two separate output vectors. The encoder's 

output is connected to both the decoder for beat 

reconstruction and the MLP for beat type determination. 

The overall structure of the proposed Auto-Encoder is 

shown in Fig. 3-17. In this architecture, the model learns 

in an integrated manner, and therefore, from the 

beginning of the training process, the loss value in beat 

classification affects the weights of the connections 

under the encoder network (through backpropagation). 

Considering that the goal of designing this model is its 

implementation in wearable devices, we have tried to 

avoid using layers and structures that would complicate 

the model or have a large number of layers. The 

proposed model's encoder consists of three convolutional 

blocks. To reduce the dimensionality of the input vector, 

MaxPool layers with a stride of 2 are used in the first two 

blocks. As a result, the output length of the encoder is 

one-fourth of the input pulse length. For the proposed 

decoder model, we have used four convolutional blocks. 

In the first two blocks, two UpSample layers are 

included to increase the vector length and bring it to the 

original pulse length. Each UpSample layer repeats each 

element of its input vector once. Therefore, the output 

vector length is twice its input (Fig. 3-18). For the 

classifier subnetwork in the proposed model, we have 

used an MLP with four dense layers (including the 

output layer). The details of the proposed hybrid auto-

encoder are shown in Fig. 3-19. 
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Fig. 3-17: Proposed Hybrid Auto-Encoder Structure.                     Fig. 3-18: UpSample Layer 

 

Fig. 3-19: Proposed Auto-Encoder Integration 

3 -5- Determining Hyper-parameters and Model 

Training 

To determine the optimal hyper-parameters in the 

proposed model, we have employed a grid search 

technique. In grid search, all possible combinations in 

the search space are examined. The searched meta-

parameters include the learning rate, number of training 

epochs, batch size, and the dropout rates of the layers. 

The grid search operation to find suitable hyper-

parameters for the model is carried out independently for 

all three patterns. The network training is performed 

using the Adam optimizer, and the Cross-Entropy 

function is used to calculate the loss. Here, we have not 

utilized any technique for early stopping of the training 

process. 

4- Results and Analysis 

4-1- Tools used for implementation and evaluation of 

proposed methods 

In this paper, the Python programming language (version 

3.7) based on the Windows 10 operating system has been 

used to write all programs. The hardware platform used 

is a PC with the following specifications: Intel Core i5 

processor, 8 gigabytes of memory, and NVIDIA 

GeForce GTX960 - 4GB graphics processor. 

4-2- Metrics used in evaluating the performance of 

proposed methods: 

When evaluating classifier models, the class assigned by 

the dataset itself to the data, known as the true class, and 

the class predicted by the model for each input data, 

known as the predicted class, are considered. In binary 

classifiers (two classes: positive (P) and negative (N)), 

TP (True Positive) and TN (True Negative) represent the 

number of positive and negative samples correctly 

classified, respectively. FP (False Positive) represents the 

number of negative samples incorrectly classified as 

positive, and FN (False Negative) represents the number 

of positive samples incorrectly classified as negative. 

These numbers are used to measure the performance of 

classifier models. 

4-3- Investigation of constructed sets 

For the pre-processing and extraction of classical 

features, two features, Local RRI and Global RRI, have 

been calculated based on the Pre RRI feature (in Eq. 3-3 

and Eq.3-4, 𝛾 = 𝑎 is considered). Additionally, a 
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neighborhood in Local RRI has been defined as 10 

adjacent beats (in Eq. 3-3, =  5. 𝑖 = 5 ). Summary of the 

number of samples in each data set in three patterns: 

Inter-Patient, Intra-Patient and Patient-Specific is given 

in Table 3-4. As mentioned before, in the Inter-Patient 

pattern, 22 records were used for the training set (DS1 in 

Table 2-1) and 22 other records (DS2 in Table 2-1) were 

used for the evaluation set. In the Intra-Patient pattern, 

50% of the samples from each beat were randomly 

selected for the training set, and the remaining 50% were 

used for the evaluation set. In the Patient-Specific 

pattern, 22 records from DS1 were used for training the 

general models, and the initial 20% of each record in 

DS2 were used for training the specific models (22 

specific models), while the remaining 80% of each 

record were used for evaluating the specific models. 

Based on Table 4-3, approximately 90% of all beats in 

the datasets belong to the normal class. 

 

 

Table 4-3: Summary of the constructed training and evaluation datasets in three patterns: Inter-Patient, Intra-Patient, and 

Patient-Specific. 

Evaluation collection / Dedicated training-

evaluation 

Education collection / general 

education Pattern Row 

F S V N F S V N 

388 3221 1833 44235 415 3788 943 45845 Inter-Patient 1 

401 3504 1388 45040 402 3505 1388 45040 Intra-Patient 2 

388 3221 1833 4435 415 3788 943 45845 Patient-

Specific 

3 

4 -4- Evaluation of the First Model: Hybrid CNN 

with Residual Structure 

In this section, a proposed Hybrid CNN model is 

evaluated using three patterns: Inter-Patient, Intra-

Patient, and Patient-Specific. Subsequently, the obtained 

results for each pattern are presented and discussed. 

