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Abstract: Flying ad-hoc networks (FANETs) have become indispensable in surveillance, disaster management, and environmental 

monitoring. The decentralized and dynamic characteristics of these systems make them vulnerable to substantial cybersecurity threats, 

namely distributed Denial of Service (DDoS) attacks, which can cause significant disruptions in vital activities. Here, we present VLDD-

FANET (VAE-LSTM for DDoS Detection in FANETs), a novel framework designed to identify anomalies in FANETs. The system employs 

a robust integration of Variational Autoencoder (VAE) and Long Short-Term Memory (LSTM) networks to detect and prevent DDoS 

assaults in FANET traffic monitoring. A widely recognized method for modelling realistic networks, NS-3 simulation, was used to generate 

the dataset for this work. We employ sophisticated feature engineering techniques to measure essential network parameters, including 

packet rate, byte rate, flow duration, and number of communications. Identity of DDoS assaults can be achieved via detection of temporal 

and statistical irregularities in network traffic patterns. The suggested VLDD-FANET model exhibits exceptional performance with 0.9930 

accuracy. It surpasses popular models such as LSTM, autoencoder, LSTM autoencoder, and ARIMA in performance. Through real-time 

detection of anomalies in FANET traffic monitoring software, our method improves FANET security against DDoS attacks. The VLDD-

FANET methodology is a scalable approach to maintaining FANET integrity and functionality. 

Keywords: FANET, DDoS Detection, Anomaly Detection, ns-3 Simulation, Cybersecurity, Traffic monitoring, Autoencoder, LSTM, Network 

Security. 

1 . Introduction 

FANETs are essential technologies in contemporary 

wireless communication that consist of Unmanned Aerial 

Vehicles (UAVs) and base stations. They facilitate various 

applications, including military surveillance, disaster 

management, environmental monitoring, and traffic 

monitoring [1]. In contrast to conventional Mobile Ad 

Hoc Networks (MANETs), FANETs exhibit notable 

features such as high mobility, dynamic topology, and 

UAV autonomy. These features enable quick deployment 

and comprehensive coverage in diverse operating 

situations [2]. Nevertheless, these benefits also contribute 

to notable weaknesses, particularly in relation to security 

and dependability. Traffic monitoring is a fundamental 

application of FANETs. Urban and highway settings 

deploy UAVs to gather real-time data on vehicle 

movements, congestion levels, and overall traffic flow. 

This data is required for applications such as smart city 

management, emergency response, and dynamic traffic 

control systems. Cyber threats, specifically DDoS attacks, 

can significantly undermine traffic monitoring systems 

based on FANETs by overwhelming network resources 

with excessive traffic. As a result, this leads to significant 

communication interruptions and potentially disastrous 

outcomes for critical monitoring operations [3]. Machine 

learning approaches, such as supervised methods for 

detecting specific attacks, including Drop Attacks in UAV 

Ad-hoc Networks, have been recently explored to mitigate 

these threats [4] Statistical analysis and rule-based 

detection, which are the most common ways to find 

anomalies, are often not enough to handle the complex 

and always-changing nature of DDoS attacks in FANETs 

[5]. In recent years, advances in machine learning and 

deep learning methods have shown significant potential to 

improve anomaly detection capabilities. In FANET 

resource-constrained situations, conventional approaches 

like Support Vector Machines (SVMs), Random Forests, 

and regular LSTM networks frequently require substantial 

computational resources and vast labeled data, which may 

not always be practical [6]. Moreover, these models may 

fail to adapt to the quickly changing conditions and 

complex temporal patterns of FANET traffic. This work 

introduces VLDD-FANET, a sophisticated method for 

detecting anomalies in FANETs. It specifically aims to 

counteract DDoS attacks in traffic monitoring by utilizing 

a hybrid deep learning model that integrates VAE with 

LSTM networks. The VAE component captures the data’s 

fundamental distribution, whereas the LSTM component 

effectively models the temporal relationships present in 

the traffic data. These characteristics make the combined 

model highly effective at identifying anomalies in 

dynamic FANET environments [7]. The trained VLDD-

FANET model operates within a Mobile Edge Computing 

(MEC) environment, which enhances its efficiency by 
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processing data closer to UAVs and base stations. This 

