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Abstract: In the modern era, cardiovascular diseases (CVD) have become a major health concern. Trained neural network classifiers are 

widely used to predict abnormalities related to cardiovascular disease (CVD) by analyzing ECG signals and PCG sounds. It effectively 

conveys the process of deriving signals from the R interval of the ECG signal and processing and segmenting them simultaneously. 

Different estimation techniques are used after the chaotic, time, and Frequency domain characteristics are derived. This work focuses on 

using the Bayesian regularization (BR), Levenberg-Marquardt (LM), and Scaled Conjugate Gradient (SCG) optimization algorithms to 

train the NARX network. Nonetheless, utilizing a variety of models, including LR, SLR, DT, SVM, Ensemble, GPR, NN, and others, 

predicts many features extracted from labeled PCG sound and ECG signals. This study evaluates the trained NARX model's prediction 

performance concerning the three optimization algorithms utilized during the training phase. It compares various machine learning 

methods for estimating CVD and evaluates the estimation results based on performance criteria. The NARX-BR artificial neural network 

detects CVD with an R-squared value of 0.968 and MSE of 0.0738 and the highest accuracy, achieved at 98.2%, is observed for Decision 

Tree for predication cardiovascular. 

 Keywords: PCG sound, machine learning, ECG signals, NARX, LM, SCG, BR. 

1. Introduction  

In today's world, with a global population of 7.7 billion, 

heart diseases stand as one of the leading causes of 

mortality[1]. ECG and PCG are commonly used 

diagnostic tools in assessing cardiovascular disease. The 

ECG records the heart's electrical activity, providing 

insights into its rhythm, rate, and potential irregularities. 

By analyzing the ECG waveform, medical can detect 

various CVD conditions such as arrhythmias, myocardial 

infarction, atrial fibrillation, ventricular hypertrophy, and 

others. Widely used in clinical practice, emergency care, 

and continuous monitoring, the ECG is pivotal for 

assessing cardiac function and diagnosing abnormalities[2] 

PCG offers detailed heart sound data that assists in 

medical assessments, records heart sounds using a 

microphone or transducer, capturing mechanical events 

like S1 and S2 sounds, murmurs, clicks, and other 

anomalies. PCG is valuable for identifying heart valve 

issues like stenosis or regurgitation, congenital defects, 

and structural abnormalities. Healthcare providers 

analyze heart sound timing, intensity, and characteristics 

to evaluate valve and chamber function[3][4]. Machine 

learning techniques are increasingly used to predict 

cardiovascular disease (CVD) from ECG and PCG data. 

These methods analyze vast amounts of signal data to 

develop models that identify patterns linked to CVD. 

NARX, a neural network architecture, models dynamic 

systems by considering past inputs and outputs, making it 

superior for nonlinear time series prediction influenced by 

external factors. NARX networks are particularly effective 

in predicting cardiovascular abnormalities from ECG and 

PCG signals[5]. The NARX network comprises two distinct 

configurations: closed-loop and open-loop. During training, 

the open-loop setup is preferred, leveraging real historical 

values within the time series. Subsequently, the trained 

open-loop NARX network is transformed into a closed-loop 

configuration, offering benefits for multi-step predictions 

during testing. The primary aim of neural network training 

is to minimize a substantial cost function[6][7]. The NARX 

model, utilized for function determination, offers versatility 

in signal processing applications, with the simplest 

approach involving a feedforward neural network 

incorporating embedded memory. It effectively conveys the 

idea that the network's design relies on previous sequence 

elements, providing a limited view of the series through 

neighboring sequence elements, referred to as a time 

window. A state space depiction illustrates the recurrent 

nature of NARX neural networks, tailored to model time 

series data by considering past values of both input and 

output variables in predicting the current output. Essentially, 

NARX networks predict the next value in a sequence based 

on historical input and output data. The NARX neural 

network model has proven effective in cardiovascular 

health by predicting missing data points in impedance 

cardiography signals, thereby improving the identification 

of vital hemodynamic parameters such as stroke volume 

and cardiac output[8][9]. Furthermore, CNN architectures 

have been employed to diagnose heart conditions using 

electrocardiogram (ECG) images with remarkable accuracy, 
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enabling diagnosis even with ECG images captured by 

smartphones, which is particularly valuable in settings 

lacking expert diagnosis resources[10]. Additionally, 

CNNs have been utilized to automatically diagnose heart 

diseases based on ECG signals, achieving high 

classification accuracy, especially when incorporating 

post-processing filters[11]. Hence, the amalgamation of 

machine learning techniques like NARX and CNNs with 

ECG and PCG data shows great potential in enhancing 

the diagnosis and monitoring of heart diseases. 

1.1. Advantages of NARX Networks: 

Memory of Past Predictions: The feedback connections 

enable NARX networks to retain past predictions, aiding 

in capturing long-term dependencies in time series data. 

Nonlinear Relationships: NARX networks excel at 

capturing nonlinear relationships between input and 

output variables, common in real-world datasets. 