4-4-1-Model Evaluation in Inter-Patient Pattern 

In the Inter-Patient pattern, the proposed model was 

evaluated on the reference (imbalanced) training set and 

the balanced training set achieved by increasing the 

proposed samples using SMOTE, SVMSMOTE, 

ADASYN, and reducing the conventional and proposed 

training samples. Additionally, an experiment was 

conducted on the robustness of the model against the 

reference set imbalance by assigning weights to the 

existing classes (Row 2). After training the model in 

each of these scenarios, the performance of the model 

was evaluated on the evaluation set without any 

manipulation or changes. The confusion matrix of the 

three reference experiments, the proposed sample 

increase, and the proposed sample reduction are 

presented in Table 4-4. The following conclusions can be 

drawn from this table: 

1- According to Table 4-4 (a), in the case where the 

model has been trained on a reference training set where 

the number of samples N is much larger than other 

classes, it has made a significant number of false normal 

predictions for V, S, and F beats, indicating a bias 

towards these classes. Therefore, model retrieval in this 

scenario is low for the V, S, and F classes (Row 1, Table 

4-5). 

2- When the model is trained on the balanced dataset by 

increasing the proposed samples, it prevents the model 

from biasing towards class N. As a result, the number of 

FN cases for classes V and S compared to the previous 

state decreased significantly from 747 and 328 to 173 

and 83, respectively. Following this, the recovery of 

these two classes increased from the reference state of 

0.57 and 0.48 to 0.82 and 0.84, respectively. However, 

considering the increase in false positive alerts (FP) for 

normal beats from 251 and 78 to 809 and 127, it can be 

concluded that the examined data augmentation 

techniques are not successful in generating new useful 

information and only prevent model bias. 

Table 4-4: Confusion Matrix (a) in the reference training set, (b) after oversampling, and (c) after under-sampling in the 

Inter-Patient pattern. 

(A) Predicted 

  N V S F 
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A
ct

u
a

l 

N 43787 251 78 122 

V 747 1045 38 6 

S 328 1075 1562 256 

F 112 3 2 271 

 

(B) Predicted 

  N V S F 

A
ct

u
a

l 

N 38836 809 127 4466 

V 173 1513 136 14 

S 83 314 2721 103 

F 149 4 7 228 
 

(C) Predicted 

  N V S F 

A
ct

u
a

l 

N 36502 823 259 6654 

V 250 1448 62 76 

S 204 297 2649 71 

F 76 3 7 302 
 

 

Table 4-5: Precision (PRE) and CNN-based Retrieval (REC) of the proposed combined model in the Inter-Patient pattern 

for four AAMI classes. 

Total F S V N   

REC PRE REC PRE REC PRE REC PRE REC PRE Description Row 

0.69 0.69 0.70 0.41 0.48 0.93 0.57 0.44 0.99 0.97 Reference Dataset 1 

0.73 0.61 0.58 0.08 0.78 0.82 0.62 0.57 0.93 0.98 Class Weight 2 

0.59 0.55 0.52 0.02 0.64 0.87 0.44 0.35 0.74 0.97 SMOTE DA 3 

0.69 0.52 0.49 0.05 0.73 0.84 0.76 0.20 0.8 0.98 SVMSMOTE DA 4 

0.76 0.54 0.82 0.03 0.67 0.8 0.86 0.33 0.71 0.99 ADASYN DA 5 

0.62 0.52 0.15 0.01 0.93 0.66 0.56 0.42 0.82 0.99 Traditional Under-sampling 6 

0.78 0.63 0.59 0.05 0.84 0.91 0.83 0.57 0.88 0.99 Proposed Oversampling 

DA 

7 

0.80 0.62 0.78 0.04 0.82 0.89 0.76 0.56 0.83 0.99 Proposed Under-sampling 8 

 

The results in Tables 4-5 are presented as bar charts in 

Fig. 4-1. Based on Tables 4-5 and Fig. 4-1, the following 

conclusions can be drawn: 

1- The experiment demonstrated a decrease in both 

accuracy and recall measures for class F when increasing 

the sample size. 

2- The techniques for dealing with database 

imbalance include model regularization, strengthening 

the training set, and reducing the training set examples 

(rows 2 to 8 in Table 4-5). However, these approaches 

significantly reduced the accuracy for class F from 0.41 

in the reference condition (row 1 in Table 4-5) to less 

than 0.1 (almost zero). Considering that class F is closely 

related to class N in terms of morphology, when 

preventing the model from being biased towards class N, 

a greater number of normal beats are mistakenly labeled 

as class F. For example, in the sample expansion 

experiment, 4466 normal beats have been misclassified 

as class F. This number was 122 in the reference 

experiment. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1775–1796  |  1785 

 

Fig. 4-1: Proposed Hybrid Precision (PRE) and CNN-based Retrieval (REC) in Inter-Patient Pattern for Four AAMI 

Classes. 