edge computing capability significantly reduces latency, 

allows for real-time detection, and minimizes centralized 

cloud resources, making it particularly well-suited to 

resource-constrained FANET scenarios [8]. Sophisticated 

feature engineering principles significantly improve the 

model’s capacity to detect intricate patterns linked to 

DDoS attacks. This results in enhanced detection accuracy 

and reduced computational burden [9]. Using authentic 

FANET traffic monitoring data from NS-3 simulations, 

we evaluated the VLDD-FANET method. The results 

show notable improvements in precision, recall, F1-score, 

and accuracy compared to conventional methods. We 

organize the remainder of this work as follows: Section 2 

examines related works on this topic. Section 3 introduces 

the proposed methodology, followed by a discussion of 

the simulation environment in Section 4. Section 5 

presents the results of the performance evaluation, while 

Section 6 delves into a detailed discussion of the findings. 

Finally, Section 7 concludes the paper and outlines 

potential directions for future research. 

2 . Related Works 

The field of anomaly detection in network security has 

made significant progress, particularly by incorporating 

machine learning and deep learning methodologies. Time 

series forecasting for anomaly detection extensively uses 

conventional techniques like AutoRegressive Integrated 

Moving Average (ARIMA). Still, these methods aren’t 

very good at picking up complex, multidimensional 

patterns in network traffic, especially in dynamic settings 

like FANETs, which are used for real-time traffic 

monitoring [10, 11]. Traffic surveillance utilizing 

FANETs has emerged as an essential application, offering 

instantaneous data on vehicle mobility, congestion levels, 

and traffic flow geometries. Significantly, crucial data on 

FANETs renders them highly susceptible to cyber threats, 

particularly DDoS attacks. These attacks can potentially 

disrupt monitoring by inundating the network with 

harmful traffic [3]. As a result, the need for strong 

anomaly detection systems has led to research into more 

advanced models that can adapt to the unique problems 

that arise in FANET settings. The popularity of LSTM 

networks in anomaly detection stems from their capacity 

to preserve long-term dependencies in sequential data. 

LSTM models have shown they can do some network 

tasks well by finding strange things in traffic data by 

looking for patterns in time [12, 13]. However, it is hard 

to use them in places with limited resources, such as 

FANETs, where real-time processing is needed for traffic 

monitoring because of things like the high cost of 

computers and the need for a lot of annotated data [14, 

15]. To overcome these constraints, scholars have resorted 

to VAEs, which offer a probabilistic method for anomaly 

identification by representing the hidden space of the data 

numerically. VAEs are very good at finding subtle and 

complicated problems, especially when they are 

combined with other deep learning techniques [16, 17]. 

Within the realm of traffic monitoring in FANETs, VAEs 

can augment the identification of atypical traffic patterns 

that might potentially signify a DDoS assault, offering an 

extra level of security [18, 19]. We have extensively 

employed LSTM variants of autoencoders for anomaly 

detection. We achieve this by acquiring effective 

representations of data that allow us to detect deviations 

from typical patterns that may indicate an anomaly. We 

have extensively employed LSTM variants of 

autoencoders for anomaly detection. This is done by 

getting good representations of the data, which lets you 

find patterns that don’t match up with the norm, which 

could mean there is a problem [20, 7]. Although traffic 

monitoring in FANETs has achieved success, the practical 

requirements for real-time processing necessitate models 

that can function effectively with restricted computing 

resources. Recent events have led to the study of hybrid 

models, which combine the best features of several 

methods to make them more accurate and efficient [21, 

22]. In scenarios requiring traffic monitoring, feature 

engineering is of paramount importance in enhancing the 

performance of anomaly detection models. Using moving 

averages, standard deviations, and other statistical 

methods has been shown to help us understand traffic 

patterns, which makes it easier for the model to find 

problems [23, 24]. Nevertheless, these methods by 

themselves are typically inadequate to completely tackle 

the dynamic and developing issues presented by FANETs, 

where the network structure and traffic patterns might 

undergo significant changes [25]. Current research has 

shifted its attention towards hybrid models that combine 

many deep learning approaches in order to enhance 

anomaly detection. The integration of VAEs with LSTM 

networks has notably proven to be a very efficient method. 

