

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 515

Associated Requirements Classification Model and

Standardization for Enhancing Quality of Software

*1Mr. Thakur Ritesh Bankat Singh, 2Dr. S. V. A.V. Prasad, 3Dr. Malla Reddy Jogannagari

Submitted:10/05/2024 Revised: 24/06/2024 Accepted: 01/07/2024

Abstract: All software’s, systems, goods, services, and businesses are built upon requirements. All parties involved in the

requirement classification should receive information that is essential, concise, verifiable, traceable, and comprehensive from

a well-crafted demand. System functions and objectives are defined using a variety of requirements, including design, quality,

certification, non-functional and functional, which are derived from the domain of interest and the system under design. A

great quality software project always begins with gathering requirements. The primary responsibility for collecting

requirements is Requirement Engineering (RE). Obtaining relevant data is essential for developing high-quality software. With

the help of big data and machine learning, software engineering has recently become data centric. As time goes on as

technology, social media, and other sources continue to advance, more and more data is collected from a variety of sources.

When gathering the necessary components to manufacture a high-quality product, there are numerous aspects to consider. The

software development life cycle includes the requirement engineering step, which is crucial. The goal of requirement

engineering is to facilitate communication between developers and clients for accurate classification. The quality of the

software product and its ability to meet user requirements are both impacted by the extent to which requirements are

comprehensive and consistent. Taking into account the needs of the product from a variety of perspectives, roles, and

responsibilities is a challenging aspect of requirement classification. If requirement classification is done correctly, the

software product quality will be affected. In this study, requirement classification is considered and its processes contribute to

the creation of high-quality software. A lack of process consistency throughout the primary development phases, including

requirements analysis, has a negative impact on the development of agent-based systems. Because of this problem, agent

technology investors have a far more difficult time understanding and evaluating the intricacy of these system requirements.

This research presents an Associated Requirement Classification Model (ARCM) for standardization in the process of

implementing high quality software. The proposed model when contrasted with the traditional requirement classification

models performs better in classification accuracy.

Keywords: Software Development, Software Lifecycle, Requirement Gathering, Requirement Engineering, Standardization,

Quality of Software.

1. Introduction

A software engineer's job is to create high-quality

software that meets all of the client's needs and then

keep it running smoothly after deployment by fixing

bugs and updating code [1]. Utilizing engineering

standards allows for the development of cost-

effective software that is both dependable and

capable of running on actual hardware. The

utilization of the systematic, disciplined as well as

quantifiable methods to the creation, maintenance

[2], and operation of software to the system;

essentially, applying the principles of engineering

methods to software is the definition given by the

IEEE standard for software engineering [3]. Boehm

characterizes software engineering as the practical

use of scientific concepts in the design as well as

construction of software applications and the

associated documenting needed for creating,

operate, and maintain them. Software engineering is

all about the theories, methods, as well as tools that

are necessary to create software products efficiently

and affordably [4].

Software engineers employ a wide variety of

techniques, processes, tools, and standards while

creating new software [5]. An alternative definition

of software engineering as a layered approach that

takes into account an organization's dedication to

product quality, a method that incorporates a

number of activities necessary for software

Research Scholar, Dept. of Computer Science &

Engineering, Lingaya’s Vidyapeeth, Faridabad, Haryana,

India , ritraj.t76@gmail.com

Professor , Dept. of Computer Science & Engineering,

Lingaya’s Vidyapeeth, Faridabad, Haryana, India,

svavprasad@lingayasvidyapeeth.edu.in

Professor , Dept. of Computer Science & Engineering,

Mahaveer Institute of Science and

Technology,Hyderabad, India , jmrsdpt06@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 516

development such as requirement elicitation, design,

code implementation, testing, maintenance, and the

use of automated tools to ensure timely completion

of the process. Both procedures are designed to aid

in the creation of software. The first section

distinguishes itself by outlining the development

process in detail. And the second grouping is

concerned with how to better put high-quality

software into action [6]. The quality of the final

software product is directly proportional to the

degree to which the software development process

adheres to established standards for quality [7].

Adopting the right process for building software

products is, thus, beneficial.

Various software development procedures can be

employed to create software, depending on a

multitude of factors such as the complexity of the

program, the resources that are available, and the

requirements that clients or end users offer [8]. An

integral part of every software development process

is the life cycle of software development. One

graphical and emotive way to represent product

development is via a software procedural model [9].

Every stage of creating a software programming

product may be seen in a software product model.

Activities in various software product life cycle

models are mapped out in relation to the software

development standards model, which in turn

develops software products [10].

When it comes to creating software, the Software

Development Life Cycle (SDLC) is paramount. The

SDLC is a useful tool for estimating how long it will

take to create software. In addition, it's useful for

tracking the several stages that software goes

through as it's being built or used. There are

numerous steps in the software development life

cycle, and each one is defined and responsible for a

distinct set of activities [11]. There is a prescribed

order for completing each step of the process

because each procedure builds upon the one before

it. Figure 1 represents the software development life

cycle, which consists of two distinct phases: product

engineering and process management.

Fig 1: Software Development Life Cycle

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 517

System lifecycle models were developed to

emphasize the significance of adhering to a

structured approach to improved system

construction, as stated. Rapid creation of an

application prototype, and V-shaped were among

the waterfall designs that were suggested [12]. As

many companies have evolved, so has the urge to

automate tasks that were formerly done by hand.

Standardized, structural procedures that

substantially simplify the system are essential if the

industry wants to ease the shift from human to

automated processes [13]. SDLC used a number of

models for software development. It is common

practice to incorporate software development-

related data into SDLC models. A systematic

approach to software development that guarantees

optimal performance and timely delivery is

essential, and SDLC models play a key role in this.