The results obtained from these experiments are 

presented in Table 4-6 for four classes (N, AAMI, V, S, 

and F) based on two evaluation metrics: F1 and 

Accuracy (ACC). Based on Table 4-6, the following 

conclusions can be drawn: 

1. According to Row 1 of Table 4-6, when the model is 

trained on the reference training set, it achieves an 

overall F1 score of 69.0 and an accuracy of 94.0. 

Comparing this row with Rows 2 to 6 of Table 4-6, it can 

be observed that all methods for addressing the 

imbalanced training set had a negative impact on the 

overall accuracy and F1 score. The main reason for the 

decrease in the overall F1 score is the significant 

reduction in the F1 score for class F, which, as explained 

earlier, is caused by the decreased precision of class F in 

these experiments. 

2. Rows 7 and 8 of Table 4-6 demonstrate that only in 

two proposed methods of oversampling and under-

sampling in this paper, there is a slight improvement in 

the overall F1 score. In these experiments, the F1 scores 

for classes V and S have increased, but similar to 

previous experiments, the F1 score for class F had a 

significant decrease, almost neutralizing the 

improvement in the F1 scores for classes V and S. 

3. In general, the only methods that were able to increase 

the recall for classes V and F, which are medically 

important, while maintaining the overall F1 score 

(compared to the reference state), were our two proposed 

methods of under-sampling and oversampling. The 

SMOTE method and its derivatives generate new data by 

using neighborhoods, which means that the generated 

data may not be accurate. However, our proposed 

oversampling method generates new data by making 

small changes to the existing samples of each class, 

resulting in a lower probability of generating incorrect 

data. Our proposed under-sampling method only 

balances the dataset and does not generate any new data. 

Table 4-6: F1 and Accuracy of the Hybrid CNN Model in the Four AAMI Classes in the Inter-Patient Pattern. 

Improvement(

%) 

Total F S V N   

ACC F1 ACC F1 F1 F1 F1 F1 Description Row 

- - 0.94 0.69 0.52 0.64 0.50 0.98 Reference Dataset 1 

-4.25 -4.34 0.90 0.66 0.14 0.80 0.60 0.95 Class Weight 2 

-23.40 -17.39 0.64 0.72 0.04 0.74 0.39 0.84 SMOTE DA 3 

-15.95 -14.49 0.73 0.79 0.08 0.78 0.32 0.88 SVMSMOTE DA 4 

-24.46 -8.69 0.67 0.71 0.06 0.73 0.48 0.83 ADASYN DA 5 

-13.82 -18.84 0.93 0.81 0.02 0.78 0.48 0.90 Traditional Under-

sampling 

6 

-7.44 1.44 0.84 0.87 0.09 0.88 0.68 0.93 Proposed Oversampling 

DA 

7 

-12.76 1.44 0.82 0.82 0.08 0.85 0.66 0.90 Proposed Under-

sampling 

8 

In table 4-7, the results of the experiments conducted in 

this section are presented for the two classes VEB+ and 

SVEB+ introduced in section 1-8. These results are 

obtained by transforming the confusion matrix of the 

four AAMI classes into the confusion matrix of the two 

mentioned classes, and no changes have been made to 
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the models, and no further experiments have been 

performed. The best retrieval value for the VEB+ class 

was obtained by training the model on the balanced 

dataset using ADASYN. After that, the proposed under-

sampling and oversampling methods rank second and 

third, respectively (Fig. 4-2). The proposed oversampling 

method has increased the retrieval value of the VEB+ 

class by 31.67% compared to the reference training set. 

The performance of the proposed under-sampling 

method is almost similar to the proposed oversampling 

method in all metrics. However, in this method, the 

training speed of the network is much higher than all 

data augmentation methods and even the reference case, 

because the number of samples that the model trains on 

in each iteration is significantly less (50,991 samples in 

the reference case, 183,380 samples in the augmentation 

case, and 8,146 samples in the proposed under-sampling 

case). This can contribute to speeding up the 

development of new methods. The proposed under-

sampling method increased the retrieval value of the 

VEB+ class by 36.67%.  

Table 4-7: Results of the experiments conducted in the Inter-Patient pattern for the VEB+ and SVEB+ classes. 