VAEs demonstrate the dispersion of data, while LSTM 

models excel at analyzing temporal dependencies. This 

hybrid approach is particularly effective in identifying 

issues in the complex and time-critical setting of FANETs 

specifically designed for traffic monitoring [26, 27]. In 

scenarios including DDoS attacks, which pose a 

significant danger to FANET-based traffic monitoring 

systems, the hybrid VAE-LSTM approach has 

demonstrated superior performance. Utilizing the 

generative capabilities of VAEs and the sequential 

learning capabilities of LSTM models, this method 

enhances detection accuracy and minimizes 

computational burden, enabling real-time applications 

[28, 8]. Building upon these foundations, this work 

introduces an advanced anomaly detection system called 

VLDD-FANET. It combines VAE and LSTM models 

together with sophisticated feature engineering 

techniques. The test results show that the suggested 
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VLDD-FANET method gets around the problems with 

older models by offering a workable way to protect 

FANET-based traffic monitoring systems from DDoS 

attacks. This approach demonstrates higher performance 

in both accuracy and efficiency. 

3 . Methodology 

This section outlines the methodology for the proposed 

anomaly detection approach, VLDD-FANET. This 

approach is designed specifically to detect DDoS attacks 

within FANET traffic 

3.1. System Model 

In a traffic monitoring scenario, a system model is 

developed to identify DDoS assaults in a FANET that is 

specifically designed to handle real-time monitoring and 

data transmission. UAVs strategically place themselves in 

the network to observe and assess traffic conditions across 

a vast region, acting as mobile monitoring stations. The 

primary function of these UAVs is to gather high-

resolution video feeds and other data pertaining to traffic, 

which they then transmit to Base Stations (BS) located on 

the ground. Base Stations function as stationary nodes that 

consolidate the data received from several UAVs and 

transmit it to adjacent MEC nodes for subsequent analysis 

[28]. Model of Attack Within this scenario, the assault 

model presupposes the initiation of a multi-vector DDoS 

attack by a highly skilled adversary, which aims to target 

both the UAVs and base stations within the FANET. The 

attack starts with a SYN flood directed at the base stations, 

with the goal of overpowering their capacity to handle 

incoming data from UAVs. The assault concurrently 

targets the UAVs with a UDP flood, thus exhausting their 

resources and impeding their surveillance data relaying 

capabilities [3]. We strategically designed the assault to 

cause significant delays and the risk of data loss, thereby 

undermining the integrity of the traffic monitoring 

operation. We subject the data to real-time anomaly 

detection at the MEC nodes using the suggested VLDD-

FANET methodology. This methodology examines traffic 

characteristics such as packet rate, byte rate, flow 

duration, and protocol type in order to detect any 

anomalous patterns that could suggest a DDoS attack. In 

order to guarantee thorough coverage of the monitoring 

area, the UAVs establish and maintain continuous 

communication both among themselves and with the base 

stations. Upon detecting anomalous behavior indicative of 

a DDoS attack, the VLDD-FANET model promptly 

initiates protective actions such as rate limitation, traffic 

rerouting, or isolating the impacted nodes. This ensures 

the uninterrupted continuation of surveillance operations. 

Figure 1 depicts the interaction of UAVs, base stations, 

MEC nodes in this system. 

 

Fig.1. System Model For FANET Traffic Monitoring Scenario Under DDoS Attack. 

3.2 Proposed Model Our approach, VLDD-FANET, is divided into three main 

phases: the data preparation phase, the training phase, and 

the anomaly detection phase, as depicted in Figure2. 
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3.2.1. Data preparation 

The first phase in the VLDD-FANET approach involves 

preparing the raw network traffic data for input into the 

deep learning model. This phase includes feature 

extraction, feature engineering, normalization, and 

window extraction. 

