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Abstract: The Strap-down inertial navigation system (SINS) has got excellent short term accuracy and is widely used for several 

autonomous land vehicle applications. However, due to its dead-reckoning process, the errors in navigation solution accumulate 

exponentially as the time progresses. In order to mitigate these errors, the use of auxiliary sensors has been explored in the recent past. An 

attempt has been made in this manuscript to use vehicle-borne odometer as an aiding sensor to have improved navigational positioning 

accuracy in horizontal and vertical channels of SINS. Further, the odometer misalignment angles and its lever-arm parameters are 

considered as error state vectors and a 21-state extended Kalman filter (EKF) is devised.  Pulse count per unit sample interval is pre-

processed to generate velocity information in odometer sensor assembly frame and used as measurement along with non-holonomic 

constraints (NHC). The efficacy of the proposed method is investigated by sequential processing of the measurements through sequential 

version of EKF. Field trial results are presented and found to have improvement through incremental position as a measurement in odometer 

sensor frame with improved observability during estimation process of odometer scale factor and lever arm parameters. Further, the 

accuracy of estimated altitude along with horizontal position solution is demonstrated toward autonomous vehicle application with GNSS 

as a reference. 
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1. Introduction 

Navigation system for intelligent autonomous land vehicle 

requires high position accuracy and is determined by grade 

of inertial sensors deployed in the field operations. The 

position and attitude accuracy of inertial navigation systems 

degrade over time. Hence, an external aiding is required to 

correct the errors in position, velocity and attitude vectors 

[1]. Odometer can be used as an aiding source of 

information, due to its self-contained operations and does 

not depend on external signal outages like in global 

navigation satellite systems (GNSS).  

Inertial navigation system (INS) consists of 3 sets of 

gyroscope and accelerometer sensors, which are positioned 

orthogonal with respect to each other in order to sense the 

rotation and linear movements in 3 axes. Initial co-ordinates 

have to be provided to INS for providing real time 

navigation solution, i.e., position, velocity and attitude. INS 

works on the basic principle of dead-reckoning and provides 

the outputs, considering the previous known parameters and 

the present measurements from the inertial sensors. The 

time propagated errors in navigation system are inevitable 

and are dependent on grade of inertial sensors selected for 

SINS. As these errors increase with respect to time, it is 

highly desirable to develop modern artificial intelligence 

based navigation schemes using inertial navigation data 

even in harsh and adverse environment for obtaining better 

navigation accuracies [2]. Hence, the researcher(s) are 

exploring alternative means of achieving precise positioning 

accuracy by employing several auxiliary sensors [3] along 

with SINS.  

The GNSS is considered to be one of the auxiliary sensors 

for minimizing the errors in SINS operation for long 

duration navigation of land vehicles. However, the GNSS is 

very much compromised under adverse conditions due to 

interference problem [4]. Hence, the alternative sensors like 

magnetometer, light detection and ranging (LiDAR),  baro 

altimeter, wheel mounted odometer, Doppler velocity log 

(DVL), laser Doppler velocity (LDV) are explored to be one 

of the prominent auxiliary sensors for several practical 

applications[5].  Availability of all these sensors is not 

possible at a time in a vehicle of specific purpose. Hence, it 

is advised to consider only the economically viable sensor 

as space and size constraints are dominant. However, land 

vehicles are equipped with few of the above sensors and 

often odometer as a mandatory sensor due to high reliability 

and zero maintenance.  A multi-sensor-data-fusion [6] 

which is emerging as one of the state of art technology, 

enables the combination of measurements of either one or 

more sensors in tandem with SINS and offers improved 

accuracy and availability to a greater level. The odometer 

along with baro altimeter data are considered together and 

explored the performance of SINS through tightly coupled 

(TC) scheme and loosely coupled (LC) schemes under 

GNSS compromised environment in [5]. The velocity 
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information is well generated through an in-built point cloud 

feature of LiDAR and demonstrated for integral operation 

of SINS in [7]. However, the velocity information extracted 

shall be noisy due to environmental effects and tuning of 

such filter shall be tedious. An improved state transition 

matrix which is derived from error frame definition is 

devised in [8] at the cost of additional computations in real-

time embedded processor of land navigation system. An 

evaluation function is well proposed based on norm of 

innovation vector in [9] which is further used along with 

EKF process. 

A non-holonomic constraint (NHC) superimposed on the 

lateral and vertical axes of vehicle motion in a first along 

with odometer velocity is proposed in [10] and 

demonstrated an improved performance for low grade 

sensors/ODO integrated system. The observability analysis 

is well considered for estimability of odometer installation 

parameters like mis-alignment angles and scale factor in 

[11]. The mathematical model for vehicle steering motion 

along with ODO/NHC based measurements are considered 

for wheeled robots in [12]. The concept of a dual 

measurement model of odometer equipped on front and rear 

wheels is considered in [13]. 

The authors in [14] proposed s-domain analysis of inherent 

Schuler oscillations involved in SINS mechanization. The 

suitable damping scheme through steady state stability 

analysis as presented is found to be attractive but the tuning 

of feedback gains is limited over wide range of odometer 

measurements with high noise emanating from harsh 

environments. The authors in [15] presented the details of 

wheel mounted SINS mechanism and proposed different 

methods of integration of odometer data. However, MEMS 

based SINS with low accuracy are suitable for wheel 

mounting. But, the mounting of navigation grade SINS on a 

rotating wheel is bulky and often not suitable for high grade 

ring-laser gyroscopes and quartz accelerometers. Also, the 

achieved accuracies of less than 2% is limited as compared 

to the requirements of 1%.  The wheel mounted SINS does 

communicate with on-board diagnostic (OBD-II) 

equipment with Bluetooth communication and often limited 

by real time delays. Measurements from virtual MEMS 

based INS are framed through independent measurements 

from the set of inertial sensors [16]. These measurements 

are pre-processed and a virtual centripetal acceleration 

along with NHC are considered for estimation process. 

However, the availability of several such measurements are 

limited due to size and space limitations in real-time 

applications. Also, the method is encouraging, but it is 

limited by its computational burden and low accuracy. 

Image processing techniques are used to extract the location 

information from Kilo meter sign boards in [17] and fused 

with SINS data through optimal state estimation. The 

authors presented that the proposed technique has got 

superior performance as compared to SINS/Odometer based 

solution. However, the Kilo meter sign boards are not 

available in all the road ways and need periodic update of 

the data base for effective photogrammetry along with 

tedious field-calibration process. 