Total VEB+ SVEB+   

ACC F1 REC PRE F1 REC PRE F1 REC PRE Description Row 

0.59 0.74 0.78 0.71 0.50 0.44 0.57 0.97 0.96 0.98 Reference Dataset 1 

0.91 0.69 0.77 0.63 0.39 0.28 0.62 0.95 0.93 0.98 Class Weight 2 

0.73 0.57 0.61 0.53 0.14 0.08 0.44 0.84 0.74 0.97 SMOTE DA 3 

0.80 0.65 0.76 0.56 0.24 0.14 0.76 0.88 0.80 0.98 SVMSMOTE DA 4 

0.72 0.66 0.79 0.56 0.22 0.13 0.86 0.83 0.71 0.99 ADASYN DA 5 

0.84 0.61 0.69 0.56 0.22 0.14 0.56 0.91 0.85 0.97 Traditional Under-

sampling 

6 

0.88 0.71 0.84 0.61 0.36 0.24 0.83 0.93 0.88 0.99 Proposed Oversampling 

DA 

7 

0.83 0.69 0.83 0.59 0.31 0.19 0.76 0.91 0.83 0.99 Proposed Under-

sampling 

8 

 

 

Fig. 4-2: Results of the experiments conducted in the Inter-Patient pattern for the two classes SVEB+ and VEB+. 

4-4-2- Model Evaluation in the Intra-Patient Pattern. 

The model is evaluated in the Intra-Patient pattern. In the 

Intra-Patient pattern, the proposed model is tested on a 

reference training set (imbalanced) and a balanced set 

using techniques such as SMOTE, SVMSMOTE, 

ADASYN, proposed oversampling, and traditional 

under-sampling. The performance of the model in terms 

of F1 score and accuracy is separately evaluated on the 

evaluation set, as shown in Tables 4-8. Additionally, 

precision and recall metrics for the four classes N, V, S, 

and F are listed in Table 4-10. The confusion matrix for 

the reference experiment, proposed oversampling, and 

proposed under-sampling is presented in Table 4-9. 

Based on these tables, the following conclusions can be 

drawn: 

1. According to Table 4-8, data augmentation techniques 

did not have any significant impact on F1 score and 

accuracy. However, both traditional and proposed under-

sampling methods decreased the overall F1 score by 

19.35% and 6.45% respectively, and decreased precision 

by 5.05% and 2.02% compared to the reference case. 

2. According to Table 4-10, the only method that 

improved the recall for the F class is the proposed 

oversampling method, which increased it from 0.77% to 
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0.91%. The precision and recall for classes N, V, and S 

did not change significantly with data augmentation 

methods, but the under-sampling methods had a negative 

impact on these metrics. 

Table 4-8: F1 scores and the accuracy of the combined CNN model in the four AAMI classes in the Intra-Patient pattern. 

Improvement(

%) 

Total F S V N   

ACC F1 ACC F1 F1 F1 F1 F1 Description Row 

- - 0.99 0.93 0.84 0.97 0.91 1.00 Reference Dataset 1 

- -1.07 0.99 0.92 0.82 0.97 0.91 1.00 SMOTE DA 2 

- - 0.99 0.93 0.83 0.97 0.91 1.00 SVMSMOTE DA 3 

- - 0.99 0.93 0.84 0.97 0.91 1.00 ADASYN DA 4 

-5.05 -19.35 0.94 0.75 0.38 0.84 0.63 0.97 Traditional Under-

sampling 

5 

- -1.07 0.99 0.92 0.81 0.97 0.92 1.00 Proposed Oversampling 

DA 

6 

-2.02 -6.45 0.97 0.87 0.78 0.92 0.74 0.98 Proposed Under-

sampling 

 7 

 

Table 4-9: Confusion matrix in (a) reference training set, (b) oversampled dataset, and (c) under-sampled dataset (pattern: 

Intra-Patient). 

(A) Predicted 

  N V S F 

A
ct

u
a

l 

N 44890 72 73 6 

V 130 1233 25 1 

S 49 14 3421 20 

F 55 0 36 310 

 

(B) Predicted 

  N V S F 

A
ct

u
a

l 

N 44767 96 80 98 

V 94 1280 13 2 

S 51 26 3389 38 

F 27 0 8 366 
 

(C) Predicted 

  N V S F 

A
ct

u
a

l 

N 43754 781 480 26 

V 250 1291 43 0 

S 25 28 3447 4 

F 67 7 50 277 
 

 

Table 4-10: Proposed Combined Precision (PRE) and CNN Retrieval (REC) in the Intra-Patient Pattern for Four AAMI 

Classes. 