3.2.1.1. Feature Extraction: Key features from the ns-3 

simulation are extracted, including packet rate 

(f1), byte rate (f2), flow duration (f3), protocol 

type (f4), number of communications (f5), packet 

size (f6), and inter-arrival time (f7). These features 

form a feature vector at each time step t. The 

relevance of these key features in identifying 

anomalies and detecting DDoS attacks is shown 

in Table 1, where each feature’s contribution to 

model accuracy is evaluated through feature 

importance scores derived from the trained 

VLDD-FANET model [29]. 

𝐱𝑡 = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡), 𝑓4(𝑡), 𝑓5(𝑡), 𝑓6(𝑡), 𝑓7(𝑡)] 

 (1) 

3.2.1.2. Feature Engineering: To capture the temporal 

patterns and anomalies in network traffic, we 

incorporate statistical features such as moving 

averages and standard deviations. For a given 

time series data X = {x1,x2,...,xn}, the moving 

average (MA) and moving standard deviation 

(STD) over a window size w are computed as 

follows: 

MA𝑡 =
1

𝑤
∑ 𝑥𝑖
𝑡
𝑖=𝑡−𝑤+1                                                  (2) 

   STD𝑡 = √
1

𝑤
∑ (𝑥𝑖 − MA𝑡)

2𝑡
𝑖=𝑡−𝑤+1                            (3) 

 

Table 1. Relevance of Key Features in DDoS Attack Detection. 

Feature Relevance Detection 

Packet Rate Packet rate measures the number of 

packets sent over a period of time. 

During a DDoS attack, particularly a 

SYN flood, the attacker sends an 

overwhelming number of packets to 

the target. This sudden spike in packet 

rate is a strong indicator of an ongoing 

attack. 

By keeping an eye on the packet rate, 

the VLDD-FANET model can spot 

increases that do not match the normal 

traffic patterns seen in the network. It 

can then mark these increases as 

potential anomalies. 

Byte Rate Byte rate tracks the volume of data 

transmitted per unit time. In a UDP 

flood attack, large amounts of data are 

often sent to the target in an attempt to 

consume bandwidth and processing 

resources. Anomalies in byte rate, such 

as sudden surges, can indicate the 

presence of such an attack. 

An abnormal increase in the byte rate, 

especially when correlated with a high 

packet rate, can signal that a DDoS 

attack is underway, prompting the 

system to initiate mitigation strategies. 
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Flow Duration Flow duration refers to the time span of 

a single communication session or 

connection. In a DDoS attack, 

particularly with SYN floods, many 

connections may be left half-open (not 

fully established), leading to shorter 

flow durations. Alternatively, the 

attacker may maintain long, resource-

draining sessions. 

Significant deviations in flow duration, 

such as numerous short-lived 

connections or unusually prolonged 

sessions, can be indicative of a DDoS 

attack, allowing the model to identify 

and respond to these patterns. 

Protocol Type Protocol type indicates the network 

protocol used in the communication, 

such as TCP, UDP, or ICMP. Different 

types of DDoS attacks often exploit 

specific protocols (e.g., SYN floods 

using TCP, UDP floods using UDP). 

By analyzing the distribution and 

frequency of protocol types, the model 

can detect unusual patterns, such as an 

unexpected increase in UDP traffic 

during a UDP flood attack or excessive 

TCP SYN packet during a SYN flood. 

This helps in accurately identifying the 

nature of the attack. 

Number of 

Communica- 

tions 

This feature is highly relevant as it 

captures the overall volume of 

communication attempts, which is 

directly impacted during a DDoS 

attack. 

Anomalies in the number of 

communications, such as a sudden 

spike, can indicate a flood of requests 

from an attacker. The VLDD-FANET 

model, by learning normal 

communication patterns, can flag 

excessive communication attempts as a 

potential DDoS attack. 

Packet Size Refers to the size of individual packets 

in the network traffic. 