The observability analysis on integral operation of SINS 

with LDV is well presented by authors in [18] and 

demonstrated the superior performance of integrated 

operation of SINS/LDV. However, the LDV measurements 

are found to be influenced by environmental conditions. 

Often, such measurements are found to be noisy due to rainy 

conditions and dust deposition on its optical parts. The 

authors in [19] proposed to have NHC and considered the 

centripetal acceleration as an additional measurement in 

addition to forward velocity measurement from odometer. 

The authors presented the results for short duration 

navigation applications. However, the extension of such 

study is not explored for long duration operation. The 

method shall make use of IIR Butterworth filter to pre-

process the accelerometer measurements. The concept of 

Schmidt KF based filter gain for integral operation of 

SINS/ODO/DVL is proposed in [20] for long distance 

navigation of land vehicle system. Also, the authors 

proposed to minimize the vertical channel error over its 

trajectory path.  Though the results are promising, the 

information on odometer and DVL calibration parameters 

along with SINS sensor biases are found to be limited. 

Triangulation based ultra-wide band (UWB) sensors along 

with SINS/ODO have been used for unmanned vehicle 

navigation in coal mines [21]. But, the use of UWB sensors 

has got major problem with multi-reflections of signals and 

interfering with each other resulting in poorer positioning 

results.  However, the authors tried to demonstrate that the 

integrated operation with UWB and Odometer has got 

improved accuracy and reliability for short distance coal 

mine applications. The intermittency of odometer and 

Doppler radar measurements are studied towards continued 

and integrated navigation solution in [22]. Both simulation 

and experimental study confirmed that the continuity of 

navigation information can be maintained under GNSS 

compromised environments. However, the apportioning of 

error budget in standalone operation of each auxiliary 

sensors and integrated operations were not listed out. The 

odometer measurements are used to damp out the local error 

growth in horizontal channels of SINS during GNSS 

degraded conditions [23]. The work proposed was to 

provide the continuous position information for autonomous 

vehicle applications. 

Adaptive Kalman filtering (AKF) technique is employed in 

[24] to filter out the incoming noise from DVL 

measurements towards improving positioning accuracy of 

vessels. The AKF has been extended to be adaptive two-

stage Kalman filter (ATKF) in [25] for improving the 

positioning accuracy of SINS/Odometer based integrated 

land navigation system. Also, the authors presented several 
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conditions of side slip, wheel skid and wheel slip for 

velocity measurement from wheel-mounted odometer. Fault 

detection and isolation based on 2  distribution is well 

presented in [26] for SINS/ODO based integrated 

navigation system. 

Though several sensors are explored as the best auxiliary 

sensors along with fusion schemes, each one has got its own 

limitations. The authors in the present manuscript prefer to 

work with a self-contained odometer as one of the reliable 

source of forward velocity measurement. The odometer 

equipped with twin inductive sensing elements are 

considered to have long life with zero maintenance. 

However, the major problem with vehicle mounted 

odometer is its scale factor variation due to wear and tear of 

vehicle tyre. Hence, the authors in present manuscript prefer 

to estimate the odometer scale factor and other installation 

parameters like mis-alignment angles, and lever-arm 

parameters.  Further, based on the limitations of works 

published in recent past, the authors in the present 

manuscript proposed to make use of integrated 

measurements of wheel-mounted odometer in body frame 

of sensor assembly rather than the pulse velocity as 

measurements. Further, NHC based measurements are 

superimposed to have the hybrid navigation solution along 

with wheel mounted odometer as an auxiliary sensor. The 

motivation for the present work is to demonstrate high 

accurate and high reliable integrated navigation 

mechanization through estimation of odometer installation 

parameters as well as estimation of SINS sensor bias 

vectors. The odometers measurements are processed to be 

integrated velocity over filter update cycle rather than the 

pulse-velocity model. Field experiments are carried out to 

demonstrate the efficacy of proposed method under GNSS-

degraded environments for navigation of land vehicles. 

The main contributions of this manuscript is: 

a) Formulation of odometer measurement model with 

integrated velocity as measurements, 

b) Integrated velocity vector NHC constraints over filter 

update cycle 

c) Sequential processing of measurements using scalar 

EKF, 

d) Covariance propagation with experimental data,  

e) Validation of estimated bias vectors of inertial sensors 

through proposed integrated fusion scheme. 

f) Comparing the performance of proposed Hybrid 

navigation scheme with GNSS and pure inertial 

navigation scheme. 

The rest of the contents of the manuscript is presented as 

follows: In section 2, the details of SINS error model is 

presented. Section 3 presents about the measurement error 

model of odometer assembly to estimate the corresponding 

installation parameters. Section 4 presents the sequential 

EKF scheme along with consideration for propagation of 

error covariance Pk matrix. Section 5 presents the Field trial 

results along with discussion. Finally, the conclusion and 

scope of further improvements are presented in section 6. 

1.1. Abbreviations and Acronyms 

The following are the list of abbreviations followed the in 

the technical content of the manuscript: 

DT            - Distance Travelled 

EKF          - Extended Kalman filter 

GNSS       - Global navigation satellite system 

HYBRID  - Hybrid navigation ( INS+ODO) 

INS           - Inertial navigation 

KF             - Kalman filter 

NHC         - Non-holonomic constraints 

ODO         - Odometer sensor assembly 

PF             - Particle filter 

PSD          - Power spectral density 

RLG          - Ring laser gyroscope 

SINS         - Strapdown inertial navigation system 

UKF          - Uncented Kalman filter 

2. LINEAR ERROR MODEL OF INERTIAL 

NAVIGATION SYSTEM  

The pictorial representation of autonomous vehicle 

equipped with SINS, Odometer and GNSS antenna is shown 

in Fig. 1. The SINS body frame, denoted by b-frame and is 

rigidly mounted on to the vehicle with the xb -axis directing 

forward, the yb -axis pointing right, and the zb -axis 

downward. It is assumed that the SINS body is aligned with 

the vehicle v-frame with axes definition same as b-frame 

and any mis-alignment between these two frames shall be 

absorbed as bore-sight angles and is not considered in the 

present manuscript. The GNSS antenna which is used for 

reference positioning system is installed on roof top of 

mobile van. The odometer sensor assembly is mounted on 

rear wheel of vehicle as shown Fig. 1. The odometer sensor 

frame is denoted by odo-frame, and is defined at the 

measuring center of the non-steering wheel axis. The set of 

axes xodo, yodo and zodo shows the forward, right and 

downward directions respectively. 