Total F S V N   

REC PRE REC PRE REC PRE REC PRE REC PRE Description Row 

0.91 0.95 0.77 0.92 0.98 0.96 0.89 0.93 1.00 0.99 Reference Dataset 1 
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0.94 0.91 0.85 0.79 0.97 0.97 0.94 0.88 0.99 1.00 SMOTE DA 2 

0.93 0.92 0.84 0.82 0.96 0.98 0.94 0.87 0.99 1.00 SVMSMOTE DA 3 

0.92 0.94 0.84 0.84 0.96 0.98 0.89 0.94 1.00 0.99 ADASYN DA 4 

0.87 0.66 0.82 0.25 0.78 0.90 0.91 0.48 0.95 0.99 

Traditional Under-

sampling 

5 

0.95 0.90 0.91 0.73 0.97 0.97 0.92 0.91 0.99 1.00 

Proposed over-sampling 

DA 

6 

0.89 0.84 0.69 0.90 0.98 0.86 0.93 0.61 0.97 1.00 

Proposed Under-

sampling 

7 

 

3- As mentioned in Section 2.2, in the Intra-Patient 

pattern, the model is familiarized with unique features of 

all records during training, which means the imbalance 

issue of the training set has a greater impact than the lack 

of information. Thus, augmenting the training set and 

preventing model bias towards class N while maintaining 

the F1 score of other classes improves their recall. In 

other words, since the number of class N data points is 

large and the Intra-Patient model can utilize information 

from all patients, it gains a relatively good understanding 

of normal heartbeats of different individuals. Therefore, 

even when the model is not biased towards this class 

(due to the augmented training set), it can correctly 

identify the majority of these normal heartbeats (Table 4-

9). Consequently, FP remains low for other classes 

compared to the baseline experiment, resulting in little 

decrease in accuracy for classes V, S, and F. 

4- In the Intra-Patient model, the sample reduction 

methods have resulted in a decrease in overall model 

performance in all four measures. In Table 4-9, the 

confusion matrix of the reference experiments shows the 

proposed increase and decrease in samples in the Intra-

Patient pattern. In the reference experiment of this 

pattern, 130 and 55 samples from classes V and F, 

respectively, have been misclassified as class N. These 

values have decreased to 94 and 27 samples, 

respectively, in the sample increase experiment. 

However, the number of misclassified normal beats in 

these two classes has not changed significantly 

(considering the total number of normal samples). 

The results in the VEB+ and SVEB+ classes are 

presented in Table 4-11 and Fig. 4-3. In this case, similar 

to the classification in the four AAMI classes, the data 

augmentation methods have no effect on F1 and overall 

accuracy. The proposed sample augmentation methods, 

SMOTE and SVMSMOTE, have increased the recall of 

the VEB+ class and the precision of the SVEB+ class 

while maintaining a constant F1 and overall accuracy. 

The proposed sample augmentation and reduction 

methods have increased the recall for the VEB+ class by 

6.98% and the precision for the SVEB+ class by 2.33%, 

respectively. 

Table 4-11: Results of experiments conducted in the Intra-Patient pattern in the VEB+ and SVEB+ classes. 

Total VEB+ SVEB+   

ACC F1 REC PRE F1 REC PRE F1 REC PRE Description Row 

0.99 0.95 0.93 0.96 0.90 0.86 0.93 1.00 1.00 0.99 Reference Dataset 1 

0.99 0.94 0.96 0.93 0.89 0.92 0.86 1.00 0.99 1.00 SMOTE DA 2 

0.99 0.94 0.96 0.93 0.89 0.92 0.86 1.00 0.99 1.00 SVMSMOTE DA 3 

0.99 0.95 0.94 0.96 0.90 0.88 0.92 1.00 1.00 1.00 ADASYN DA 4 

0.98 0.89 0.91 0.86 0.78 0.84 0.73 0.99 0.99 0.99 

Traditional Under-

sampling 

5 

0.99 0.94 0.96 0.93 0.89 0.92 0.86 1.00 0.99 1.00 

Proposed Oversampling 

DA 

6 

0.98 0.87 0.93 0.82 0.75 0.88 0.65 0.99 0.98 1.00 

Proposed Under-

sampling 

7 
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Fig. 4-3: Results of experiments conducted in the Intra-Patient pattern for two classes, VEB+ and SVEB+. 

4-4-3- Evaluation of the Patient-Specific Model in the 

Pattern 

In this pattern, a general model is trained on the general 

reference (non-equilibrium) training sets and balanced 

using the two proposed methods of oversampling and 

under-sampling. Then, in each of these three 

experiments, the general model is independently trained 

and evaluated on each of the 22 training-evaluation 

record sets described in Section 4-3. The results are 

presented in Table 4-12 for the F1 and accuracy metrics 

and in Table 4-13 for the precision and recall metrics for 

the N, V, S, and F classes in the three database 

conditions: reference database, under-sampled, and 

oversampled. Table 4-14 presents the results of the 

experiments for the two classes VEB+ and SVEB+ in the 

reference database, under-sampled, and oversampled 

conditions for the four metrics: accuracy, recall, F1, and 

precision. Based on the obtained results, in this pattern, 

whether the training set is balanced or unbalanced does 

not significantly affect the overall results. In the case 

where the general model is trained on the reference 

training set, the recall value for the SVEB+ class is 0.77, 

which increases to 0.82 in the oversampling experiment. 

Considering the importance of correctly detecting this 

type of beat, this finding can be desirable and significant. 