Prediction Accuracy: Properly trained NARX networks 

can yield highly accurate predictions for time series data. 

This study aims to use machine learning to predict 

cardiovascular diseases (CVD) from Electrocardiogram 

(ECG) and Phonocardiogram (PCG) data. ECG and PCG 

record heart activity, aiding in CVD assessment. The 

focus is on using NARX neural networks to identify CVD 

patterns[12]. 

1.2. The Main Contribution Of This Study: 

1- Extract features such as Scalogram Power, 

Spectrogram, and Persistence Spectrum for both datasets. 

2- Determining "mu" (learning rate) and "gradient" 

involves calculating the parameter update step size, 

highlighting the importance of precise parameter tuning 

for reliable predictions. 

3-Employ NARX with three learning algorithms using 

Bayesian-Regularization, Levenberg-Marquardt, and 

SCG to predict CVD using ECG and PCG datasets to 

enhance diagnostic accuracy. 

4- Apply different machine learning models such as  LR, 

SLR, DT, SVM, Ensemble, GPR, and NN. 

5- Calculate RMSE, MSE, R-squared, and MAE for 

different algorithms. 

6- Compare results with previous work. 

This study is organized into sections, with Section 2 

offering a summary of relevant literature, Section 3 

outlines the methodology, Section 4 presents the results 

and discussion, and Section 5 provides the conclusion. 

2. Literature Review 

Cardiovascular diseases, a leading cause of death, prompt 

research on predictive algorithms using health datasets to 

identify associated risk factors. Modern advances in ML 

tools drive the development of techniques for cardiac 

disease diagnosis, with approaches including clustering and 

classification. Numerous machine learning models proposed 

by researchers aim to detect cardiovascular 

disease[13].Umit et al[2]. Aaddressed cardiovascular 

diseases (CVD), concentrating on cuffless blood pressure 

estimation through PPG and ECG signals for uninterrupted 

vascular access. The study preprocessed signals, segmented 

data, and eliminated noise using moving averages. Blood 

pressure measurement involved extracting features from 

chaotic, time, and frequency domains, utilizing Support 

Vector Regression (SVR), Nonlinear Autoregressive Neural 

Networks NARX-NN, Coarse Tree, and Linear Regression 

techniques. Specifically, LSTM-NN, and NARX-NN. 

Demonstrated accuracy in estimation without vascular 

occlusion, suggesting applications in wearable technology 

for continuous blood pressure monitoring. Furthermore, 

new artificial neural networks (ANNs) such as MLP, ENN, 

and RBF were developed for diagnosing valve-related 

physiological heart diseases. 

Pathak, et al[14]. Introduced a novel method for predicting 

coronary artery disease (CAD) using PCG signals. The 

proposed approach analyzed the time-varying frequency 

characteristics of PCG signals, particularly focusing on both 

systolic and diastolic phases. Experiments were conducted 

on 960 PCG recordings from heart disease and normal 

subjects, demonstrating promising results. The method, 

which utilized the synchrosqueezing transform of the 

cardiac cycle, achieved improved accuracy in CAD 

detection compared to existing techniques. The study 

emphasized the potential of developing a non-invasive, 

cost-effective CAD prediction system using PCG signals, 

which could enhance healthcare accessibility, especially for 

marginalized populations. 

Monish et al[15]. Developed the importance of real-time 

ECG monitoring for the early classification of life-

threatening conditions. They presented a NARX-wavelet 

model that addressed motion artifacts in ECG signals by 

merging NARX neural networks with wavelet-based 

filtering. Using an Arduino Uno, an AD8232 ECG sensor 

module, and a laptop, they focused on motion artifact 

removal. The results favored the Scaled Conjugate Gradient 

algorithm, which enhanced the signal-to-noise ratio through 

wavelet denoising. The model provided efficient artifact 

removal, sampling rate independence, and cross-platform 

portability for ECG monitoring systems. 

Esti et al[16] introduced NN-FCA, which ranked features 

and examined correlations to enhance CHD risk prediction. 

Tested on a Korean dataset, NN-FCA outperformed the 

Framingham risk score (FRS) with superior accuracy and a 

larger ROC curve. Crucial features such as BMI, cholesterol 

levels, and blood pressure were emphasized, with NN-FCA 

highlighting correlations such as BMI with blood pressure 

and cholesterol. This model showed significant potential in 
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CHD prediction, potentially aiding in personalized 

treatment and prevention. 

Alromema[17] Focused on analysing heart sounds, 

recognized for their complex behaviour with murmurs, 

using nonlinear dynamic models. A method was 

presented for extracting features from these models to 

enhance the classification of phonocardiograms (PCGs). 

Heart sound auscultation, depicted graphically by PCGs, 

was crucial for the early prediction of CVD. The 

methodology involved signal pre-processing, cardiac 

cycle segmentation, and feature extraction from nonlinear 

dynamical modelling. The results highlighted the 

effectiveness of the RUSBoosted Tree ensemble classifier, 

indicating the potential for improved heart sound analysis 

using nonlinear features. 