When project managers employ the right SDLC,

they get overall control over the software

development strategy. When choosing an SDLC

model, it is important to weigh the benefits and

drawbacks of each option. Software engineering is a

systematic and quantitative process for developing,

deploying, and maintaining software. There have

been many attempts to improve software or systems

over the last many decades, with varying degrees of

success [14]. The software requirement types is

shown in Figure 2.

Fig 2: Software Requirement Types

The initial set of 55 quality criteria, or variables,

identified by had a substantial impact on quality. To

make things easier, McCall narrowed the list of

qualities down to eleven: accuracy, usability,

reliability, efficiency, flexibility, interface facility,

adaptability, as well as transferability [15]. Boehm

defined a second set of quality factors, which

included nineteen characteristics including:

simplicity, readability, efficiency, dependability,

adaptability, resilience, correctness, maintainability,

flexibility, interoperability, clarity, validity,

economy, and generalizability [16]. Users are solely

concerned with the software's outward appearance,

while developers focus on the software's internal

structure to get these outward appearances [17].

Features that are external to the product, such as

trust, dependability, practicality, and precision are

considered. Functional Requirement (FRs) is one

that specifies the outcome of the system's behavior

and how that function will be implemented.

Functional requirements are defined as requests that

outline the capabilities that an entire system or its

parts must have [18]. A functional requirement is a

description of a feature that the system's users will

be able to access; it partially explains the system's

behavior in response to a stimulus. In a perfect

world, functional requirements wouldn't have

anything to do with design or implementation; in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 518

other words, they wouldn't bring up any technical

issues [19].

Unlike functional requirements, Non-Functional

Requirements (NFRs) specify the attributes of the

produced system and have a greater impact on its

architecture. It offers an alternative interpretation,

stating that: a requirement that is not functional is a

collection of constraints placed on the system that

need to be created, which determine its

attractiveness, usefulness, speed, and reliability,

among other things [20]. NFRs are a set of required

overall characteristics of the system, such as

flexibility, reliability, efficiency, human design,

testability, understandability, along with

modifiability. NFRs represents the non-behavioral

features of a system, gathering the properties as well

as limitations under which a system must operate. It

is possible to classify NFRs into subgroup [21].

Product requirements, organizational and process-

related requirements, and external needs are some

ways to categorize non-functional requirements. In

software engineering, the distinction between

functional and non-functional needs should center

on the how and what of system performance or

resource offerings [22].

Project analysts or requirement engineers work with

the demand to try to determine the desired system

requirements during the software requirement

analysis phase. Then, using the requirements as a

guide, they create the software requirement

document and distribute it to everyone who needs to

see it. The requirements document is then

thoroughly reviewed by requirements engineers or

business analysts. So, depending on the system's

intended purpose, they classify them as either FR or

NFRs [23]. FRs are the requirements that a product

must meet in order to be considered complete. In

addition, FR is the software details specified by the

stakeholders, the system's services, and the system's

required limitations. Features including response

time, performance, security, and usability are

examples of NFR, which is sometimes called

software quality characteristics [24]. Because other

phases of the software life cycle, such design and

coding, are based on the software requirements

classification, the project's success is directly related

to the accuracy of the FR and NFR classifications

[25]. It could be difficult to manually distinguish

between FR and NFR since they are both natural

language texts included in the same requirement

document. Ignoring NFR leads to project failure,

loss of system integrity, or cost increase. Without

FR, the built software system fails. This research

presents an Associated Requirement Classification

Model for standardization in the process of

implementing high quality software.

2. Literature Survey

Software analytics tools have been developed in the

last ten years, made possible by advances in data

analytics. These tools provide real-time

visualization of many elements of software

development as well as usage. Businesses engaging

in agile software development may find these

products especially appealing. Unfortunately, there

is no way to combine or link the data offered by the

current technologies to better quality objectives.

Simultaneously, the software engineering industry

has focused on evaluating and enhancing software

quality, leading to several suggestions for models

and standards in this area. The gap might be filled

by connecting software analytics tools with such

quality models, which would lead to greater quality

targets. S. Martínez-Fernández et al. [1] investigated

whether practitioners plan to use the information on

process or product quality that is provided by

software analytics tools that incorporate quality

models in a way that is intelligible, dependable,

practical, and relevant. Included in this case study

are four businesses who, for over a year, used this

kind of tool to evaluate and enhance software quality

across several projects.

Commercial open-source software (COSS) firms

have recently seen a spike in their number, which

indicates their increasing importance in the software

market. The success of COSS companies, which are

knowledge-based, is highly dependent on the

interaction of intangible resources including

software quality, human resources, relational

capital, and structural capital. Garomssa [2]

surveyed 200 software development specialists and

professionals from 60 different international COSS

organizations using a questionnaire-type approach

to explore hypotheses about these linkages. The

research confirmed that intellectual capital affects

COSS company success in two distinct but

complementary ways: directly and indirectly. The

success of the COSS company is influenced by

relational capital, which is one component of

intellectual capital. However, under a sequential

mediation model, software quality mediates the

relationship between relational as well as structural

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 519

capital and human capital, which in turn influences

the profitability of COSS companies. Since software

quality is the single most important factor

determining COSS companies' success, it follows

that COSS companies may have to make software

quality a top priority.

The demand for reliable and secure software

solutions is growing as software becomes more

integrated into every aspect of life and every type of

organization. The goal of software development

techniques is to enhance software quality through

the incorporation of practices that foster software

quality. Nowadays, the majority of software is made

available for use via the Internet, hence security for

software is a crucial aspect of software quality. The

majority of studies addressing the topic of safe and

high-quality software development have neglected

individual developers in favor of teams. In this

study, Moyo et al. [3] offered an agile secure-

software method of development to address this gap.