DDoS attacks may involve unusually 

large or small packets depending on the 

attack type (e.g., amplification attacks 

might use large packets). Analyzing 

packet size distributions can help the 

model detect deviations from normal 

traffic patterns. 

Inter-arrival 

Time 

Measures the time interval between 

consecutive packets. 

In normal network traffic, inter-arrival 

times typically follow certain patterns. 

DDoS attacks often disrupt these 

patterns by sending packets in rapid 

succession or with unusual delays. The 

VLDD-FANET model can detect these 

irregularities as indicators of an 

anomaly. 

 

3.2.1.3. Feature Normalization: To ensure that the 

features contribute equally during model 

training, they are normalized with a mean of 0 

and a standard deviation of 1: 

        𝐱𝑡′ =
𝐱𝑡−𝜇

𝜎
                                                  (4) 

where µ and σ denote the mean and standard deviation of 

each feature across the dataset, respectively. 

3.2.1.4. Window Extraction: To capture temporal 

dependencies effectively, the normalized feature 

vectors are segmented into fixed-length 

sequences or windows. This window extraction 

is crucial for the VLDD-FANET model, which 

processes the data as time-series sequences. The 

sequence of length T is represented as: 

               𝐗 = [𝐱𝑡′, 𝐱𝑡+1′, … , 𝐱𝑡+𝑇−1′]                            (5) 

Each window X represents a snapshot of network activity 

over the defined period, allowing the model to focus on 

the temporal dynamics within that window [30]. 

3.2.2. Model Training 

The core of the VLDD-FANET approach involves training 

a deep learning model that combines VAE with Dense 

Long Short-Term Memory (Dense LSTM) networks. This 

hybrid model leverages the VAE’s ability to learn compact 

representations of normal network traffic and the Dense 
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LSTM’s capability to model temporal dependencies and 

make final sequence-level classifications [31]. 

3.2.2.1. Preliminary Autoencoder (AE) and 

Variational Autoencoder (VAE) 

[20] provides the foundation of the VLDD-FANET 

framework begins with the implementation of an 

Autoencoder (AE), which compresses the input data into 

a latent space and then reconstructs it. The AE is trained 

to minimize the reconstruction error, defined by the Mean 

Squared Error (MSE): 

    LMSE =
1

𝑛
∑ (𝑋𝑖 − 𝑋̂𝑖)

2𝑛
𝑖=1                              (6) 

where 𝑋𝑖 represents the original input data, and 𝑋̂𝑖 is the 

reconstructed data. The AE serves as a baseline model to 

understand the data’s structure and identify initial 

anomalies. 

Building on this, VLDD-FANET extends the architecture 

to a VAE, which introduces a probabilistic element by 

encoding the input data into a distribution over the latent 

space rather than a single point. The VAE parameterizes 

the latent space with a mean µ and a standard deviation σ. 

The latent vector z is sampled using the 

reparameterization trick: 

𝐳 = 𝜇 + 𝜎 ⋅ 𝜖                                                      (7) 

where 𝜖 ∼ 𝒩(0, 𝐈) is a sample from a standard normal 

distribution. 

The VAE’s loss function in VLDD-FANET combines the 

reconstruction loss from Eq. 6 with the Kullback-Leibler 

(KL) divergence, which penalizes the deviation of the 

learned latent distribution from the prior distribution:  

LVAE = LMSE + 𝐷KL (𝑞𝜙(𝐳|𝐗) ∥ 𝑝(𝐳))                                   

(8) 

This regularization ensures that the latent space is smooth 

and well-structured, preventing the model from overfitting 

and enabling it to generalize to unseen data effectively 

[18]. 

3.2.2.2. VLDD-FANET Architecture for Temporal 

Dependencies 

The VLDD-FANET approach is designed specifically for 

detecting DDoS attacks in a FANET traffic monitoring 

scenario. This approach integrates the capabilities of a 

VAE with LSTM networks, allowing it to effectively 

manage temporal dependencies within traffic data 

collected from FANET simulations. VLDD-FANET 

learns to reconstruct normal traffic patterns accurately 

while struggling to reconstruct anomalous patterns, such 

as DDoS attacks. The architecture is divided into two main 

components: the encoder and the decoder. 