Table 4-12: F1 and accuracy of the conducted experiments in the Patient-Specific pattern for the four classes N, V, S, and 

F. 

Improvement(

%) 

Total F S V N   

ACC F1 ACC F1 F1 F1 F1 F1 Description Row 

- - 0.99 0.91 0.80 0.97 0.86 0.99 Reference Dataset 1 

-1.01 0 0.98 0.91 

0.82 0.97 0.84 

0.99 Proposed Under-sampling 

DA 

2 

-1.01 -1. 09 0.98 0.90 0.81 0.96 0.84 0.99 Proposed Over-sampling DA 3 

Table 4-13: Precision and retrieval of experiments conducted in the Patient-Specific model across four classes N, V, S, and 

F. 

Total F S V N   

REC PRE REC PRE REC PRE REC PRE REC PRE Description Row 

0.88 0.94 0.80 0.80 0.97 0.98 0.76 0.99 1.00 0.99 Reference Dataset 1 

0.88 0.94 0.83 0.81 0.96 0.98 0.73 0.99 1.00 0.99 Proposed Under-sampling 

DA 

2 

0.89 0.91 0.75 0.04 0.86 0.97 0.84 0.84 0.99 0.99 Proposed Oversampling DA 3 

Table 4-14: Results of experiments conducted in the Patient-Specific pattern for the VEB+ and SVEB+ classes. 

Total VEB+ SVEB+   

AC

C 

F1 REC PRE F1 RE

C 

PRE F1 RE

C 

PR

E 

Description Ro

w 

0.99 0.92 0.88 0.97 0.85 0.77 0.95 0.99 1.00 0.99 Reference Dataset 1 
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0.99 0.92 0.87 0.97 0.84 0.75 0.96 0.99 1.00 0.99 Proposed Under-

sampling 

2 

0.98 0.91 091 0.92 0.83 0.82 0.85 0.99 0.99 0.99 Proposed Over-sampling 3 

4-4-4- Comparing three construction patterns for 

creating training and evaluation datasets. 

To compare the three patterns of dataset creation, 

training, and evaluation, the results obtained from the 

proposed hybrid CNN model in experiments based on 

three training patterns, namely Inter-Patient, Intra-

Patient, and Patient-Specific, are presented in Table 4-

14. As expected, the results of the Intra-Patient pattern 

are significantly better than those of the Inter-Patient 

pattern. For example, in the reference experiment, the F1 

and accuracy values for the Inter-Patient pattern are 0.69 

and 0.94, respectively, while for the Intra-Patient pattern, 

they are 0.93 and 0.99, respectively. The Patient-Specific 

pattern also shows a noticeable superiority over the Inter-

Patient pattern, with results close to the Intra-Patient 

pattern as well (Fig. 4-4). Similar trends can be observed 

in the classification of beats into the VEB+ and SVEB+ 

classes (Table 4-16). Considering these results and the 

fact that the Intra-Patient pattern is not easily 

implementable in practice, the utilization of the Patient-

Specific pattern in developing automated arrhythmia 

detection systems tailored to each individual provides 

significant help in improving their performance. 

 

Table 4-15: Comparison of results for the Inter-Patient, Intra-Patient, and Patient-Specific patterns in the classification of 

the four AAMI classes. 

Total F S V N   

ACC F1 F1 F1 F1 F1 Description Row 

0.94 0.69 0.52 0.64 0.50 0.98 Inter-Patient 1 

0.99 0.93 0.84 0.97 0.91 1.00 Intra-Patient 2 

0.99 0.91 0.80 0.97 0.86 0.99 Patient-Specific 3 

 

Fig. 4-4: Comparison of the results for three patterns. 

Table 4-16: Comparison of results for three Inter-Patient, Intra-Patient, and Patient-Specific patterns in two classes VEB+ 

and SVEB+. 

Total VEB+ SVEB+   

AC

C 

F1 REC PRE F1 RE

C 

PRE F1 RE

C 

PR

E 

Description Ro

w 

0.95 0.74 0.78 0.71 0.50 0.60 0.44 0.97 0.96 0.98 Inter-Patient 1 

0.99 0.95 0.93 0.96 0.90 0.86 0.93 1.00 1.00 0.99 Intra-Patient 2 

0.99 0.92 0.88 0.97 0.85 0.77 0.95 0.99 1.00 0.99 Patient-Specific 3 

In order to evaluate the efficiency of the proposed 

architecture compared to the case where only deep 

learning is used, we re-evaluated the performance of the 

proposed model by removing the second sub-network 

(related to classical features). Additionally, we evaluated 

the performance of the proposed model in [7], which 

incorporates both classical features and deep learning in 

a conventional manner, on our own dataset. The results 

of these two experiments, along with the results obtained 

from the proposed model in the Intra-Patient pattern, are 
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shown in Table 4-17. Our proposed model achieves a 

higher F1 score compared to these two experiments, with 

an increase of 71.3% and 18.21% respectively. 