2.1. Mechanization of SINS kinematic model 

The basic concept of strap-down inertial navigation is 

propagation of the kinematic equations in north-east-down 

reference frame of SINS. Hence the basic equations are 

considered for the derivation of error mechanization in the 
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geo-detic frame of SINS. The superscript ‘ l ’denotes the 

local level frame of navigation in local geo-detic frame with 

the position vector 

  
, ,

T
lP h

p p p
 

= 
  

 

with 
p as geo-detic latitude, 

p as geo-detic longitude, 

hp- as 

 

 

Fig.1. Pictorial representation of autonomous vehicle 

equipped with navigation sensors 

height above ellipsoid as per WGS84 model. Similarly, the 

vector lV represents the north-east-down components of 

velocity vector and defined as , ,
T

l l l l

n e dV V V V =  
. The 

principle of inertial navigation mechanization is presented 

in Fig.2.   

 

Fig.2 Principle of inertial navigation mechanization 

The details of position, velocity and angles propagation 

models are presented as follows: 

Position propagation model: 

The geodetic position of vehicle in north-east-down frame 

of reference is expressed through propagation equation as:  

Latitude propagation is given by: 

1 l

p n

np

V
r

   =   
                                                                 (1) 

Longitude propagation is given by: 

1

cos( )( )

l

p e

p mp

V
r

    =   
      (2) 

Altitude propagation is given by: 

l

p dh V   = −   
        (3) 

where  
pnp nr r h= +  and 

pmp mr r h= + ;  

rn - the normal radius and rm -  meditorial radius. 

Velocity propagation model: 

The dynamic model which represents the velocity 

propagation of SINS in local l -frame (i.e north-east-down 

frame) of reference is expressed as: 

( ) 2

l l

n n n

l l l l l

e e el ie e

l l

d d d

V f V

V f g w w V

V f V

    
      = + − +      
        

    (4) 

 

Where 

.

.

.

( )cos( ) 2

( 2 )

( )sin( ) 2

l

p p n

l l

el ie p

l

p p d

w

w w

w







 
 + 

 
+ = − 

 
−  + 

 

                (5) 

l

iew is the Earth rate vector computed in  ( l )-frame;  l

elw  is 

the Earth transport rate expressed in  ( l )-frame and 

computed with reference to Earth fixed frame;  

The measured specific acceleration vector is given by 

 

     
T

l l l l b b

n e d lf f f f C f = =                                    (6) 

 

The transport rate vector expressed in l -frame as: 

( )      ( )  
T

l

el p p p p pw cos sin     =  − −   
      (7) 

 

The Earth rate vector expressed in l -frame as: 

    0  
T

l l l

ie n dw w w   =   
                                                 (8) 

 

The propagation of direction cosine matrix l

bC which 

transforms a vector from local navigation frame, ( l )-frame 

to SINS ( b )- frame is computed by integration of 

.

( )
l

l b b
b b ib ilC C=  −                                                       (9) 
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where   =  . b

ib is the body rate vector measured in 

SINS ( b )- frame; and b

il  is the body rate vector from 

inertial frame to ( l )-frame and measured in SINS ( b )- 

frame. The superscript  ‘ l ’ denotes the local navigation 

frame; ‘ e ’ represents the earth-centered earth-fixed frame; 

‘ b ’ represents the body frame, and  ‘ i ’denotes the earth-

centered inertial frame;   
nw is north component of Earth 

rate vector  
ie  and is expressed as ( );n ie pw cos =   

dw  is down component of Earth rate vector  
ie and is 

expressed as  ( )d ie pw sin = − .   lg  is the gravity 

vector;  
lf  is the specific force vector measured by 

accelerometers expressed in ( l )-frame as l b b

lf C f= ; 

b

lC is the direction cosine matrix which transforms the b-

frame measured vector to ( l )-frame.   
bf  is the specific 

force vector measured by accelerometers in SINS body 

frame; l

dg is the gravity vector in ( l )-frame. 

2.2.  Linearized Error State Dynamic model of SINS 

Navigation error arises due to error in initial condition 

followed by the integration of instrumentation errors 

through the integration process. This section focuses on 

development of state space model for the navigation error 

vectors through the ( l )-frame mechanization approach as 

defined in previous section 2.1. The concept of small signal 

error model is adapted for the position error propagation 

model. Let      
T

l

p p pP h  =    
denotes the 

position errors of the INS, including the latitude error 
p

, the longitude error  
p , and the height error 

ph .  

Through partial derivatives, the propagation of position 

error vector        l

e p p pP h  =    
may be 

expressed as: 

     l l l l

PP PV PAP P V A  =   +   +   
   (10) 

where the error sensitivity matrix  [ ]PP  which represent 

the position error propagation model may be written as: 

 
p p

p PP p

p ph h

     
   
 =     

      

                                               (11) 

As the height is independent parameter and there is no 

coupling with  
p and  

p it may be written as: 

0ph =                                                                                (12) 

The error sensitivity  matrix  [ ]PP  is expressed as 

2

2 2 2

0 0

[ ] ( ) 0 ( )

0 0 0

l

n

np

l l
p pe e

PP

mpp p mp

V

r

sin sinV V

rcos cos r

 

 

 −
 
 
 −
  =
 
 
 
 
 

   (13) 

Similarly, the partial derivatives of rate of change of 

position vector with reference to velocity error may be 

expressed as: 

 

 

l

p n

l

p PV e

l

p d

V

V

h V

    
   
 =     

      

                                                   (14) 

where the error sensitivity  matrix 
PV is expressed as: 

1
0 0

1
[ ] 0 0

( )

0 0 1

np

PV

p mp

r

cos r

 
 
 
 

 =  
 
 −
 
 

                              (15) 

The error sensitivity of rate of change of position vector with 

reference to inherent error in Euler angles in ( l )-frame  

     
T

n e d

l l l lA A A A  =    
may be expressed as: 

 

l

p n

l

p PA e

l

p d

A

A

h A

    
   
 =     

      

                                                 (16) 

where the Jacobian matrix  
PA  is expressed as: 

0PA =                                                                                 (17) 

By using (2) and applying small signal perturbation model, 

the velocity error propagation model may be written as : 

   

 

l l l

VP VV

l b b

VA l

V P V

A C f      

  =   +   

      +   +   

                             (18) 

Where 

(1) (3)  | 0 |  VP VP VP
  =   

                                             

(19) 

with corresponding column vectors as follows: 

The first column of 
VP  is expressed as: 
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2 2

2

(1)

( ) sec ( )
2

sec ( ) 2( )

2

l

e p l l

n n

mp

l l

l l l ln e

VP p n n d

m

d

d

e

p

V
w V

r

V V
w V w V

r

w V





 
− − 

 
 