This methodology is designed to help solitary

developers create software that is both secure and of

high quality. Agile safely developed software

procedures are the result of our integration of quality

practices with portable security practices. The

author used security measures taken from pre

existing lightweight techniques and quality practices

taken from a standalone software development

framework that the author built in earlier research.

In order to evaluate and identify outliers that impact

the quality of a computer program, Software quality

assurance approaches are extensively utilized during

software development. Over the past few years,

numerous software quality control (SQC) methods

have been suggested for ensuring software systems'

privacy. Nevertheless, study has been conducted

from several angles, leading to an expanding corpus

of information dispersed across various fields.

Guamán et al. [4] conducted a thorough mapping

study to fill this knowledge gap and give researchers

and practitioners a bird's-eye perspective of the most

cutting-edge methods for privacy-focused software

quality control in information systems. According to

the findings, there has been an increase in research

in this area. Since the assessment criteria for 37% of

compliance-focused procedures are based on the

European Data Protection Regulation, this legal

framework appears to be significantly impacting this

expansion. Different types of approaches have

different levels of maturity: While combination

approaches have proven effective in real-world

circumstances, formal verification techniques are

still in their early stages of development.

Due to the emphasis on rapid delivery and minimum

documentation in the agile software development

(ASD), quality requirements (QRs) are frequently

left undocumented or underspecified. There is a lack

of guidelines to assist with the QR documenting

work. In an effort to bolster QR documentation in

ASD, Behutiye et al. [5] established a set of Agile

QR-Doc QR documents guidelines. In order to

construct the Agile QR-Doc, the author used a

DSRM, or design science research methodology. In

order to verify the accuracy of the Agile QR-Doc,

the author polled ten software professionals from

two ASD firms and had open discussions with them.

The rules were assessed by the practitioners for their

practicality, applicability, clarity, and breadth of

coverage in relation to QR documentation and its

effect on software development agility. Agile QR-

Doc provides a list of twelve suggestions, divided

into two groups. The first grouping presents three

suggestions with an emphasis on getting the word

out regarding the value of QRs, their documentation,

and the difficulties associated with them. Nine

suggestions introducing artifacts, techniques, and

critical components for QR documentation are

presented in the second category. The rules to enable

QR documenting in ASD are relevant,

understandable, and valuable, as revealed by the

validation.

Since the dawn of the digital age, software systems

have undergone tremendous transformation and are

now fundamental to human civilization. The

massive amounts of sensitive data generated by

software systems' widespread use necessitate their

protection. Ensuring the safety of these computer

systems is just as critical as making sure they meet

the needs or functional demands of the users. But

new studies reveal that as software development

approaches go beyond demand architecture to their

last stages, many of these approaches fail to

incorporate software security safeguards. There is

now a critical requirement to incorporate software

security into the SDLC at every level. Many

approaches, concepts, and methodologies have been

proposed and implemented to address software

security; nevertheless, just a handful offer

substantial proof for developing secure software

applications. Khan et al. [6] primarily aimed to

examine security measures within the framework of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 520

safe software development (SSD) as it pertains to

systematic mapping (SMS).

As a first step in requirements engineering, software

requirement validation checks that the acquirer's

goals and the target system's capabilities are a good

fit. Its primary objective is to identify and rectify

mistakes that predominate within the defined

parameters. Some software may fail despite the

abundance of requirements validation

methodologies due to inadequate or nonexistent

techniques, as well as the unreliability of the

requirements themselves. A comprehensive

literature analysis on requirements validation is

carried out in this study by Atoum et al. [7]. This

research looks at the most popular validation

methods, details the qualities of high-quality

requirements, and finds major obstacles to

validation. Trends in requirements validation

techniques, including the strengths and weaknesses

of their subtechniques, categories of requirements

quality characteristics, and the tools and datasets

used in these techniques were analyzed in depth

from 66 primary studies that were deemed relevant

to the review. The author classified validation

methods as either formal models, knowledge-

oriented, test-oriented, prototyping, or inspection. A

total of twenty-seven tools, nineteen different

validation methods, several new features for

requirements validation, and a number of difficulties

were detailed in the study.

Activities involving knowledge and collaboration

make up requirements elicitation. Although many

methods for gathering requirements and eliciting

implicit understanding from stakeholders have been

suggested in requirements engineering literature,

very few have actually implemented such tactics.

One of the most obvious issues with requirements

elicitation is the challenge of intentionally

capitalizing on crucial stakeholders' tacit

knowledge. To better understand and access the

implicit information that has been developed

throughout requirements elicitation, H. Al-Alshaikh

et al. [8] presented a strategy for doing just that. The

model is built upon the principles of reasoning

knowledge elicitation within the context of the

requirements elicitation process, which has been

adopted and expanded upon. In addition, a

representation code for expressing implicit

understanding in this setting is provided in this

study. Lastly, in order to assess the model's

practicability, a survey was administered to domain

experts to collect their feedback on the suggested

model's capacity to facilitate the elicitation of tacit

knowledge. The suggested model was also tested in

a controlled environment.

Companies use Global Software Development

(GSD) to create affordable, high-quality software.

For a GSD project to be a success, Requirement

Change Management (RCM) is crucial. M. A. Akbar

et al. [9] aimed to validate the identified limitations

of the RCM process through the use of a

questionnaire survey in real-world practices. It does

this by adopting a systematic literature review

(SLR). The combination of SLR with empirical

research yielded a list of twenty-five obstacles. To

further understand the RCM problems in the context

of both kinds of GSD enterprises, the author grouped

the highlighted challenges into client organizations

and vendor organizations. Additionally, the

identified difficulties were grouped into three

primary types of organization size: small, medium,

and large. This categorization helps to emphasize

the importance of every obstacle for each level of

organization.