Benouar,[8]introduced a predictive model that employed 

a non-linear autoregressive neural network (NARX) to 

forecast missing points in Impedance Cardiography (ICG) 

complexes, notably the X point. The NARX model 

significantly improved the detection rates of ICG 

characteristic points (X, Y, O, Z), ranging from 75% to 

88%, a notable increase from previous rates of 21% to 

30%. This model enhanced the extraction of 

hemodynamic parameters crucial for assessing left 

ventricular pre-ejection time (LVET). It addressed the 

variability of ICG complex subtypes and showed promise 

for personalized X-point selection. Further investigations 

explored its impact on LVET calculation, requiring 

comparison with thermodilution measurements for 

validation. 

Fayaz, et al[18]. Developed the GWLM-NARX model to 

improve CVD risk prediction, combining the Grey Wolf 

Levenberg algorithms and NN for enhanced accuracy in 

early disease detection and prevention. The methodology 

included developing and validating the model with 

clinical and demographic data, utilizing Python, Pandas, 

and Sklearn tools for analysis, and applying L2 

regularization to combat overfitting. Results showed over 

90% accuracy in disease prediction, leveraging 

Autoregressive (AR) and(NARX) models to identify key 

risk factors. Despite acknowledging limitations like 

dataset quality and potential overfitting, the model 

demonstrated effectiveness in risk identification and 

personalized treatment planning, paving the way for more 

accurate prediction systems in cardiovascular healthcare. 

Khaled, Sara, et al[19]. Utilized NARX to classify PCG 

signals, which are crucial for diagnosing heart issues, 

comparing BR, LM, and SCG optimization algorithms. 

NARX with BR outperformed LM and SCG, improving 

results. PCG signals, important for heart health 

assessment, were analysed alongside ECG and PPG. 

NARX identified normal/abnormal signals, focusing on 

s1 and s2 heartbeats and key regions. The network's 

open/closed-loop structures minimized costs via BR, LM, 

and SCG—BR excelled for PCG. The paper reviewed 

related works and presented methodology, results, and 

conclusions. It emphasized BR's effectiveness, utilizing 

NARX's MLP architecture for nonlinear mapping. Efficient 

in time series modelling, NARX suggested empirical 

optimizations with SCG, LM, and BR—BR proved superior. 

PhysioNet 2016 data-informed optimal neuron/delay setups 

for classification. 

Amin, et al[20]. A personalized real-time hybrid model was 

introduced for predicting the severity of patients' conditions 

during their Emergency Department (ED) stay. This model 

utilized a combination of Nonlinear Autoregressive 

Exogenous (NARX) and Ensemble Learning (EL), 

leveraging vital signs such as Pulse Rate (PR), Respiratory 

Rate (RR), Arterial Blood Oxygen Saturation, and Systolic 

Blood Pressure (SBP) automatically collected during 

treatment. It forecasted the severity of illness in the 

upcoming hour based on vital signs recorded in the 

preceding two hours. Two EL techniques, namely Random 

Forest (RF) and Adaptive Boosting (AdaBoost), were 

utilized. Comparative evaluations with alternative models, 

including Auto-Regressive Integrated Moving Average 

(ARIMA), NARX coupled with Linear Regression (LR), 

Support Vector Regression (SVR), and K-Nearest 

Neighbors Regression (KNN), demonstrated significantly 

improved accuracy with the proposed NARX-EL models. 

Particularly, NARX-RF excelled in predicting sudden 

fluctuations and unexpected adverse events in patients' vital 

signs, achieving an R² score of 0.978 and an NRMSE of 

6.16% 

Amos, et al[21].  explored the effectiveness of Neural 

Network architectures in screening residential rental 

applications within the Nigerian property market. 

Comparing Recursive Neural Network (RNN) and 

Feedforward Neural Network (FFNN), ten training 

algorithms were assessed using data from 53 property 

managers in Lagos. Performance metrics included 

sensitivity, specificity, precision, and various scores. 

Results indicated satisfactory performance for both FFNN 

and RNN, with Bayesian regularization (BR) outperforming 

other algorithms. Conversely, Gradient Descent, Resilient 

Backpropagation (RP), and Scaled Conjugate Gradient 

Backpropagation (SCG). Showed lower performance. The 

study suggested BR-trained FFNN and RNN as optimal for 

rental application screening. Limitations included scope and 

algorithm selection. 

Young Lee, et al[22]. Validated a deep learning-based 

artificial intelligence algorithm for detecting myocardial 

infarction (MI) using 6-lead electrocardiography (ECG), 

addressing conventional interpretation limitations and 

emphasizing rapid MI diagnosis. Trained on 400,000 ECGs, 

the algorithm achieved promising results in validation. With 

a variational autoencoder (VAE), the DLA reconstructed 
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precordial 6-lead ECGs from limb 6-lead ECGs, 

consistently detecting MI across diverse ECG data 

subsets. Cardiologists reviewed patient records to ensure 

dataset accuracy, focusing on type 1 and 2 MIs. The DLA 

architecture, employing multiple hidden layers, achieved 

MI probability indication, with TensorFlow and Python 

implementation adapting the algorithm for real-time MI 

detection in wearable devices, promising significant 

advancements in healthcare technology. 