  = + +
 
 

− 
 
 

    (20) 

The third column of 
VP  is expressed as: 

2 2

2 2

(3) 2 2

2 2

2 2

( ) sec ( )

tan( )

( )

ll l
e pn d

np mp

l l l l

e d e n

VP p

np

l

e n

p p

mp

m n

VV V

r r

V V V V

r r

V V

r r





 
− + 

 
 
  = − −
 
 
 

+ 
 

                          (21) 

Similarly,  

(1) (2) (3)     VV VV VV VV
  =    

                                              

(22) 

with its column vectors computed as follows: 

The first column of 
VV  is expressed as: 

(1) tan( ) 2( )

2( )

d

np

l

e

VV p d

mp

l

n

np

V

r

V
w

r

V

r



 
− 

 
 
  = − +
 
 
 
 
 

                             (23) 

The second column of 
VV  is expressed as: 

(2)

2
tan( ) 2

tan( )

2
2

l

e

p d

mp

l l

d n

VV p

mp mp

l

e

n

mp

V
w

r

V V

r r

V
w

r





 
− 

 
 
  = − −
 
 
 

+ 
 

                                 (24) 

The third column of 
VV  is expressed as: 

(3) 2( )

0

l

n

np

l

e

VV n

mp

V

r

V
w

r

 
− 

 
 
  = − +
 
 
 
 
 

                                                (25) 

Finally, the error velocity Jacobian with respective to mis-

alignment angles is calculated as: 

l

VA f  =  = 
  Skewed matrix of vector   lf  

             

(26) 

Mis-alignment angle propagation: 

The body measured angular rate vector bw may be 

transformed to (l)-frame as: 

l b b

lw C w=                                                                     (27) 

Measured angular rate as shown in (27) may be perturbed 

through: 

l l l

b b b

l l l

b b

w w w

w w w

C I A C

= + 


= +  


 = −    

                                          (28) 

The propagation of direction cosine matrix l

bC  may be 

written as: 

l l b l l

b b bC C w w C       =  −        
                       (29) 

 

By substituting (27) in (28) and (29), the small signal 

perturbed model for attitude error may be written as: 

 

l l l l b l

bA w A C w w    = −   −  +    
             (30) 

where  lw  
is skew-symmetric matrix of lw vector and 

is expressed as : 

0

0

0

l l

d e

l l l

d n

l l

e n

w w

w w w

w w

 −
 

  = −  
 − 

                                  (31) 

The   lw is the error in rotation rate of reference frame 

and may be expressed as partial derivatives of  lP   and   
lV as: 

l l
l l

l l

lw w
w P V

P V

    
 =  +    

    

                           (32) 

By using (31) , the (29) may be written as: 

   

 

l l l

AP AV

l l b

AA b

A P V

A C w    

  =   +  

   

 

 +     +  

                             (33) 

Where 
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2

2

2 2

2

2

0

0 0 sec ( )( / )

sec ( )
2 0 tan( )( / )

l

l e

d

md

AP p n np

l

e p l

n p e mp

mp

V
w

r

V r

V
w V r

r






 
− 

 
  =
 
 
− − 

  

  (34) 

 

1
0 0

1
0 0

1
0 tan( ) 0

mp

AV

mp

p

mp

r

r

r


 
 
 
 
  = −
 
 
 −
  

                              (35) 

 

( )
0

( )
0

0

l

e p l n

d

mp np

l l
e p l le

AA d n

mp mp

l

ln e

n

np mp

V tan V
w

r r

V tan V
w w

r r

V V
w

r r





 
− + 

 
 
  = − +
 
 
 

− − − 
  

   (36) 

The equations (10), (18), and (33) are combined together to 

represent a small signal mathematical model of SINS as:    

.

.
0

l

l

PP PV PAl
l l b

VP PV VA b

l l l b

AP AV AA b

P
P

V V C f

A A C w

 
 

        
      =     +      
      −          

 
 

   (37) 

 

2.3. Composite system matrix through augmentation of 

states 

Inertial sensors for navigation systems have systematic 

errors and random errors. The systematic errors are 

measured through calibration process and compensated 

during navigation process. However, the modelling of 

random errors  along with compensation is a challenging 

activity. These random errors are the inherent  errors of 

inertial sensors within SINS system which will cause the 

drift in end-computed navigation state information. Hence,  

it is important to model them through state augmentation 

approach. However, there are several parameters to be 

consider as shown in Fig. 3 and only the bias parameters are 

considered in the present manuscript as a trade-off between 

increased accuracy and size of the filter. It is to be noted that 

the higher order terms like scale factor and non-linearity 

shall have better estimation strategy for high dynamic 

motion path and observability criteria and need not be 

considered for low-dynamic land vehicle applications. 

Hence, the lumped parameter models are assumed to 

represent the equivalent  bias vectors of inertial sensors and 

are considered for the present work. 

 

Fig. 3.  Different types of errors of inertial sensors 

measurements. 

Let  bf  and bw represent the error state vectors in  

specific force and angular rate measurements respectively. 

These measurement errors include both random noise terms 

and left over errors in calibration process. Given the 

measurements  bf and bw , the estimates of the bias 

vectors  ˆ bf and ˆ bw ,  the specific force and angular rate 

vectors towards the navigation computation are listed  as: 

ˆb b bf f f= −                                                               (38) 

 ˆ b b bw w w= −                                                           (39) 

 

Assuming 
bf  and bw are the random constants of the 

accelerometer bias vector and gyro bias vector accordingly 

through lumped parameter model, the corresponding error 

propagation equations may be written as: 

 0bf =                                                                            (40) 

 0bw =                                                                           (41) 

 

The error state equations derived from (10), (18), (33), (40), 

and  (41) are put together and represented in state space form 

with  [ ]x  as error state vector and finally represented in 

component form as: 

[ ]
T

l l l l b b

INSx P V A w f  =      
       (42) 

 

and the corresponding small signal error model is expressed 

as 

.

.

.

.

.

0 0

0

0

0 0 0 0 0

0 0 0 0 0

b

b

l

l
l PP PV PA

l
VP PV VA Vf

l
l

AP AV AA Aw

b
b

b

b

P

P

V
V

AA

w

w f

f


   

     

=    



 



 
 

    
    
    
    
    
    
       

 
  

   (43) 

Where 

b

l

bVf
C = −                                                                      (44) 
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b

l

bAw
C =                                                                         (45) 

Equation (43) is represented in short form for the linear error 

dynamical model of INS in time domain form as: 

   
.