Table 4-17: Comparison of the performance of the proposed model (row 3) to a model that solely utilizes deep learning 

(row 2) and a model that combines classical features and deep learning in a conventional manner (row 1). 

Total  

ACC F1 REC PRE # 

98.35% 89.69% 89.68% 89.70% 1 

96.55% 76.76% 68.66% 87.03% 
2 

99.04% 93.02% 90.84% 95.30% 
3 

4-5- The second model evaluation: Auto-Encoder 

Fusion 

A proposed Auto-Encoder model has been applied to the 

Intra-Patient pattern on the reference training set and the 

balanced training set by increasing the samples, training, 

and separately evaluating them. The results of these 

experiments are presented in Table 4-18 and Table 4-19 

for four classes (AAMI), and in Table 4-20 for the VEB+ 

and SVEB+ classes. Comparing the results in Table 4-18 

and Table 4-19 demonstrates that the overall 

performance of this model in the reference training mode 

is lower compared to the previous proposed model 

(Combined CNN with Residual Structure). The use of 

increased samples has led to a decrease in F1 and 

accuracy in both classification scenarios for the four 

AAMI classes and the two VEB+ and SVEB+ classes. 

However, similar to the previous model, it has improved 

the recall for the V, S, F, and VEB+ classes. According 

to Table 4-21, the results of this model are inferior to the 

results of the first model (Combined CNN) but this 

model is much simpler and requires fewer computational 

and memory resources for implementation. Therefore, it 

can easily be used in wearable devices. 

Table 4-18: F1 Score and Accuracy of the Integrated Auto-Coder-Encoder Model in Four AAMI Classes. 

Total F S V N   

ACC F1 F1 F1 F1 F1 Description Row 

0.98 0.84 0.61 0.93 0.84 0.99 Reference Dataset 1 

0.96 0.78 0.24 0.96 0.82 0.98 Proposed Oversampling DA 2 

 

Table 4-19: Precision and Recall of the Integrated Auto-Coder-Encoder Model in Four AAMI Classes. 

Total F S V N   

REC PRE REC PRE REC PRE REC PRE REC PRE Description Row 

0.80 0.89 0.53 0.72 0.90 0.96 0.78 0.90 1.00 0.98 Reference Dataset 1 

0.85 0.72 0.61 0.15 0.97 0.95 0.87 0.77 0.96 0.99 

Proposed Over-sampling 

DA 

2 

Table 4-20: Results of the Integrated Auto-Coder-Encoder Model in VEB+ and SVEB+ Classification. 

Total VEB+ SVEB+   

AC

C 

F1 REC PRE F1 RE

C 

PRE F1 RE

C 

PR

E 

Description Row 

0.99 0.90 0.86 0.93 0.80 0.73 0.88 0.99 1.00 0.99 Reference Dataset 1 

0.96 0.80 0.89 0.73 0.59 0.82 0.46 

0.98 1.96 0.99 Proposed Over-sampling 

DA 

2 
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4 - 6 - Comparison of proposed methods with 

previous research 

Table 4-21 compares the best results obtained from two 

proposed models in the Intra-Patient pattern with 

previous works conducted in this pattern. Our proposed 

method performs better than the majority of current 

works by combining classical features with deep learning 

in a hybrid model. Additionally, most studies conducted 

in this pattern usually use over 80% of the available data 

for training their models and the rest for evaluation. 

However, here we have divided the data into 50% for 

training and 50% for evaluation. As a result, our model 

has been trained on a significantly smaller dataset and 

evaluated on a much larger one. To validate the proposed 

architecture of separating classical features from raw 

data in the hybrid approaches, the results of the proposed 

hybrid architecture are compared with the results of 

Model 9 (Row 8 in Table 4-21), which, as explained in 

section 2-3-7, utilized a bidirectional LSTM network for 

classification based on a combined feature vector 

composed of raw data and classical features. The 

proposed hybrid CNN model (Row 19 in Table 4-21) 

increased the overall retrieval rate by 73.14%. Moreover, 

the proposed hybrid encoder model (Row 21 in Table 4-

21), although having a simpler structure compared to 

Model 9, increased the overall retrieval rate by 22.1%. In 

table 4-22, the results of our proposed hybrid CNN 

model have been compared with existing works in the 

Patient-Specific pattern. Our proposed method has 

achieved the best retrieval and F1 scores. In this pattern, 

row 1 of table 4-22 (row 54) has employed the 

conventional hybrid architecture. The proposed hybrid 

CNN model (row 13 of table 4-22) has improved the 

overall accuracy, retrieval, and F1 measures by 0.13%, 

10.42%, and 6.10% respectively compared to model 54. 

 

Table 4-21: Comparison of the proposed method with previous works in the Intra-Patient pattern. 