Encoder: The encoder in VLDD-FANET begins with an 

LSTM layer, which processes sequential input data and 

captures long-term dependencies across time steps. After 

this LSTM layer, there are dense layers that turn the 

LSTM’s output into the latent space parameters µ and σ. 

This makes sure that the input data is squished into a 

probabilistic latent space. The latent representation z is 

then generated using the reparameterization trick from Eq. 

7. 

Decoder: The decoder reconstructs the original sequence 

from the latent variable z. It begins with an LSTM layer 

that reconstructs the sequence while considering the 

temporal dependencies within the latent space. We then 

pass the LSTM’s output through dense layers to produce 

the final reconstructed sequence, and compare it to the 

original input to compute the reconstruction error. 

The VLDD-FANET approach is advantageous in that it 

requires relatively few model parameters compared to 

other deep learning methods, such as fully dense 

autoencoders or 1D Convolutional Neural Networks 

(CNNs). This efficiency is particularly beneficial for 

handling large volumes of data without a significant 

increase in computational complexity. Using LSTM layers 

ensures that the number of model parameters does not 

scale with the size of the input window, unlike in CNNs, 

where parameters grow with increasing window sizes. The 

loss function in VLDD-FANET comprises a 

reconstruction term, based on the Mean Squared Error 

(MSE), and a regularization term, ensuring that the latent 

space remains well-structured and preventing overfitting. 

During the testing phase, the model attempts to reconstruct 

test windows that may contain anomalies. Anomalous 

windows typically result in higher reconstruction errors, 

allowing the model to distinguish effectively between 

normal and anomalous traffic patterns. This robust 

detection mechanism makes the VLDD-FANET approach 

highly effective for identifying DDoS attacks in FANET 

traffic monitoring. 

3.2.3. Anomaly Detection Mechanism 

The anomaly detection process in VLDD-FANET 

involves evaluating the reconstruction error for each time 

window of the traffic data. During the testing phase, the 

VLDD-FANET model processes windows of traffic data 

that may contain anomalies, such as those resulting from 

DDoS attacks. We calculate the reconstruction error, 

which serves as an anomaly score. 

Reconstruction Error =
1

𝑋
∑

1

𝑁

𝑋
𝑠=1 ∑ (𝑋𝑠𝑖 − 𝑋̂𝑠𝑖)

2𝑁
𝑖=1                            

(9) 

where 𝑋 represents the number of samples in a window, 

𝑁 represents the number of features, 𝑋𝑠𝑖 is the original 

data, and 𝑋̂𝑠𝑖 is the reconstructed data. 
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3.2.3.1. Reconstruction Error Threshold 

In the proposed VLDD-FANET approach, the P-th 

Percentile is used to establish the threshold by calculating 

the value below which P% of the training data’s 

reconstruction errors lie. We compute the ordinal rank R 

for the P-th percentile as follows: 

        𝑅 = 𝑃 ×
𝑀+1

100
                                               (10) 

where: 𝑃  is the desired percentile (0 < 𝑃 < 100 ), 𝑀  is 

the number of reconstruction errors in the training dataset. 

After calculating the percentile, we select the 

corresponding value from the ordered list of 

reconstruction errors as the threshold. We flag any testing 

window with a reconstruction error exceeding this 

threshold as anomalous. 

3.2.3.2. Real-Time detection  

The VLDD-FANET approach is integrated into the BS 

and MEC infrastructure to enable efficient, low-latency 

anomaly detection and mitigation in FANETs. By 

processing traffic at the network edge via MEC servers, 

VLDD-FANET ensures real-time detection of DDoS 

attacks, reducing the need for centralized processing and 

minimizing response times. This distributed architecture 

enhances scalability, allowing the system to monitor 

largescale networks effectively. When an anomaly occurs, 

the system triggers automated response mechanisms to 

mitigate threats, and provides network administrators 

with real-time alerts and analytics for continuous 

monitoring and swift intervention. 