15 15 15 1
15 1

( ) ( ) ( )INSx t x t w t
 



 
 =   +  

   (46) 

3. PROPOSED ODOMETER MESUREMENT 

MODEL 

GNSS is considered to be a potential aiding source to the 

SINS to reduce the accumulation of errors for several 

applications. However, GNSS can be  compromised and 

degraded in urban canyons, tunnels, and in the adverse 

territorial conditions. Alternatively, the odometer as a 

vehicle motion sensor is found to be a most suitable and 

cost-effective device that is immune to the several 

environment-related errors. The  odometer can be used to 

minimize the accumulated INS errors as the time progresses. 

The odometer sensor assembly has got mechanical housing 

with phonic wheel and a set of high reliable inductive 

sensors. A phonic wheel is required with serrations to 

generate the pulse high and low output. The tooth of phonic 

wheel should be in the vicinity of sensing distance and the 

number of tooth required will be as per the resolution 

requirements of the distance travelled computation. Two 

inductive proximity sensors are used to differentiate the 

vehicle motion in forward and reverse motion by detecting 

the phase lead and phase lag from pulse output of both the 

sensors. Placement of proximity sensors near to phonic 

wheel should be arranged in such a manner that both sensor 

output pulses should be in quadrature phase shift. The 

stream of electrical pulses are sent to timer/counter of 

Processing electronics to generate the forward motion 

detection through its associated value of nominal scale 

factor. 

3.1. Measurement model based on Odometer velocity 

vector 

The required measurement towards the optimal state 

estimation through proposed Kalman filtering process can 

be constructed by the velocity differences between the b-

frame of INS and odo-frame of Odometer sensor assembly. 

Let the odometer parameter be represented as: 

 

odoV       - Forward velocity of vehicle along x-axis as 

measured by Odometer sensing assembly 

odoSF      - Scale factor of odometer which converts the 

measured pulses per sample time to equivalent forward 

velocity 

odoSF  - The error in Scale factor of odometer 

measurement 

odoL      - Error in lever arm vector of odometer assembly 

from the installation location of SINS 

odoM       - Mis-alignment angles from odometer assembly 

to b-frame of SINS  

odo

bC          - Lever arm vector of odometer assembly from 

the installation location of SINS 

The error sensitivity measurement model of odometer 

based on measured forward velocity odoV on odometer 

sensor assembly frame is written as: 

[ ] [ ]

[ ] [ ]

( )

odo odo l odo l l

l l

odo odo odo b odo

b

odo odo

z C V C V A

V M C w L

SF V

 =  +   +

              −  

           − 

   (47) 

where o

l

odC   represents  the transformation matrix from 

odo-frame to l -frame  and 

odo

yz

odo odo

xz

odo

xy

M

M M

M

 
 

=  
 
 

with 

 

 

0

0

0

odo odo odo

yz xy xz

odo odo odo

xz xy yz

odo odo odo

xy xz yz

M M M

M M M

M M M

   −
   

 = −   
   −   

   (48) 

And 

 

0 

0 0 0

0

0 0

odo

x

odo odo odo

y x

odo odo

z x

V

V V V

V V

   
   

 =  = −   
     

   (49) 

Where the mathematical symbol   represents the skewed 

symmetric matrix operation on vector. odoV is a velocity 

vector defined in odometer sensor assembly frame with 
odo

xV  as incremental velocity as measured by odometer 

along 
odox axis. an odo

yV  and odo

zV  are the resultant 

velocity components with zero mean white noise and are 

due to non-holonomic constraints (NHC) imposed along the 

odoy -axis and 
odoz -axis respectively. 

[ ][ ]

0 0 0

0 0

0 0

( ) [ ]

odo odo b l

b l

odo odo

x

odo

x

odo odo odo b odo

b eb

z C C V

V M

V

SF V C w L

 = 

 
             + −   
  

          −  −  

  

(50) 

Since 
yzM  is not observable it can be removed from state 

vector. By forcing the other two components odo

yV   and 
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odo

zV  to zero and rearranging the states ,odo odo

xz xyM M  and

odoSF , the measurement equation required for the 

proposed Kalman filtering process is expressed as: 

[ ][ ]

0 0

0 0

0 0

[ ]

odo odo b n

b n

odo odo

x

odo odo

x xz

odo odo

x xy

odo b odo

b ib

z C C V

V SF

V M

V M

C w L

 = 

   − 
   

         + −   
   
   

        −  

   (51) 

3.2. State-space model for Odometer velocity 

measurements 

Once the SINS and Odometer are mounted on a vehicle, the 

relative mounting angles between the b-frame, and o-frame 

are fixed and to be measured. Also, the lever arm values 

between measurement centres of 
bo  and 

odoo to be 

measured. Further, the scale factor of the odometer will be 

varying due to environmental conditions and is prone to tyre 

pressure variations.  These parameters are conventionally 

measured through a dedicated calibration process by using  

standard level meters, guages, and a fixed track straight line 

motion. Since, this process is very cumbersome and  having 

several constraints from the field operations, it is proposed 

to estimate the parameters though filtering process. The 

corresponding scale factor error, installation angles, and 

lever arm vector are considered as random constants and 

their error equations are expressed as: 

.

0odoSF =                                                                      (52) 

0odo

xyM =                                                                            (53) 

0odo

xzM =                                                                            (54) 

0odoL    =                                                                         (55) 

The equations (52), (53), (54), and (55) are arranged 

together through a composite linear dynamical equation and 

represented as  

: 

6 1 0odox  =                                                                             (56) 

where 

.

6 1           odo odo odo odo odo

xy xzx SF M M L

 
 =     

 

   (57) 

Using (57) and (58), the measurement model of odometer 

may be expressed as: 

odo odo odo

k k k kz h x   =   + 
                                      (58) 

Where  

( ) ( , ) ( )0   0 0 0      odo odo odo odo

k v SF M Lh h h h    =      
      (59) 

With  

( )

odo odo b

v b nh C C    =   
                                                     (60) 

( , )

0 0

0 0

0 0

odo

x

odo odo

SF M x

odo

x

V

h V

V

 −
 

 = − 
 
 

                     (61) 

( ) [ ]odo odo b

L b ibh C w = −                                                     (62) 

3.3. State-space model for Odometer integrated system 

According to the error model of the proposed hybrid 

(INS/ODO) navigation  as explained in previous section, the 

error state model of the INS/ODO integration can be 

constructed. The corresponding linear error dynamical 

model of SINS as shown in  (43) and (57) with 
HYBRIDF as 

system matrix is represented in time domain form as: 

   
.