ACC 

% 

F1 

% 

REC 

% 

PRE 

% 
Model 

The ratio of the 

number of samples of 

the training set to the 

total samples 

Number 

of 

classes 

Work Row 

99.39 - - - Wavelet-LSTM - 5 [43] 1 

95.20 92.45 93.52 92.52 CNN 70% 13 [44] 2 

85.00 - 90.00 - CFT, FFT - DNN - 5 [42] 3 

98.00 93.69 97.70 90.00 CNN 21% 5 [37] 4 

93.40 - - - CNN - 5 [51] 5 

99.9 98.80 98.35 99.25 CNN 81% 2 [30] 6 

94.20 - 95.30 - DNN 80% 4 [50] 7 

99.49 - 79.18 - CFE - BiLSTM 90% 5 [9] 8 

91.66 - 88.29 - CNN 97% 4 [2] 9 

99.04 93.02 90.84 95.30 Hybrid CNN 50% 4 Proposed 19 

99.29 94.66 93.01 96.37 Hybrid CNN 50% 2 Proposed 20 

97.92 84.38 80.15 89.08 Hybrid AE 50% 4 Proposed 21 

98.68 89.75 86.43 93.33 Hybrid AE 50% 1 Proposed 22 

 

Table 4-22: Comparison of results obtained by the proposed method with other studies conducted on the Patient model. 

ACC 

% 

F1 

% 

REC 

% 

PRE 

% 
Model 

Number 

of 

classes 

Work Row 

98.75 87.15 79.95 96.95 Wavelet-LSTM 2  [54] 1 
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97.50 - 63.34 - CFE - DNN 5 [28] 2 

97.90 88.00 80.20 97.30 SNN 4 [53] 3 

97.50 85.14 85.90 84.40 CFE - DNN 4 [4] 4 

98.75 90.87 88.12 93.80 Hybrid CNN 4 Proposed 12 

98.75 92.47 88.28 97.08 Hybrid CNN 2 Proposed 13 

 

5- Conclusion 

In this paper, first, the importance of timely diagnosis of 

cardiac arrhythmias in detecting heart diseases and 

preventing sudden cardiac death caused by them was 

discussed, along with an introduction to cardiac 

arrhythmias and electrocardiogram (ECG) analysis. The 

existing challenges in automated arrhythmia diagnosis 

from ECG signals were described, and a comprehensive 

review of previous methods for ECG analysis was 

presented, categorized into three groups: classical 

methods, feature-based automatic methods, and a 

combination of classical and automatic features. 

Furthermore, a novel architecture for combining classical 

features with deep learning based on independent sub-

networks, each suitable for a specific type of input, was 

introduced. Based on this architecture, two new models 

were proposed: a combined CNN model with a residual 

structure and a combined auto-encoder model. The impact 

of imbalanced training datasets on the model's 

performance was also explored using several methods for 

sample reduction and augmentation. Most of the examined 

balancing methods prevented model bias towards the 

majority class (normal) and improved the recovery of 

other classes, which can be clinically significant 

considering the importance of these classes. The 

performance of the proposed models was evaluated in 

three patterns: Inter-Patient, Intra-Patient, and Patient-

Specific. Although the best results were obtained in the 

Intra-Patient pattern, as mentioned in Section 2, the results 

of this pattern are not practically significant. Based on the 

obtained results, the Patient-Specific pattern, by semi-

automating the classifier, significantly improves its 

efficiency. This indicates that the use of the Patient-

Specific pattern in automatic arrhythmia detection devices 

leads to overall performance enhancement. To validate the 

results of the proposed architecture properly, two 

additional experiments were conducted. One experiment 

utilized the proposed combined CNN model without the 

use of the sub-network related to classical feature analysis, 

as a model that solely relies on automated feature 

extraction. The other experiment used a model that 

combines classical features and deep learning in the 

conventional way (unified feature vector). The results 

showed that our proposed architecture-based combined 

CNN model outperformed both other models. In the end, 

the results obtained from the two proposed models were 

compared with the latest research findings in this field. 

The combined CNN model with a residual structure 

achieved better results than the latest research findings in 

this area. It is worth mentioning that this improvement in 

performance has been achieved without adding any 

significant processing overhead compared to previous 

methods. This is because classical features used in 

classification have been employed, which were already 

extracted in previous stages (such as heartbeat 

segmentation). Additionally, since the number of these 

classical features is small (only 5 classical features are 

used in the proposed models), the model has not become 

significantly more complex compared to a scenario where 

only deep learning is utilized. The proposed combined 

encoder model aims to provide a simple implementation 

of a combined architecture that can be used in wearable 

devices. The results obtained from this model can be 

compared with recent research findings. Therefore, this 

model demonstrates that the introduced combined 

architecture in this paper can achieve good results even in 

simple models with a small number of layers. 
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S directly affect their performance time, which imposes limitations on their values, presented by the following relationships:" 