4 . Simulation Environment 

To ensure reliable and efficient anomaly detection in 

FANET traffic monitoring scenarios, the proposed 

VLDD-FANET technique incorporates several critical 

steps. This technique utilizes deep learning frameworks 

like TensorFlow to create an architecture that specifically 

processes essential features extracted from network traffic 

data. We select key features such as packet rate, byte rate, 

flow duration, and protocol type due to their significant 

role in distinguishing between normal and anomalous 

behavior. We train and validate the model using datasets 

generated by NS-3 simulations, which replicate FANET 

environments under a variety of conditions, including 

both normal operations and DDoS attack scenarios. Figure 

3 and Figure 4 illustrates the variation in packet rates and 

byte rates under normal and attack conditions. 

 

Fig.3. Packet Rate Over Time 

 

Fig.4. Byte Rate Over Time 
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A DDoS attack increases packet and byte rates 

significantly, as shown in the graph. In contrast, normal 

traffic conditions exhibit a more consistent and lower 

packet rate while showing sharp peaks. In addition to 

distinguishing between normal operations and the attack 

phase, the red dashed lines indicate the start and end of the 

DDoS attack. The graph clearly illustrates the impact of 

DDoS attacks on network traffic. It also shows that DDoS 

attacks can disrupt network traffic. 

The FANET infrastructure near base stations deploys the 

VLDD-FANET model on MEC nodes after training. The 

MEC nodes possess sufficient processing power to 

analyze data instantly and detect irregularities, ensuring 

the system operates with minimal latency and maximum 

throughput. The VLDD-FANET model analyzes the 

traffic data that UAVs in the FANET continuously send to 

base stations, which then forward it to the MEC nodes, and 

detects anomalies. During deployment, the VLDD-

FANET system autonomously monitors the network for 

signs of DDoS attacks or other anomalies. Upon detecting 

an anomaly, the MEC nodes automatically initiate 

predefined mitigation strategies, such as rate-limiting or 

rerouting traffic through alternative pathways. This is to 

minimize the attack’s impact. Additionally, the system 

provides a real-time dashboard for network 

administrators, offering visual insights into network 

performance, detected anomalies, and the system’s 

responsive actions. This real-time monitoring and 

mitigation process ensures that the FANET remains 

resilient and operates effectively, even under sophisticated 

cyber threats. 

Table 2. Simulation Parameters. 

Parameter Value 

Simulation Time 2000 seconds 

Number of UAVs 50 

UAV Speed [80, 120] km/h 

Number of Base Stations 5 

Network Topology Random 

Traffic Type UDP, TCP 

Attack Duration 100 seconds 

Mobility Model Gauss–Markov 3D 

Propagation Loss Model Nakagami-m 

𝜖 1 × 10−10 

𝜆 0.05 

 

Table 2 summarizes the NS-3 simulation parameters used 

to generate the dataset. The model undergoes thorough 

testing in a realistic FANET environment thanks to the 

number of UAVs, base stations, traffic types, DDoS attack 

configurations, and other critical factors. 

5 . Performance Evaluation 

To evaluate the effectiveness of the VLDD-FANET model 

in detecting anomalies, several key performance metrics 

were used, including accuracy, precision, recall, and the 

F1-score. These metrics assess how well the model 

distinguishes between normal traffic and DDoS attacks, 

while minimizing false positives and false negatives. 

– Accuracy: The ratio of correctly predicted instances 

(normal or anomalous) to the total instances. 

– Precision: The proportion of true positive detections 

(correctly identified anomalies) out of all positive 

detections. 

– Recall: The proportion of true positive detections 

compared to the total number of actual anomalies. 

– F1-Score: The harmonic mean of precision and recall, 

providing a balance between both metrics. 

We also calculated the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) to evaluate the model’s 

capacity to distinguish between normal and anomalous 

traffic, with higher values signifying superior 

performance. Figure 5 presents the comparison of the 

VLDD-FANET model with other traditional methods, 

demonstrating its superior performance across multiple 

evaluation metrics. The VLDD-FANET model achieved 

the highest precision, recall, F1-score, and accuracy, as 
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well as an AUC-ROC, indicating its robustness in 

detecting DDoS attacks in a FANET environment. 