21 21 21 1
21 1

( ) ( ) ( )HYBRIDx t x t t
 



 
 =   +  

     (63) 

Where 

  15 6

21 21
6 15 6 6

0

0 0

INS X

HYBRID

X X


 
 =  

 

                           (64) 

By framing ( )x t as a 21-dimensional error state 

 vector as: 

.

21 1

( )   
T

l odo

INSx t x x


 
  =     

                               (65) 

 where 
INS is a 15 15 state transition matrix based on the 

mathematical error model of INS as defined in (46). 

 

The equation (63) is discretized for the sake of 

implementation of extended Kalman filter[27] as : 

1k k k kx x + =  +                                                       (66) 

where ξk  is process noise matrix with all its components 

having Gaussian noise with mean zero as: 

[ ] 0kE  = and [ ]k j k kjE q  =  where 
kj assumes 1 

for diagonal elements and zero for all other elements and the 

process noise matrix 
kq  is formulated by extracting the 

power-spectral density (PSD) parameters of gyroscopes and 

accelerometers respectively. 

4. SEQUENTIAL PROCESSING OF ODOMETER 

MESUREMENTS THROUGH EKF 

4.1. Error state estimation through Extended Kalman 

filter  

This section provides the system-error models and 

measurement updating models of the loosely-coupled 
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navigation of INS/odometer based on  an extended Kalman 

filter (EKF).  Since, the authors in the present manuscript 

devised the mathematical models for high accuracy 

accelerometers and  ring laser gyroscopes (RLG) with less 

bias error,  the extended Kalman filter has been considered 

with relatively less number of computations.  Hence, the 

derived SINS linearized models as presented in previous 

section shall be the basis for the implementation of EKF 

based estimation [28]. 

The sensor measurements of SINS are propagated through 

non-linear equations and the corresponding small signal 

perturbed model is derived with an aim of devising error 

state estimator through Extended Kalman filter. However, 

there are other non-linear filtering methods available in the 

published works. The unscented Kalman filter (UKF) is 

widely used for MEMS based SINS applications for 

commercially ground vehicles where the dependency on 

GNSS is high [29]. Similarly, particle filter (PF) is devised  

and highly recommended for MEMS based SINS which has 

the high level of non-linearity between the two epochs of 

filter update interval. The works reported in [30-31] have 

confirmed that the EKF and UKF processes are 

mathematically equivalent with first one has got simpler 

mathematical operations compared to second one. 

The extended Kalman filtering is formulated as: 

EKF based measurement update scheme: 

The Kalman gain is computed as: 

( ) ( ) 1

1 1[ ]T T

k k k k k k kk p h r h p h− − −

+ += +                                   (67) 

( ) ( )

1 1 [ ]k k k kx x k residual+ −

+ + =  +                                 (68) 

( ) ( )

1 1

T T

k k k k k k kp u p u k r k+ −

+ += +                                           (69) 

Where 

k k ku I k h= −                                                                      (70) 

The error residual vector 
kresidual  is computed as: 

    ( )

1

odo

k kk k
residual z h x −

+
 =  −  

                      (71) 

 

EKF based time update scheme: 

 

( ) ( )

1k k kx x− +

+ =                                                                (72) 

( ) ( )

1

T

k k k k kp p q− +

+ =   +                                                 (73) 

 

Since, the Kalman gain 
kk has to deal with inversion of 

diagonalized version of measurement covariance matrix, 

there is a likely chance that the denominator may approach 

close to zero. This leads to the divide by zero problem in an 

embedded computer leading to the soft failure of SINS. 

Hence, the batch processing technique of Kalman gain is re-

formulated as scalar processing of  EKF where the 

measurements are sequentially processed one after the other 

one. The measurement matrix
kr is assumed to be diagonal 

as : 

(1) ( 2) (3)
diag , ,k k k kr r r r =

 
                                            (74) 

Where `diag' represents the diagonalal elements of matrix

kr of size 3 3 . In order to have sequential processing, the 

corresponding measurement equation is written as:  

( )( 1,2,3) ,(( 1,2,3)) , 1, 3 2,
ˆˆ

k j k j k k jz h x = = =
  =  + 

           

(75) 

Sequential Kalman filter execution : 

Stage 1: Initialize the sequential EKF parameters as: 

( )

0 0[ ] 0x E x+ =  =                                                      (76) 

( ) ( ) ( )

0 0 0 0 0[( )( ) ] Tp E x x x x+ + +=  −   −              

(77) 

,(1) ,(2) ,(3)diag( , , , ) k k k kr r r r=                                  (78) 

Stage 2: Compute error covariance matrix at each time step 

k as shown in (73) and the associated the process noise 

covariance matrix 
kq based on PSD values  of inertial 

sensors. 

Stage 3:  Initialize the error estimate of state vector and its 

associate error covariance matrix  as : 
( ) ( )

,(0)k kx x+ +  =  
 and ( ) ( )

,(0) 0kp p+ − = 
and the 

update the measurement equations at each time step k as 

follows: 

(a) Considering the one measurement at a time from error 

residual vector  
3 1

residual


 the following computations 

are performed sequentially for 1,2,3i =  

(b) Re-assign the a posteriori estimate of error state vector 

and its covariance as: 

( ) ( )

1 ,( ) k k ix x+ +

+ =                                                                    (79) 

( ) ( )

1 ,( )  k k ip p+ +

+ =                                                                      (80) 

Stage 4: After processing three measurements,  the EKF 

corrections are generated  and are applied to the plant model 

through ( )

1kx +

+  at the ( 1)thk +  instance. 