Software requirements greening refers to the

practice of incorporating sustainability ideas into the

requirements engineering stage in the development

life cycle. This integration has the potential to

significantly impact the software architecture used

by state-of-the-art IT systems. Priorities in software

design can shift to improve the use of resources and

energy, flexibility, maintainability, adaptability, and

sustainability when requirements engineering

incorporates sustainability principles. It is necessary

to conduct more research into the connection

between the development of software and the

applicable green sustainability principles during

requirements engineering, in contrast to other

environmentally friendly methods that take

sustainable development into account. One step

involves mapping NFRs to sustainability

dimensions, and the other involves mapping

sustainability dimensions to two groups of green IT

features that are defined in this work by Subahi et al.

[10]. This new mechanism maps software NFRs to

specified aspects of green software sustainability.

3. Proposed Method

In order to ensure that the system meets all

stakeholders' needs throughout its lifetime,

requirements engineering must collect requirements

from those stakeholders, document them

appropriately, validate and verify them, and manage

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 521

them throughout the development process. The

method known as requirements engineering relies

on requirements elicitation, an essential activity that

must be carried out in order to find the product's

functionality by converting stakeholder desires and

needs into software specifications. An essential part

of requirements engineering is gathering needs for

the future system. Knowledge acquired during

requirements engineering regarding the system

context that needs to be developed, which includes

the sources of requirements to be evaluated and

queried, is the basis for gathering requirements. The

requirements are typically categorized into two

primary types: functional requirements as well as

non-functional requirements. This helps in making a

thorough documentation of the requirements.

One tool that may be used to help with security

requirements analysis is security requirements

elicitation, which is the process of gathering the SR.

Conventional statistical methods are not well suited

to this analysis because the requirements are

expressed in normal language. Most software

engineers also don't know much about security,

which makes the problem worse. Security needs

categorization is a part of analysis as a process. This

involves placing each security demand into a

specific model for the software's security services.

Even though security is typically not given much

attention in most studies, it is one of the functional

and non-functional needs that has been studied.

Researchers are discouraged from focusing on this

crucial area because even models with more

granularity do not come with a comparable dataset.

On top of that, maintainability is seen as more of a

non-functional criterion that has little to do with

security. Software requirement categorization

becomes a non-trivial effort in light of all these

possibilities. Software requirement classification

and other tasks, such as dependability prediction, are

made easier and faster by a number of machine

learning as well as natural language processing

algorithms. However, suitable datasets for training,

validating, and testing machine learning models are

required to extract and categorize software

requirements. Replicable study of security

requirements categorization is hindered by the

skewed datasets that are currently available for

software requirements, which focus on non-

functional or functional needs rather than security.

Also, the classification results are affected by the

datasets' imbalance, which is highly noticeable. The

feature selection and classification is shown in

Figure 3.

Fig 3: Feature Selection and Classification Process

Data mining and natural language processing are

two examples of the artificial intelligence

techniques that have been developed to manage the

spread of data and extract reliable information from

it. To enhance data mining performance and produce

clean, understandable data, feature selection seeks to

build models that are simpler and easier to

understand. Each column in the dataset may include

an option that describes the data; these options are

called features. The choices defining text can be

used to classify it. For a classification process to be

successful, it is ideal to consider the features that

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 522

best characterize the data. Results in text

classification tasks should therefore be as close to

reality as possible, hence it is crucial to think about

the features that describe the data the best. By

excluding features that are either duplicated across

the dataset or do not contribute significantly to its

overall meaning, feature selection allows for the

management of options that are more reflective of

the data. The goal of feature selection strategies is to

decrease dimensionality and speed up learning in

order to improve prediction performance.

Machine learning algorithms frequently use feature

selection approaches in data pre-processing to build

a feature subset with high-quality features that

contribute to computation from the data feature

space and improve performance. Gain ratio (GR)

and correlation-based feature selection (CFS) were

also employed in the study. Using a multivariate

filter technique, CFS selects groups of features that

are unrelated to each other yet have a strong

correlation with the class. When using correlation-

based feature selection, a heuristic evaluation

function is employed to rank the feature subsets. The

approach disregards features with low correlation

while defining more significant features as highly

correlated during the training and testing process of

the prediction model. In addition, the prediction

model gets rid of all the extra choices. The GR

method determines the information gain for each

feature. Therefore, features are chosen based on

their performance and gain ratio, with the criteria of

performing at least as well as the average

information gain. When compared to the

information gain metric, GR performs better in

terms of classifier complexity and accuracy. The

proposed model workflow is shown in Figure 4.

Fig 4: Proposed Model Workflow

The most important part of software engineering, it

turned out, was requirements analysis. There is a

wide variety of approaches, techniques, and tools

that have been created, suggested, and used thus far

to aid in requirements elicitation, definition, and

validation for maintain standardization.

Functionality representation and organization are at

the heart of most requirements modelling

methodologies. The development of software,

however, is about more than just functionality.

Unconsidered criteria can lead to project

cancellations, unprofitable products, dissatisfied

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 523

users, and schedule and budget overruns. The

literature often refers to a dimension of requirements

known as non-functional requirements or quality

requirements as the source of those problems. A

generic taxonomy is suggested that places an

emphasis on quality standards and how they are

realized are performed for software standardization.

The fact that a comprehensive and final description

of quality requirements is now impossible is taken

into consideration by this categorization approach. It

guarantees that the characterisation framework's

extensibility won't be hampered from the start,

therefore it won't have the same effect on quality

needs as earlier characterization efforts. Also, with

the right data system in place, the suggested

categorization and standardization scheme can help

with elicitation, communication, traceability, and

control tasks, all of which lead to better documented

requirements. This research presents an Associated

Requirement Classification Model (ARCM) for

standardization in the process of implementing high

quality software.