Landry, et al[23]. Aimed to develop a cuffless method for 

accurately estimating blood pressure (BP) waveform and 

extracting key BP features like systolic BP, diastolic BP, 

and mean BP. Access to the entire waveform offered 

advantages over previous cuffless BP estimation methods, 

enhancing accuracy and providing additional 

cardiovascular health indicators. NARX was employed 

via artificial neural networks to predict BP waveforms 

using ECG or PPG signals as inputs. The model's 

effectiveness was compared to a PAT model using data 

from 15 subjects in the MIMIC II database. Two training 

methods were tested: predictive training on the initial 

eight minutes per subject, testing on the rest (up to 5.2 

hours), and interval training using the first and last eight-

minute segments, with intermittent testing. Initially, both 

methods showed similar results, but interval training 

proved more accurate over longer durations. Treating BP 

as a dynamic system improved precision in estimating 

SBP, DBP, and MAP compared to the PAT model. 

Additionally, the NARX model provided deeper insights 

into patient health by furnishing the BP waveform. 

Jyothi, et al[24]. Introduced the Gaussian Kaiming 

Variance-based Deep Learning Neural Network 

(GKVDLNN) classifier for detecting heart disease (HD). 

Explored heart disease detection utilizing ECG and PCG 

signals, ensuring accuracy with extensive datasets. ECG 

and PCG signals were obtained from publicly available 

datasets, and pre-processing was performed using 

Improved Empirical Mode Decomposition (IEMD). 

Signal features were extracted from decomposed bands, 

selected, concatenated, and classified by GKVDLNN. 

Experimental findings showcased 96.103% accuracy with 

reduced costs, emphasizing the significance of early heart 

disease detection and proposing an innovative approach 

integrating ECG and PCG signals with advanced machine 

learning techniques. 

Turker, et al[25]. Introduced a novel approach to 

generating graph-based features by employing the 

Petersen graph pattern (PGP) and a new decomposition 

technique known as tent pooling (TEP) decomposition. 

Through the integration of TEP and PGP, they developed 

a multilevel feature generation network. Feature selection 

was carried out using iterative neighbourhood component 

analysis (INCA). These chosen features were then 

inputted into decision tree (DT), linear discriminant (LD), 

bagged tree (BT), and support vector machine (SVM) 

classifiers to classify them into five categories 

automatically. The method achieved a remarkable 100.0% 

classification accuracy using KNN with ten-fold cross-

validation. The DT, LD, BT, and SVM classifiers attained 

accuracies of 95.10%, 98.30%, 98.60%, and 99.90%, 

respectively. This high classification accuracy underscores 

the potential of utilizing PCG signals for heart sound 

classification with the proposed PGP and TEP-based model. 

Parasto, et al[26] proposed method's efficacy was assessed 

using the Physionet Challenge 2016 database, employing a 

10-fold cross-validation approach. To address dataset 

imbalance, the Synthetic Minority Over-sampling 

Technique (SMOTE) was applied to create balanced 

datasets. This methodology outperformed existing 

approaches in the literature, demonstrating higher accuracy, 

sensitivity, and specificity metrics. Notably, it achieved an 

accuracy of 98.03%, sensitivity of 97.64%, and specificity 

of 98.43% in distinguishing normal from abnormal heart 

sounds within the Physionet database, surpassing results 

obtained by previously established methods evaluated in the 

Physionet 2016 challenge database. Researchers have 

developed predictive algorithms and systems to assist 

medical practitioners and cardiologists in analysing data, 

using diverse models for accuracy, and comparing them 

with existing approaches. In our study, we analysed the 

ECG and PCG dataset and, NARX with different 

algorithms for improved results. 

3. Methods 

The proposed method, as explained in Fig. 1, outlines a 

CVD prediction framework Initial preprocessing involves 

recording ECG and PCG, followed by noise reduction and 

feature extraction for NARX neural network training with 

three algorithms firstly Bayesian Regularization (BR) 

algorithm is utilized to regulate the neural network (NN) 

using Bayesian methods and determine the optimal 

parameters. The training procedure will halt automatically if 

there is no enhancement in generalization, as indicated by 

the rise in the mean square error of validation trials. The 

NARX model undergoes retraining with each change in 

initial configurations and adjustments in data sets, resulting 

in diverse results. Scaled Conjugate Gradient (SCG) is 

preferred for its simplicity, despite its slower execution, 

being more suitable for uncomplicated objective functions. 

Levenberg-Marquardt (LM) is utilized to tackle the 

challenge of non-linear least square curve fitting, combining 

Gauss-Newton and gradient descent methods for 

minimization[27].  LM is known for its speed and efficient 

memory usage. Forevermore extracting a feature vector 

from PCG and ECG signals and predicting them using the 

NARX model for CVD.  This NARX utilizes recurrent 

connections and activation functions, iteratively adjusting 

weights and biases for accurate predictions. The proposed 
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models utilize LM, BR, and SCG training, sharing a common activation function, performance metric 

 

Fig. 1. Flowchart of the proposed NARX network to predict CVD. 