5. FIELD EXPERIMENTAL RESULTS 

The strap-down inertial navigation mechanization in local 

tangent plane is implemented in embedded system-on-chip 
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(SOC) processor of SINS. The incremental angles and 

incremental velocities from inertial sensor module are 

sampled at 400 Hz. The attitude information is derived at 

every 10 milli seconds. Further, Simpson's numerical 

integration is performed at every 20 milli seconds for  

velocity and position computations. To test the algorithmic 

performance of proposed scheme, a phonic wheel equipped 

with two inductive sensors of make from M/s SICK are 

realized and mounted on non-steering wheel of the vehicle 

as shown in Fig.5. Inertial navigation system with the 

required algorithmic implementation in its software module 

and equipped with in-built GNSS receiver is installed in the 

mobile van test facility. The experiments are conducted by 

keeping a navigation grade ring laser gyro (RLG)-based 

high accuracy sensor cluster  statically for one hour.  The 

studies have been carried by considering the nominal errors 

values of  inertial sensors: 70 micro g bias error on 

accelerometer measurement and 0.03 deg/hour drift error on 

gyroscope measurement. The detailed specifications of the 

SINS is shown in Table. 1  

Table 1. Typical errors of inertial sensors of SINS under 

field evaluation 

Sensor: Accelerometer Parameter 

Bias repeatability 70 g, 1 σ 

Scale factor Accuracy 50 ppm, 1 σ 

Random Walk 10 g/ √(hour) 

Sensor: Gyroscope Parameter 

Bias repeatability 0.03 deg/hour, 1 σ 

Scale factor Accuracy 50 ppm, 1 σ 

Random Walk 0.01 deg/√(hour) 

 

Van trial test is carried out to validate position accuracy of 

proposed hybrid navigation solution (INS+ODO) with 

respect to GNSS under dynamic motion conditions. The 

following are the two conditions considered: 

1) Pure inertial mode where no external aiding is 

used: Position error for 1 hour operation 

2) Hybrid navigation in which inertial sensor data is 

fused with odometer data over 15km of travelled 

distance. 

5.1. Static testing over 1 hour duration  

The navigation test is run for 3600 sec. The results are 

plotted and analyzed against the standard specifications of 

1.0 NM/hour (1σ )  for the sensor specifications listed out in 

Table1. Further, the GNSS Receiver (GPS) computed 

positions and velocities in ( l )-frame are taken as reference. 

Finally, the optimally fused data of pure inertial navigation 

solution with Odometer measurements are studied and 

plotted. Initially the static navigation runs are given for 

different set of random values of sensor error as specified in 

Table 1 and errors of 12 runs are shown in the Fig.4 and 

Fig.5 for position errors and velocity errors respectively. 

These errors are found to be oscillatory with a Schuler 

oscillating frequency of 84.4 minutes. These errors 

represent the type of errors involved in position and velocity 

vectors as the time progresses and justifies the need of 

proposed multi-sensor data fusion by using Odometer or 

GNSS as an auxiliary sensor for accurate positioning the 

vehicle. 

 

 

Fig. 4.  Navigational position error drift  for 12 

independent runs with each one for 1 hour duration 

 

Fig. 5.  Navigational velocity error drift  for 12 

independent runs with  each one for 1 hour duration 

5.2. Dynamic tests with odometer sensor integrated with 

SINS 

GNSS provides position-velocity-time information with 

bounded errors irrespective of time of operation. Under 

benign conditions, it is always preferred to fuse the pure INS 

data with GNSS data to generate the accurate navigation 

solution. However, the GNSS being as an external system, 

it has its own limitations regarding the signal reception and 

its associated signal processing.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3774–3790  |  3785 

During the GNSS denied conditions like when the vehicle is 

moving in urban canyons or thick vegetation, the GNSS 

suffers from loss of signal reception and hence, the 

navigation solution will start drifting towards pure inertial 

navigation mode. In order to damp these errors, it is planned 

to use Odometer data from odometer sensor mounted on 

axle wheel of autonomous vehicle which provides the 

forward velocity of the vehicle. The test setup with in-house 

built SINS, Odometer assembly, and GNSS antenna are 

shown in Fig. 6. 

 

Fig. 6. Mobile navigation test facility with SINS, 

Odometer assembly and GNSS antenna on the roof top of 

mobile van. 

The additional 6 states are introduced to cater the 

uncalibrated odometer parameters and total 21-State 

Extended Kalman filter is designed to get the optimal 

navigation solution. The error states are tabulated in Table. 

2.  

Table 2. States of 21-State Extended Kalman Filter 

(INS+GPS+ODO) 

S.N

o 
Vector Name Number of states 

1 Position 3 (Latitude, Longitude, 

Height) 

2 Velocity 3 ( , ,l l l

n e dV V V ) 

3 Attitude 3 ( , ,   ) 

4 Gyroscope 

Bias 
3 )( , ,b

x y

b

z

bw w w    

5 Accelerometer 

Bias 
3 )( , ,b

x y

b

z

bf f f    

6 Odometer 

Scale Factor, 

Pitch & 

Azimuth 

Misalignment 

3 )( ,,odo odo odo

xz xySF M M  

  

7 Odometer 

Lever Arms 
3 ( , , )odo odo odo

x y zL L L   

 

 

The duration of test is considered for 3500 sec. The results 

are plotted and analyzed against the standard specifications. 

Also, the GNSS receiver computed positions and velocities 

in ( l )-frame are taken as reference. Finally, the optimally 

fused data of pure inertial navigation solution with odometer 

measurements are studied and plotted under the label 

HYBRID (INS+ODO).  The colour codes defined for 

interpretation of results are shown in Table 3.  

Table 3. Colour Codes for Data Interpretation for Fig. 8 to 

Fig.11 

Color 

Code 

Label 

Name 
Description 

Blue INS Pure inertial navigation 

solution based on inertial 

sensor(with vertical channel 

damping  

Red GNSS GNSS  Reference navigation 

solution based on satellite 

position Fix 

Gree

n 

HYBRID 

(INS+OD

O+NHC) 

Pure Inertial + Odometer 

fused hybrid navigation 

solution + non-holonomic 

constraint (NHC) 

 

The pure INS, hybrid computed positions (HYBRID) along 

with GNSS measured positions are plotted in Fig.7. It is 

found that the pure INS computed position profile is drifted 

from the GNSS position profile whereas the hybrid scheme 

computed position profile is matched closely with GNSS 

computed position profile. Further, in order to quantify the 

amount of errors the error in positions with reference to time 

is plotted in Fig. 8. It is found that the pure INS has shown 

1.8 Km and 1.2 Km position errors in north and east 

channels respectively.  The height error in pure and hybrid 

channels are found to be within 20 meters. The error in 

height computed by pure INS is damped out by external baro 

altimeter data whereas the height computed by proposed 

hybrid scheme with odometer as an auxiliary sensor is 

shown similar performance within 20 meters and 45 meters 

for north and east channels as shown in Fig. 9. This is a 

significant achievement and the need of baro-altimeter does 

not exists as long the proposed hybrid navigation scheme is 

active. The hybrid computed horizontal position errors are 

shown in Fig. 8 and found to be 20 meters and 50 meters for 

north and east channels respectively at 3500 sec. 

The Euler angle profile of the SINS during the motion is 

presented in Fig. 10. The van has moved along the road 

covering 3 Mini Mountains indicated the pitch-up and pitch 

down conditions. The efficiency of height calculation can be 

better judged during the motion path at different elevated 
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track conditions. Hence from Fig. 9, it can be concluded that 

the height errors are well within 20 meters accuracy under 

varying altitude profile along the motion path. 