The software requirement dataset is considered from

public dataset service provider available at the link

https://www.kaggle.com/datasets/iamvaibhav100/s

oftware-requirements-dataset. Data pre-processing

is the process of preparing data for analysis by

cleaning and altering it. Accurate, consistent, and

analyzable data is what data preparation is all about.

As a result, data mining becomes more effective and

efficient. The data pre-processing is performed as

In order for a software system to fulfil its customers'

demands, it must first be identified and defined

through requirements gathering. It entails consulting

with relevant parties, gathering information about

user requirements, and outlining precise

requirements for developers to follow when creating

the system. The requirement gathering is performed

as

𝑃𝑟𝑒𝑃𝑟𝑜[𝐿] =∏⬚

𝐿

𝑖=1

𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑖) + 𝑔𝑒𝑡𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑖 + 1) + 𝑔𝑒𝑡𝑚𝑖𝑛𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑖 + 1) +
𝜔(𝑎𝑡𝑡𝑟(𝑖))

𝐿

+
𝛿(𝑎𝑡𝑡𝑟(𝑖))

𝐿

𝑃𝑟𝑜𝑐[𝐿] =∑⬚

𝐿

𝑖=1

𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑃𝑟𝑒𝑃𝑟𝑜(𝑖)) − 𝜔(𝑖) − 𝛿(𝑖)

 Here ω is the model that considers null values in the

dataset considered and δ is the model that considered

unwanted symbols.

In a correlation analysis, the correlation coefficient

is the metric that specifically measures the strength

of the linear link between two variables. When

writing up a correlation, the ‘Corr’ parameter stands

for the coefficient. This formula tells us how well

the relationship between two variables can be fit to

an imaginary line formed across the data by

comparing the distance of each datapoint from the

variable mean. It is applicable when dealing with

two features in the dataset iteratively. The idea that

correlations only consider linear relationships is

conveyed in this way. The correlation calculation is

performed as

𝐶𝑜𝑟𝑟[𝐿] =∏⬚

𝐿

𝑖=1

∑ ⬚⬚
⬚ (𝑎𝑡𝑡𝑟(𝑃𝑟𝑜𝑐(𝑖)) − 𝑃𝑟𝑜𝑐(𝑖)) ∗ (𝑎𝑡𝑡𝑟(𝑃𝑟𝑜𝑐(𝑖 + 1)) − 𝑃𝑟𝑜𝑐(𝑖 + 1))

√∑ ⬚⬚
⬚ (𝑎𝑡𝑡𝑟(𝑃𝑟𝑜𝑐(𝑖)) − 𝑃𝑟𝑜𝑐(𝑖))2∑ ⬚⬚

⬚ (𝑎𝑡𝑡𝑟(𝑃𝑟𝑜𝑐(𝑖 + 1)) − 𝑃𝑟𝑜𝑐(𝑖 + 1))2

By comparing feature attributes with a smaller set of

attribute ranges, gain ratio can normalize the data

using the entropy value of the variable, eliminating

the bias associated with multi-variable data and

variables with numerous ranges. The gain ratio is

calculated as

𝐺𝑅[𝐿] = ∑⬚

𝐿

𝑖=1

𝐺𝑅(𝑖)

𝑚𝑎𝑥⁡(𝐶𝑜𝑟𝑟(𝑖, 𝑖 + 1))

When building a requirement classification model,

feature selection is necessary to isolate the most

important, consistent, and non-redundant features.

As both the quantity and diversity of datasets

increase, it is crucial to systematically decrease their

sizes. By eliminating superfluous, unimportant, or

distracting elements, feature selection narrows down

the original set of features to just the most useful

ones. The feature selection process is performed as

https://www.kaggle.com/datasets/iamvaibhav100/software-requirements-dataset
https://www.kaggle.com/datasets/iamvaibhav100/software-requirements-dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 524

𝐹𝑠𝑒𝑙[𝐿] =∑⬚

𝐿

𝑖=1

𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑖)

𝐿
+ (𝐶𝑜𝑟𝑟(𝑖, 𝑖 + 1)) ⁡+ 𝑚𝑎𝑥⁡(𝐺𝑅(𝑖, 𝑖 + 1)){𝐹𝑠𝑒𝑙 ← 𝑖⁡⁡𝑖⁡𝑓⁡𝑐𝑜𝑟𝑟(𝑖) < 𝑇ℎ⁡𝑎𝑛𝑑⁡𝐺𝑅(𝑖)

> 𝐺𝑡ℎ⁡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡

FRs and NFRs are the two primary ways in which

software needs are usually categorized. A variety of

quality criteria, including security, availability, and

usability, are subsets of non-functional

requirements. The software requirements

classification is performed as

𝑅𝑐𝑙𝑎𝑠𝑠[𝐿] =∑⬚

𝐿

𝑖=1

𝑔𝑒𝑡𝑚𝑎𝑥(𝐹𝑠𝑒𝑙(𝑖, 𝑖 + 1)) + (𝐶𝑜𝑟𝑟(𝑖, 𝑖 + 1)) ⁡+
𝑚𝑎𝑥⁡(𝑎𝑡𝑡𝑟(𝑖, 𝑖 + 1))

𝐿
− 𝑚𝑖𝑛⁡(𝐹𝑠𝑒𝑙(𝑖))

4. Results

Every person and every product is believed to place

a major emphasis on quality. Many different types

of people have offered their own definitions. In a

nutshell, there are two types of product quality: one

is for built hardware and the other is for developed

software. Even though the exact definition of quality

is different for the two products, the statement if the

product is deemed acceptable by the clients

therefore the standard of excellence of the item in

question is high still applies. Customers, clients, end

users, and development teams all have a

fundamental impact on software quality. Therefore,

it is critical to focus more on the process with the

necessary effort in order to build high-quality

software. Customers and product developers are also

affected by the process quality.