3.1. Dataset description 

The datasets analyzed in this paper from the PhysioNet 

2016 challenge, are publicly accessible on the website 

[30]. A total of 6,316 feature vectors, each of length 27, 

were extracted from the recordings and signals. These 

comprised 3,158 vectors from healthy hearts and an equal 

number from unhealthy hearts. Its 80% of the feature 

vectors are allocated for training, with the remaining set 

aside for testing. The training database comprises 1580 

samples, each with 64 predictor variables and 2 response 

variables. Similarly, the testing database consists of 395 

samples with the same predictor and response variable 

structure. These databases are employed to train and 

assess models designed to analyze PCG and ECG signals 

for diverse objectives, including disease diagnosis and 

prognosis prediction. 

3.2. Dataset Preprocessing 

 The preprocessing of ECG and PCG signals is crucial for 

CVD prediction, involving preprocessing and division into 

the initial heart sound S1 and the second heart sound S2. 

We conducted this data processing using the methodology 

outlined in a prior publication [8], which consists of four 

main stages: preprocessing, peak detection, rejection of 

extra peaks, and identification of S1 and S2.  Consequently, 

we aim to validate whether incorporating ECG data 

alongside PCG data enhances diagnostic performance 

compared to relying solely on PCG signals. 

3.2.1. QRS complex detection 

ECG preprocessing, including PCG and R peak detection, 

employs three filters, signal squaring, and adaptive 

thresholding[28]. Enhancements included: Rejecting the 

first R peak if it's extreme, verifying QRS complexes' 

prominence, and rejecting peaks with intervals under 0.5s; 

these instructions were also integrated into the PCG 

classification to enhance S1 and S2 identification.

Table1. PCG dataset preprocessing 

 BandPass BandStop HighPass Denoise Smooth Envelope 

Scalogram 

      

Power 

Spectrogr

am 

  

 
    

Persistenc

e 

Spectrum 

      

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 3910–3922  |  3915 

Table 2. ECG dataset preprocessing 

 BandPass BandStop HighPass Denoise Smooth Envelope 

Scalogram 

      

Power 

Spectrogr

am 

      

Persistenc

e 

Spectrum 

      

These filters and methods seem to serve different 

purposes in signal processing, from noise reduction to 

frequency band manipulation and feature extraction. Each 

would be chosen based on the specific requirements of the 

application and the characteristics of the signal being 

processed. 

Table 3. Parameters of pre-process Filtering 

Filter Name Filter Specification  

Bandpass 

Frequency unit Sample/ᵡπ radians 

Lower Frequency  0.25 

Upper Frequency  0.75 

Lower Band 

Steepness 

0.85 

Lower Band 

Steepness 

0.85 

Stopband 

Attenuation 

60 

Band Stop 

Frequency unit Sample/ᵡπ radians 

Lower Frequency  0.25 

Upper Frequency  0.75 

Lower Band 

Steepness 

0.85 

Lower Band 

Steepness 

0.85 

HighPass 

Frequency unit Sample/ᵡπ radians 

Passband 0.5 

Steepness 0.85 

Stopband 

Attenuation 

60 

Denoise 

Wavelet Sym No 4 

Method Bayse 

Level 8 

Rule Median 

Noise estimate Level 

independent 

Smooth 

Smooth methods Moving mean 

Window type  Smoothing factor 

0.5 

Envelope 
Envelope type Lower Envelope  

Methods hilbert 

3.2.2. Bandpass Filter:  

A bandpass filter is specialized to allow only a precise 

range of frequencies to pass through, effectively filtering 

out any signals outside of this designated range. Its 

specifications typically include defining the lower and 

upper limits of the frequency range it permits, indicating the 

steepness of the transition between passbands and 

stopbands, and specifying the level of attenuation in the 

stopband to effectively block unwanted frequencies. 

y(t) = f −1{f{x(t)}.𝐻𝐵𝑃 (𝐹)}                            (1) 

Where x(t) is the input signal, y(t) is the filtered output 

signal, denotes the Fourier transform, and 𝐻𝐵𝑃 (𝐹)  is the 

frequency response of the bandpass filter. 

3.2.3. Band Stop Filter: is commonly designed to inhibit a 

particular range of frequencies while permitting all others to 

pass unaffected. Much like its counterpart, the bandpass 

filter, it is characterized by specifications detailing the 

targeted frequencies, the degree of frequency alteration, and 

the extent of attenuation in the stopband. 

     y(t) = f −1{f{x(t)}.𝐻𝐵𝑠 (𝐹)}                          (2) 

Similar to the bandpass filter, but 𝐻𝐵𝑠 (𝐹)  represents the 

frequency response of the bandstop filter. 
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3.2.4. HighPass Filter: abbreviated as HPF, is an 

electronic component engineered to enable frequencies 

exceeding a predetermined cutoff threshold to transit, 

while concurrently diminishing frequencies below this 

threshold. This filter delineates its operation through 

specifications detailing the designated passband 

frequency, the rate of signal attenuation within this 

passband, and the degree of attenuation in the stopband. 

   y(t) = f −1{f{x(t)}.𝐻𝐻𝑃 (𝐹)}                            (3) 

Similar to the other filters, but 𝐻𝐻𝑃 (𝐹)  represents the 

frequency response of the high-pass filter. 