 

Fig.5. Comparison of the VLDD-FANET model with other traditional methods 

6 . Discussion 

The results of this study highlight the effectiveness of the 

VLDD-FANET model in identifying and mitigating 

DDoS attacks within a FANET traffic monitoring 

scenario. The model’s superior performance, as seen in its 

high precision, recall, F1-score, and AUC-ROC, 

underlines its capacity to precisely distinguish between 

typical and anomalous traffic patterns. This is particularly 

significant in the context of FANETs, where false 

positives can lead to unnecessary interruptions in critical 

operations. The VLDD-FANET model’s ability to capture 

complex temporal and spatial dependencies in the traffic 

data, which simpler models often overlook, is a key factor 

in its success. Combining Variational Autoencoders VAE 

and LSTM networks helps the model learn complex 

patterns of normal behavior. This makes it extremely good 

at detecting small changes that could be signs of DDoS 

attacks. Furthermore, using this model in a FANET setting 

with MEC nodes shows that it is possible to use advanced 

anomaly detection methods without putting a lot of strain 

on computers. The real-time detection and automatic 

mitigation strategies, such as traffic rerouting and rate 

limiting, ensure that the network remains resilient and 

operational even during an attack. However, despite the 

model’s strengths, there are limitations that warrant 

further investigation. Future research could explore the 

model’s adaptability to other types of cyber-attacks or its 

performance in environments with even more constrained 

resources. It might also be possible to improve its 

detection and reduce latency by using more advanced 

feature engineering techniques or combining the VLDD-

FANET model with other machine learning methods. 

Overall, the VLDD-FANET model represents a 

significant advancement in securing FANETs against 

DDoS attacks, with potential applications in a wide range 

of network security contexts. 

7 . Conclusion and Future Works 

In conclusion, this study introduces the VLDD-FANET 

model as a highly effective solution for detecting and 

mitigating DDoS attacks in FANETs, particularly in traffic 

monitoring scenarios. It’s difficult to collect and analyze 

real-time data for traffic monitoring tasks like managing 

highway traffic and city mobility. The VLDD-FANET 

model uses VAE and LSTM networks to do it. The model 

processes and analyzes key network metrics—such as 

packet rates, byte rates, and flow durations—to detect 

anomalies in traffic patterns that may signify DDoS 

attacks. 

Using metrics such as precision, recall, F1-score, and 

AUC-ROC to demonstrate how well the model actually 

works shows how much better it is than other methods for 

finding anomalies. This is particularly noteworthy in 

resource constrained, real-time FANET operations, where 

maintaining network integrity is critical to mission 

success. VLDD-FANET’s ability to efficiently detect 

irregularities in traffic patterns while operating under such 

constraints showcases its robustness and practical 

applicability. 

However, while the VLDD-FANET model has proven 

highly effective, this research also opens avenues for 

further exploration and enhancement. Future work could 

focus on expanding the model’s capabilities to detect a 

wider range of cyberattacks beyond DDoS. This would 

ensure its resilience and adaptability in response to the 

continuously evolving threat landscape. Additionally, 

integrating the model with other advanced machine 

learning techniques—such as reinforcement learning or 
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ensemble methods—could further enhance its detection 

accuracy and reduce computational overhead, making it 

even more efficient. 

A promising direction for future research lies in deploying 

the VLDD-FANET model in environments with even 

more stringent resource limitations, where the trade-off 

between detection performance and computational 

efficiency becomes even more crucial. Moreover, testing 

the model in other critical network settings, such as 

Internet of Things (IoT) networks or smart grids, would 

further validate its flexibility and demonstrate its potential 

to secure a variety of mission-critical systems. 

Ultimately, the VLDD-FANET model not only offers a 

robust solution to current security challenges in FANET 

traffic monitoring but also provides a foundation for future 

advancements in network security. It adapts to emerging 

threats in diverse and dynamic network environments. 
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