Software engineering projects can be categorized

using a model that is built on top of big data

technologies. Gathering data, cleaning it up,

selecting features, training the model, evaluating it,

making adjustments, and finally applying it are the

fundamental steps of this model. Information about

the project's scope, programming language,

development methodologies, and technical details

must be gathered and organized during the data

gathering stage of a software engineering project.

The data pre-processing phase involves cleaning and

processing the obtained data, which includes tasks

such as de-duplication, missing value processing,

discretization, and standardization, among others. If

users want the model to be better at generalizing and

have lower dimensionality, they need to pick

features that are meaningful and useful during the

feature selection stage.

The PROMISE repository's is considered. The

dataset is used from the link

http://promise.site.uottawa.ca/SERepository/dataset

s/jm1.arff. The proposed model is implemented in

python and executed in Google Colab.This

information is labelled according to whether the

software need is functional or non-functional. The

data was subsequently pre-processed by doing

things like changing the case of all characters to

lowercase, removing symbols and non-

alphanumeric ones, and removing commonly used

words like the and a as well as others with lengths of

two or less because they don't matter much for

classification. After that, each sentence was

converted to a word using the tokenization process.

This research presents an Associated Requirement

Classification Model (ARCM) for standardization in

the process of implementing high quality software.

The proposed model is compared with the

traditional Novel Lightweight Solo Software

Development Methodology With Optimum Security

Practices (NLSSD-OSP) and BERT-Based

Approach for Greening Software Requirements

Engineering Through Non-Functional

Requirements (BERT-GSRE) model. The results

represent that the proposed model performance in

classification is high than the traditional models.

Improving the accuracy and effectiveness of data

mining is the purpose of data pre-processing, which

entails cleaning and modifying data to make it

acceptable for analysis. The data must be correct,

consistent, and fit for analysis. The Pre-Processing

Accuracy Levels of the proposed and existing

models are shown in Table 1 and Figure 5.

http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff
http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 525

Table 1: Pre-Processing Accuracy Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 97.6 93.1 94.5

20000 97.8 93.3 94.6

30000 98.0 93.6 94.8

40000 98.3 93.9 95.0

50000 98.5 94.0 95.2

60000 98.7 94.2 95.4

Fig 5: Pre-Processing Accuracy Levels

In order for a software system to ful fill its

customers' demands, it must first be identified and

defined through requirements gathering. It entails

consulting with relevant parties, gathering

information about user requirements, and outlining

precise requirements for developers to follow when

creating the system. To properly scope out a project,

users must first identify its requirements. Software

requirements play a crucial role in defining the final

product's features, development timeline, and

budget. As a result of poorly stated project goals,

scope creep can occur. The Requirement Gathering

Time Levels of the existing and proposed models are

indicated in Table 2 and Figure 6.

Table 2: Requirement Gathering Time Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 17.0 25.0 28.0

20000 17.3 25.2 28.2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 526

30000 17.5 25.4 28.4

40000 17.6 25.6 28.5

50000 17.8 25.8 28.8

60000 18 26 29

Fig 6: Requirement Gathering Time Levels

For interval-type variables, the correlation ratio is

just the square root of the sum of squares, divided by

the entire sum of squares. One way to measure the

strength and direction of linear relationships

between two variables is via a correlation

coefficient. The Table 3 and Figure 7 shows the

Correlation Calculation Accuracy Levels of the

proposed and existing models.

Table 3: Correlation Calculation Accuracy Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 97.6 93.7 94.1

20000 97.8 93.9 94.3

30000 98.0 94.1 94.6

40000 98.1 94.3 94.8

50000 98.3 94.6 95.0

60000 98.5 94.8 95.2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 527

Fig 7: Correlation Calculation Accuracy Levels

A tweak to the information gain that decreases its

bias is the gain ratio. The number and size of

branches are considered by gain ratio while picking

an attribute. By factoring in the intrinsic information

of a split, it fixes the information gain. When

working with datasets that include attributes with

varying quantities of unique values, Gain Ratio

increases. Here, the gain ratio considers the

attribute's intrinsic information, which aids in

preventing biases towards characteristics having

many distinct values. The Gain Ratio Calculation

Time Levels of the proposed and existing models are

indicated in Table 4 and Figure 8.

Table 4: Gain Ratio Calculation Time Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 11.6 18.0 20.7

20000 11.8 18.2 21.0

30000 12.0 18.4 21.2

40000 12.2 18.6 21.4

50000 12.4 18.7 21.6

60000 12.6 18.9 21.8

Fig 8: Gain Ratio Calculation Time Levels

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 528

When building a model, feature selection is

necessary to isolate the most important, consistent,

and non-redundant features. As both the quantity

and diversity of datasets increase, it is crucial to

systematically decrease their sizes. Improving a

predictive model's effectiveness while decreasing

the computational cost of modelling is the primary

objective of feature selection. The Table 5 and

Figure 9 represents the Feature Selection Accuracy

Levels of the existing and proposed models.