3.2.5. Signal Denoising: Signal Denoising is a technique 

aimed at eradicating noise while preserving essential 

information within a signal. This process is executed 

through a denoising function, denoted as y(t) = Denoising 

Function(x(t), parameters), where the specific denoising 

algorithm and its corresponding parameters dictate the 

transformation applied to the signal. 

3.2.6. Envelope Extraction: This technique focuses on 

delineating amplitude fluctuations across time, 

delineating the specific envelope type, typically the lower 

envelope, and employing the Hilbert transform for 

extraction. 

Equation: The mathematical expression governing this 

process is represented as  

y(t) = Envelope Function(x(t)), where the envelope 

function encompasses methodologies like the Hilbert 

transform or peak detection, facilitating the extraction of 

the signal's envelope from x(t). 

3.3. Features extraction 

PCA reduces dimensionality by transforming high-

dimensional data into a lower-dimensional space, 

retaining maximum original data variance via orthogonal 

principal components. It involves computing eigenvectors 

and eigenvalues from the covariance matrix, sorting them 

by eigenvalues, and projecting the data onto these vectors 

for transformation[6]. Feature selection for classification 

can be achieved through methods assessing frequency 

distribution disparities. Additionally, frequency 

suppression within a defined range can be performed 

while allowing others to pass[23]. 

3.4. NARX 

The NARX (Nonlinear AutoRegressive with eXogenous 

inputs) neural network is adept at modeling and 

predicting time series data. Unlike traditional 

autoregressive models, NARX networks incorporate 

exogenous inputs, enhancing their ability to capture 

complex data relationships. They feature input, hidden, 

and output layers, and are trained using algorithms like 

backpropagation[1]. NARX networks excel in tasks such 

as time series prediction, system identification, and 

control. The fundamental expression representing the 

NARX model is: 

y(t) = f(y(t − 1), . . . , y(t − dy), x(t − 1), . . . , x(t −

dx))               (4)                            

The equation comprises the mapping function f(...) utilized 

by the neural network. In this context, y(t) denotes the 

NARX output at time t, representing the predicted value of 

y for that moment. The terms y(t -1), ..., y(t-dy) represent 

previous outputs of the NARX, while x(t), ..., x(t -dx) 

denote the inputs. Here, dx signifies the number of input 

delays, and dy represents the number of output delays. The 

NARX model integrates a two-layer feed-forward neural 

network to approximate the function[30]. Contrarily, 

Recurrent Neural Networks (RNNs) are recognized for their 

intricacy, often necessitating prolonged training and 

learning periods. 

The NARX model employs SCG, LM, and BR optimization 

algorithms. SCG enhances convergence speed, LM is 

effective in networks with numerous weights, and BR 

mitigates overfitting by balancing error and complexity. 

The study evaluates their impact on classifying PCG signals, 

exploring optimal activation and loss function combinations 

 Three specific algorithms used are Scaled Conjugate 

Gradient (SCG), and Scaled Conjugate Gradient is an 

optimization algorithm commonly used for training neural 

networks.  

The equation for the parameter vector θ at iteration k is as 

follows: 

θk+1 =  θk + αkpk                                            (5) 

Where αkis the step size determined by line search, is the 

search direction, and θk is the parameter vector at iteration 

k. 

Levenberg-Marquardt (LM) is a widely employed 

optimization technique specifically tailored for nonlinear 

least squares curve fitting tasks. The formula governing the 

update of the parameter vector θ at iteration k is as follows: 

θk+1 =  θk − (Jk
t + λkI)−1 Jk

t Rk                                        (6) 

Where the Jk  is the Jacobian matrix of the residuals  Rk 

concerning θ, λkis the damping parameter, 

I am the identity matrix. 

 and Bayesian regularization (BR). Bayesian regularization 

is a technique used for regularization in machine learning 

models. The regularization term is added to the cost 

function, which is minimized during training. The cost 

function for Bayesian regularization can vary depending on 

the specific model being trained, but it typically involves a 

regularization term that penalizes large parameter 

values[29]. The optimization problem is then formulated as: 

minθ =  L(θ) + λR(θ)                                       (7)  
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Where L(θ) is the loss function, R(θ) is the regularization 

term, and λ is the regularization parameter, controlling the 

trade-off between fitting the data and penalizing large 

parameter values. 

3.5. Metrics for Time Series Modelling 

3.5.1. The Mean Square Error (MSE): This measures 

the average squared deviation between actual and 

predicted values by summing their squared differences 

and dividing by the total number of observations, offering 

a comprehensive evaluation of alignment with true values. 