 

 

Fig. 7. North and East position pure INS, GNSS and 

proposed Hybrid (INS+ODO) navigation mechanization 

 

 

Fig. 8. North and East position errors of pure INS and 

proposed Hybrid (INS+ODO) navigation mechanization 

 

Fig. 9. North and East position errors of proposed Hybrid 

(INS+ODO) navigation mechanization 

 

Fig. 10. Euler angles of vehicle during motion testing 

The velocity profile of the van as recorded by pure INS, 

hybrid scheme, and GNSS are shown in Fig. 11. The 

zoomed plot on right side of the Fig. 11 shows that the pure 

INS velocities are drifted by 1m/sec and 0.5 m/sec (north 

and east channels) after 3500 sec whereas the errors in 

hybrid computed velocities are found to be  < 0.05 m/sec  

and having close match with GNSS measured velocities. 

 

Fig. 11. Velocity profile of vehicle during motion testing 

 

Fig. 12. Distance Travelled (DT) in odometer sensor body 

frame as shown by Hybrid Navigation mechanization and 

Odometer 
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The distance travelled (DT) information is presented in Fig. 

12. It is found that the NHC constraints imposed on EKF 

process are very effective and distance computed along 

lateral DTy and vertical axes DTz are found to be less than 

20 meters. 

The estimated bias vectors of the gyroscopes and 

accelerometers are shown in Fig. 13. The gyro biases are 

found to be <0.03 deg/hour which are within the sensor 

specifications as shown Table. 1. Similarly, the 

accelerometers biases estimated to be around 70 μg which 

are within the sensor specifications as shown Table. 1. 

 

Fig. 13. Estimated biases of gyroscopes and accelerometer 

by Hybrid (INS+ODO) navigation mechanization 

As discussed in the introduction part of manuscript, the 

estimability of proposed EKF with 21-states can be better 

judged by observing the estimated values of lever arm 

vector, scale factor and mis-alignment angles of odometer. 

Hence, the respective estimated parameters are plotted in 

Fig. 14. The estimated lever arm values for 
xL and 

yL are 

converged towards calibrated values within 200 sec from 

the start of vehicle. 

 

Fig.14. Estimated Odometer mis-alignment angles and 

lever arm states of Hybrid (INS+ODO) navigation 

mechanization 

However, the convergence of vertical axis lever arm 
zL is 

slower and took around 3000 sec. This is due to lower 

degree of observability for 
zL . The van is kept static 

initially for a duration of 500 sec. During these static 

conditions the estimated scale factor did not see any 

corrections from EKF process. As soon as the vehicle 

started moving after 500 seconds, the scale factor is 

estimated immediately within few seconds and converged to 

pre-calibrated true value. The estimated mis-alignment 

angles are found to be converging within few seconds from 

the time of vehicle movement. But, these estimated angles 

have shown oscillatory behaviour. This is due to variations 

in measured and estimated velocities during vehicle 

rotations around the 
bz axes.  

Finally, it is important to express the positioning errors of 

proposed hybrid navigation scheme in terms of percentage 

of distance travelled. For a 15km distance, the errors found 

to be 0.2 % of DT and is shown in Fig. 15.  

The error covariance of estimated state vectors are shown in 

Fig.16, Fig.17 and Fig.18.  It is found the error covariance 

of horizontal positions 
p  and 

p  are slowly diverging as 

expected due to no observability on horizontal position 

channels. 

 

Fig.15. Positioning error proposed Hybrid navigation 

mechanization expressed as \% of Distance Travelled (DT) 

 

Fig.16. Covariance of error in position and velocity vectors 

of proposed Hybrid navigation with sequential EKF 
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However, the error covariance for vertical channel (height 

computation) has converged initially and remain stable for 

longer duration with a slow drift rate. This indicates that the 

error in height is successfully damped out.  The error 

covariance of velocity vectors are converged quickly as it 

has high degree of observability as shown in Fig. 16.  

The error covariance of augmented state vectors of 

odometer sensor assembly are shown in Fig.17. The 

convergence rate of respective error state vectors shown in 

Fig.14 has high level of correlation with respective error 

covariance as shown Fig. 17. Finally, the error covariance 

of attitude vectors, accelerometer bias vectors and gyro bias 

vectors are shown in Fig. 18 and found to be very much 

consistent with corresponding error state vectors shown in 

Fig.13.  

The implementation details of fusion of inertial sensor data 

with odometer data has been described. Van trials are 

carried out to validate the proposed scheme and the 

associated sequential EKF algorithms along with non-

holonomic constraints. The filed evaluation results of 

position error when odometer data is fused are compared 

with the position when GNSS feed is available. Hence, it is 

shown that a navigation system with the proposed hybrid 

navigation mechanization feature, can give high position 

accuracy even in GNSS non-available conditions. 

 

Fig. 17. Covariance of error in estimated Odometer mis-

alignment angles and lever arm states of proposed Hybrid 

(INS+ODO) navigation mechanization with sequential 

EKF. 

 

Fig. 18 Covariance of error in estimated attitude, gyro bias 

and accelerometer bias states of proposed Hybrid 

(INS+ODO) navigation mechanization with sequential 

EKF 

6. CONCLUSION 

In this manuscript, a 21-state EKF based hybrid navigation 

mechanization has been presented to have the high accuracy 

navigation solution for land vehicle applications. The mis-

alignment angles and odometer scale factor errors are 

estimated and their accuracy is seen to be on par with 

calibrated values. Hence, the need of laborious calibration 

can be supplemented with proposed estimation process 

directly in the field. The method of pre-processing of 

odometer pulse measurements are considered and 

investigated for the positioning accuracy of SINS.  The 

sequential processing of these measurements is considered 

for the proposed EKF. The field trial for 15km distanced 

travelled has demonstrated the improved performance as 

compared to traditional pure INS solution and could damp 

out the Schuler oscillations involved in horizontal channels 

of Pure INS mechanization. The work presented in the 

manuscript demonstrated the deployment of odometer as 

auxiliary sensor in tandem with SINS under GNSS outage 

conditions and enables the land vehicle to achieve the higher 

positioning accuracies as compared to stand alone operation 

of SINS. 

Finally, it is evolved that the odometer can be a potential 

auxiliary sensor along with SINS towards multi-sensor data 

fusion for along with its superior performance for 

positioning application of autonomous vehicle under GNSS 

non-available conditions. 
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