Table 5: Feature Selection Accuracy Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 97.6 94.5 93.7

20000 97.8 94.7 93.9

30000 98.0 94.8 94.1

40000 98.1 95.0 94.3

50000 98.3 95.2 94.5

60000 98.6 95.4 94.7

Fig 9: Feature Selection Accuracy Levels

FRs and NFRs are the two primary ways in which

needs are usually categorized. A variety of quality

criteria, including security, availability, and

usability, are subsets of non-functional

requirements. There are two main kinds of

requirements: FRs, which describe the actual

services, behaviors, or functions provided by a

system, and NFRs, which pertain to the qualities like

quality, usability, security, privacy, etc. or

limitations of the application or software

development process as a whole. The Requirements

Classification Accuracy Levels of the proposed and

existing models are shown in Table 6 and Figure 10.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 529

Table 6: Requirements Classification Accuracy Levels

Records Considered Models Considered

ARCM Model NLSSD-OSP Model BERT-GSRE Model

10000 97.5 93.3 94.3

20000 97.8 93.5 94.5

30000 98.1 93.7 94.7

40000 98.3 93.9 94.9

50000 98.5 94.1 95.0

60000 98.7 94.4 95.2

Fig 10: Requirements Classification Accuracy Levels

5. Conclusion

When it comes to creating top-notch software, the

combination of known as RE as well as Quality

Assurance (QA) has become an essential component

of contemporary software development. Through

this extensive investigation, the significance of

traceability as a connecting factor between

stakeholder demands and the quality attributes of the

end product has been highlighted. At every stage of

the development process, agile techniques place an

emphasis on input from the client. Satisfaction with

customers and software quality are both improved

by making sure the program meets the needs and

expectations of the end users through this customer-

centric approach. There are a lot of good effects of

SQA. Strict SQA procedures directly lead to more

reliable products, lower failure rates, and happier

customers. The flexibility of SQA to meet the ever-

changing requirements of contemporary software

development is demonstrated by the time-to-market

acceleration that results from continuous testing and

automation. Organizations face challenges such as

high implementation costs, lengthy testing

procedures, and the necessity to strike a balance

between technology and human intuition. It is

important to have a plan for implementation because

of things like resistance to alteration and the

difficulty of maintaining automation test suites. A

new age of intelligent testing is dawning with the

incorporation of AI and ML into SQA processes,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 530

made possible by ever-improving technologies. One

way to make sure to get a good software product is

to think about security requirements early on in the

SDLC. Accurately identifying and categorizing the

protection needs for each software throughout

development is crucial for knowing the amount of

protection that is necessary. Successful software

projects rely on accurately identifying business

needs. To meet these needs, requirements must be

defined and addressed in the analysis documents in

a way that is clear, consistent, concise, and

summarizing. This ensures that all stakeholders

understand and there is no room for disagreement.

In addition, in order to create trustworthy software,

it is essential to analyze and categorize these needs

thoroughly. Among the most important things to

keep in mind when doing requirements analysis is

making sure the requirements still have enough

depth, are consistent with each other, and satisfy the

demands of the organization. Since functional and

non-functional criteria are prone to being

confounded when expressed in normal language,

manually identifying them is an incredibly tough

undertaking. A system would fail during

development if it lacked the necessary functional

requirements. Problems like project failure,

compromised system integrity, or increased costs

could also result from disregarding non-functional

criteria. This research presents an Associated

Requirement Classification Model for

standardization in the process of implementing high

quality software. The proposed model achieved

98.6% accuracy in feature selection and 98.7%

accuracy in requirements classification. In future,

optimization techniques can be applied and classical

and more sensitive requirements can also be

analyzed for software quality.

DECLARATION CONFLICT OF INTEREST:

The authors declare that this manuscript has no

conflict of interest with any other published source

and has not been published previously (partly or in

full). No data have been fabricated or manipulated

to support our conclusions.

No funding is applicable and declaration for no

financial Interest.

Acknowledge

Acknowledgment The authors declare that they have

no conflict of interest. The manuscript was written

through contributions of all authors. All authors

have given approval to the final version of the

manuscript. The article has no research involving

Human Participants and/or Animals. The author has

no financial or proprietary interests in any material

discussed in this article.

COMPLIANCE WITH ETHICAL

STANDARDS:

Conflicts of Interest:

The authors declare that they have no conflict of

interest. The manuscript was written through

contributions of all authors. All authors have given

approval to the final version of the manuscript.

Availability of data and material:

Not data and materials are available for this paper.

Data sharing not applicable to this article as no

datasets were generated or analyzed during the

current study'

Ethical Approval:

The article has no research involving Human

Participants and/or Animals

Competing Interest:

The author has no financial or proprietary interests

in any material discussed in this article.

DECLARATIONS:

Funding:

No Funding is applicable.

Code availability:

The data and code can be given based on the request

Consent to Participate:

The manuscript was written through contributions of

all authors. All authors have given approval to the

final version of the manuscript.

Consent to Publish:

All authors have given approval to the final version

of the manuscript for publication.

References

[1] S. Martínez-Fernández et al., "Continuously

Assessing and Improving Software Quality

With Software Analytics Tools: A Case

Study," in IEEE Access, vol. 7, pp. 68219-

68239, 2019, doi:

10.1109/ACCESS.2019.2917403.

[2] S. D. Garomssa, R. Kannan, I. Chai and D.

Riehle, "How Software Quality Mediates the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 531

Impact of Intellectual Capital on

Commercial Open-Source Software

Company Success," in IEEE Access, vol. 10,

pp. 46490-46503, 2022, doi:

10.1109/ACCESS.2022.3170058.

[3] S. Moyo and E. Mnkandla, "A Novel

Lightweight Solo Software Development

Methodology With Optimum Security

Practices," in IEEE Access, vol. 8, pp.

33735-33747, 2020, doi:

10.1109/ACCESS.2020.2971000.

[4] D. S. Guamán, J. M. D. Alamo and J. C.