𝑀𝑆𝐸 = 1/n ∑ (Yi − Ŷi)2                                     (8)n
i=1         

3.5.2. Mean absolute error(MAE)                 

measure the average absolute difference between 

predicted and observed values. By disregarding outliers, it 

avoids harsh penalties for large errors, with lower values 

signaling superior model performance[2]. 

MAE = ∑ |Yi − Ŷi|                                      (9)n
i=1   

3.5.3. Root mean squared error(RMSE) 

It is clear from the name RMSE that it is a square root of 

MSE.  

RMSE=√𝑀𝑆𝐸                                                     (10) 

Coefficient of determination 

3.5.4. The Coefficient of Determination (R2)  

The statistical criterion R2 is calculated as follows: 

𝑅2 = 1 −
∑ (Yi−Ŷi)2n

i=1

∑ (Yi−Ȳi)2n
i=1

                                         (11) 

Accuracy =
TP+TN

TP+TN+FP+FN
                                 (12) 

4. Result and Discussion 

Accuracy is crucial for assessing NARXnet and machine 

learning algorithms, primarily evaluated through Root 

Mean Squared Error (RMSE) and R-squared. A 

subsequent experiment utilizes Mean Absolute Error 

(MAE) to highlight differences between measured and 

estimated blood glucose levels. 

From Table 4NARXnet training on ECG and PCG datasets 

for cardiovascular disease prediction employed LM, SCG, 

and BR algorithms. Results varied in performance (ranging 

from 0.88 to 1.00) and MSE (from 3.47e-08 to 0.0669), 

with differing epoch counts (8 to 10) and additional 

parameters for LM and SCG.

Table 4. NARX Neural Network Prediction CVD Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From table 5 The provided table displays numeric 

evaluation metrics for various machine learning models. 

Both Linear Regression (LR) and Simple Linear 

Regression (SLR) show identical results with an RMSE 

and MSE of approximately 0.0906 and 0.00821  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively, and an MAE of about 0.9672. Decision Tree 

stands out with the lowest RMSE of around 0.0665, but a 

slightly higher MAE of 0.9823. Support Vector Machine 

(SVM) demonstrates moderate performance with an RMSE 

of 0.0785, MSE of 0.00617, and MAE of 0.9754. The 

Dataset Algorithms No. epoch Performance Gradient  Mu 

PCG 

Levenberg-Marquardt 

(LM)    

8 0.85 0.04529 

1e-07 

0.0001 

1e+10 

Scaled Conjugate 

Gradient (SCG) 

32 0.95 0.0167 

1e-06 

- 

Bayesian Regularization 

(BR) 

35 0.77 3.47e-08 50 

1e+10 

ECG 

Levenberg-Marquardt 

(LM)    

10 0.89 0.0669 

1e-07 

0.0001 

1e+10 

Scaled Conjugate 

Gradient (SCG) 

38 0.97 0.0137 

1e-06 

 

- 

Bayesian Regularization 

(BR) 

10 0.91 8.99e-07 0.005 

1e+10 
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Ensemble model combines models to achieve an RMSE 

of 0.0697, MSE of 0.00486, and MAE of 0.9806. 

Gaussian Process Regression (GPR) and Neural Network 

(NN) exhibit comparable performance with an RMSE of 

around 0.081 and 0.0717 respectively, along with MSE 

and MAE values. Lastly, the Kernel model showcases an 

RMSE of 0.0743, MSE of 0.00552, and MAE of 0.978. In 

summary, the decision tree and ensemble models tend to 

offer the lowest RMSE, implying better predictive accuracy, 

while the choice of model depends on factors such as 

interpretability and computational efficiency.

Table5. Overall Performance Analysis of Proposed Machine Learning Algorithms for Predication CVD. 

  Model  RMSE MSE 
 

  
 

MAE 

ECG 

dataset 

LR 0.090601 0.0082086 0.96721 0.04834 

SLR 0.090601 0.0082086 0.96721 0.04834 

Tree 0.066535 0.004427 0.98231 0.0074279 

SVM 0.078541 0.0061687 0.97536 0.041193 

Ensemble 0.069685 0.0048559 0.9806 0.0076959 

GPR 0.081047 0.0065687 0.97376 0.0098408 

NN 0.071717 0.0051434 0.97945 0.012024 

Kernel 0.07427 0.005516 0.97796 0.02538 

PCG 

dataset 

LR 0.22747 0.051741 0.79334 0.15228 

SLR 0.22906 0.052469 0.79043 0.15354 

Tree 0.25551 0.065285 0.73924 0.11509 

SVM 0.22022 0.048496 0.8063 0.13457 

Ensemble 0.2342 0.054852 0.78091 0.10865 

GPR 0.19125 0.036576 0.85391 0.10591 

NN 0.262 0.068646 0.72581 0.084435 

Kernel 0.21872 0.047839 0.80892 0.12002 

Fethermore PCG result The evaluation metrics for various 

machine learning models shows that Linear Regression 

(LR) and Simple Linear Regression (SLR) yield similar 

outcomes, Decision Tree (Tree) boasts the lowest RMSE 

at approximately 0.0665, while the Ensemble model 

achieves an RMSE of about 0.0697. Gaussian Process 

Regression (GPR) and Support Vector Machine (SVM) 

perform moderately with an RMSE of around 0.081 and 

0.0785, respectively. Neural Network (NN) and Kernel 

model also exhibit competitive performance with an RMSE 

of approximately 0.0717 and 0.0743. Decision tree and 

ensemble models shine with their lower RMSE, but model 

selection should also consider interpretability, efficiency, 

and specific problem requirements. 

 

Fig. CVD Prediction Model Performance Comparison Across ECG and PCG Datasets. 

From table 6 the PCG dataset, the SCG model performed 

the best with an accuracy of 94.67%. For the ECG dataset, 

the BR model had the highest accuracy of 96.80%. In 

terms of Mean Squared Error (MSE), SCG achieved the 

lowest MSE of 0.0288 on the PCG dataset, and similarly, 

SCG also achieved the lowest MSE of 0.0436 on the ECG 

dataset. 
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Table 6. Performance Scaled Conjugate Gradient, Levenberg-Marquardt, and Bayesian regularization. 

Dataset Performance 

  

Levenberg-

Marquardt 

(LM) 

Bayesian 

regularization 

(BR) 

Scaled 

Conjugate 

Gradient 

(SCG) 

PCG 
MSE 0.0723 0.3305 0.0288 
 

0.8438 0.7688 0.9467 

ECG 
MSE 0.0534 0.0738 0.0436 
 

0.8869 0.968 0.9052 

In the comparison of algorithms on PCG and ECG 

datasets, Scaled Conjugate Gradient (SCG) consistently 

outperforms others with the lowest MSE values and 

highest R-squared 𝑅2values. Levenberg-Marquardt (LM) 

shows competitive performance with moderate MSE and 

𝑅2 scores. Bayesian Regularization (BR) consistently 

performs the worst with high MSE and low 𝑅2 values.

 

 

Fig3. Performance CVD Prediction Model. 

Accuracy of the proposed algorithm and competition 

results of the competition from figure3. In the ECG 

dataset, the DT model performs the best with an accuracy 

of 98.2%, while in the PCG dataset, the GPR model 

achieves the highest accuracy of 85.4%. 

Table7. Comparison of Model Performance in CVD Time Series Prediction 

References Models  𝑅2 Prefprmance𝑠 MSE 

Bhattacharjee(2020) NARX 0.948 - 

Shiva et al (2022) Lasso Regression 0.227 0.418 

Diovu , et al(2022) Liner Regression 0.36 0.141 

Umit,et al(2020) NARX,KNN,RF 0.78 6.16 

Sheikh (2023) GWLM-NARX 0.86 0.137 

Proposed  NARX-BR 0.968 0.0738 

 

Table 7 presents various models along with their Mean 

Squared Error (MSE) values as reported in different 

studies. The models include NARX, Lasso regression, 

Linear regression, NARX-NN, NARX combined with 

other algorithms like KNN, SVR, and RF, GWLM-

NARX, and a proposed model named NARX-BR. The 

MSE values range from 0.2278 to 2.09, with NARX-BR 

having the highest MSE at 0.968 and the lowest being for 

the Lasso regression model at 0.2278.
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Table 8: Summary of Prediction Accuracies Reported by 

Different Studies 

References Prediction 

Accuracy (%) 

 

Senturk  , et al[4] 88 

Khaled, Sara, et 

al[19] 
93 

Talha, et al[8] 88 

Brery,et al[32] 89.10 

Sheikh Amir, et 

al.[18] 
90 

Cinzia, et al.[33] 70.77 

 Mudsir, et al.[34] 80.00 

Abduh, et al[3] 90 

Sara, et al.[35] 91 

Proposed 98.2 

4. Conclusion  

 Machine learning, notably the NARX model, exhibits 

considerable potential in cardiovascular disease (CVD) 

prediction through the ECG and PCG dataset This 

investigation extensively delved into the training of the 

NARX model, employing a range of optimization 

algorithms including Levenberg-Marquardt (LM), Scaled 

Conjugate Gradient (SCG), and  Bayesian Regularization 

(BR), SCG stood out as the most effective among them. 

Comparative assessment against alternative models 

underscored the superior accuracy of NARX. Particularly 

noteworthy was the performance of the NARX-BR 

variant, which demonstrated remarkable accuracy metrics, 

boasting a MSE of 0.0738 and an R-squared value of 

0.968, while the Decision Tree model achieved an 

outstanding accuracy rate of 98.2%.  future work should 

concentrate on augmenting the NARX model with 

advanced feature engineering techniques and leveraging 

larger datasets to further enhance predictive capabilities. 

Additionally, exploring ensemble learning methodologies 

and validating the models in real-world clinical settings 

are imperative steps toward ensuring their practical 

applicability. 
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