Caiza, "A Systematic Mapping Study on

Software Quality Control Techniques for

Assessing Privacy in Information Systems,"

in IEEE Access, vol. 8, pp. 74808-74833,

2020, doi: 10.1109/ACCESS.2020.2988408.

[5] W. Behutiye, P. Rodríguez and M. Oivo,

"Quality Requirement Documentation

Guidelines for Agile Software

Development," in IEEE Access, vol. 10, pp.

70154-70173, 2022, doi:

10.1109/ACCESS.2022.3187106.

[6] R. A. Khan, S. U. Khan, H. U. Khan and M.

Ilyas, "Systematic Mapping Study on

Security Approaches in Secure Software

Engineering," in IEEE Access, vol. 9, pp.

19139-19160, 2021, doi:

10.1109/ACCESS.2021.3052311.

[7] Atoum et al., "Challenges of Software

Requirements Quality Assurance and

Validation: A Systematic Literature

Review," in IEEE Access, vol. 9, pp.

137613-137634, 2021, doi:

10.1109/ACCESS.2021.3117989.

[8] H. A. Al-Alshaikh, A. A. Mirza and H. A.

Alsalamah, "Extended Rationale-Based

Model for Tacit Knowledge Elicitation in

Requirements Elicitation Context," in IEEE

Access, vol. 8, pp. 60801-60810, 2020, doi:

10.1109/ACCESS.2020.2982837.

[9] M. A. Akbar, S. Mahmood, A. Alsanad, M.

Shafiq, A. Gumaei and A. A. -A. Alsanad,

"Organization Type and Size Based

Identification of Requirements Change

Management Challenges in Global Software

Development," in IEEE Access, vol. 8, pp.

94089-94111, 2020, doi:

10.1109/ACCESS.2020.2995238.

[10] F. Subahi, "BERT-Based Approach for

Greening Software Requirements

Engineering Through Non-Functional

Requirements," in IEEE Access, vol. 11, pp.

103001-103013, 2023, doi:

10.1109/ACCESS.2023.3317798.

[11] J. A. Khan, L. Liu and L. Wen,

"Requirements knowledge acquisition from

online user forums", IET Softw., vol. 14, no.

3, pp. 242-253, Jun. 2020.

[12] A. J. Gregory, J. P. Atkins, G. Midgley and

A. M. Hodgson, "Stakeholder identification

and engagement in problem structuring

interventions", Eur. J. Oper. Res., vol. 283,

no. 1, pp. 321-340, May 2020.

[13] K. Marner, S. Wagner and G. Ruhe,

"Stakeholder identification for a structured

release planning approach in the automotive

domain" in arXiv:2011.00227, 2020.

[14] R. Kumar, L. E. H. Son, M. Abdel-Basset, I.

Priyadarshini, R. Sharma and H. V.

Long,"Deep learning approach for software

maintainability metrics prediction", IEEE

Access, vol. 7, pp. 61840-61855, 2019.

[15] A. Ferrari and A. Esuli, "An NLP approach

for cross-domain ambiguity detection in

requirements engineering", Automated

Softw. Eng., vol. 26, no. 3, pp. 559-598, Sep.

2019.

[16] O. Malgonde and K. Chari, "An

ensemblebased model for predicting agile

software development effort", Empirical

Softw. Eng., vol. 24, no. 2, 2019.

[17] A.-E. H. Abd-Elrahma, A. A.-E. El-Borsaly,

E. A.-E. Hafez and S. A. Hassan,

"Intellectual capital and service quality

within the mobile telecommunications sector

of Egypt", J. Intellectual Capital, vol. 21, no.

6, pp. 1469-1930, Jul. 2020.

[18] H. T. Nhon, N. Van Phuong, N. Q. Trung and

B. Q. Thong, "Exploring the mediating role

of dynamic capabilities in the relationship

between intellectual capital and performance

of information and communications

technology firms", Cogent Bus. Manage.,

vol. 7, no. 1, Jan. 2020.

[19] J. Ahmad, A. W. Khan and H. U. Khan,

"Role of critical success factors in offshore

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 515–532 | 532

quality requirement change management

using SLR", IEEE Access, vol. 9, pp. 99680-

99698, 2021.

[20] F. N. Colakoglu, A. Yazici and A. Mishra,

"Software product quality metrics: A

systematic mapping study", IEEE Access,

vol. 9, pp. 44647-44670, 2021.

[21] A.-J. Molnar, A. Neamtu and S. Motogna,

"Evaluation of software product quality

metrics" in Evaluation of Novel Approaches

to Software Engineering, Cham,

Switzerland:Springer, pp. 163-187, 2020.

[22] A. Barcomb, A. Kaufmann, D. Riehle, K.-J.

Stol and B. Fitzgerald, "Uncovering the

periphery: A qualitative survey of episodic

volunteering in free/libre and open source

software communities", IEEE Trans. Softw.

Eng., vol. 46, no. 9, pp. 962-980, Sep. 2020.

[23] H. Y. Chiang and B. M. T. Lin, "A decision

model for human resource allocation in

project management of software

development", IEEE Access, vol. 8, pp.

38073-38081, 2020.

[24] T. E. J. Vos, I. S. W. B. Prasetya, G. Fraser,

I. Martinez-Ortiz, I. Perez-Colado, R. Prada,

et al., "IMPRESS: Improving engagement in

software engineering courses through

gamification" in Product-Focused Software

Process Improvement, Cham,

Switzerland:Springer, 2019.

[25] B. Gezici, N. Ozdemir, N. Yilmaz, E.

Coskun, A. Tarhan and O. Chouseinoglou,

"Quality and success in open source

software: A systematic mapping", Proc. 45th

Euromicro Conf. Softw. Eng. Adv. Appl.

(SEAA), pp. 363-370, Aug. 2019.

