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Abstract: The combination of Photovoltaic (PV) systems and Electric Vehicles (EVs) into the grid has witnessed remarkable progress, 

which is driven by the dual benefits of reduced pollution and lower energy costs. Extensive studies have explored the implications of using 

the combination of PV and EVs into the grid on diverse applications. As PV and EV penetration rises, the grid experiences the collective 

impacts of this integration. The primary factor behind the integration of photovoltaic (PV) technology in Vehicle-to-Grid (V2G) and Grid-

to-Vehicle (G2V) services is the cost reduction which achieved through energy discharging. However, a crucial requirement is maintaining 

a reasonable distance between EV battery degradation and its driving limit. Therefore, this research introduces a hybrid technique 

combining Mexican Axolotl Optimization (MAO) and Pilot Pattern Selection (PPS) technique to optimize the power stability between the 

components and to adapt the system whenever there is a change occurs. MAO can quickly converge on the best pilot pattern selection 

technique by offering a set of well-designed pilot patterns that represent different controller switching patterns. The MAO doesn't have to 

examine into wide area using possibly inefficient strategies. The optimal pilot pattern selection methodology reduces switching time and 

improves energy management by identifying the best way for selecting patterns from a predetermined set. Additionally, through utilizing 

the DOA, the reliability of the MAO increases in its convergence towards the optimal solution. So, the algorithm’s each Dingo agents 

move within a hypercube in the search space around the best possible solution thus helps to balance grids and control the frequency. The 

simulation results shows that the THD of the recommended method is less (0.29%) and high efficiency (99.77%), 𝑃𝑖𝑛𝑡 𝑝𝑒𝑎𝑘 (97.8), 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑑 

(97.5), 𝑉𝑑𝑐 𝑝𝑒𝑎𝑘(850) and 𝑉𝑑𝑐(750) with minimum settling time (17.12), undershoot (0.0211) and overshoot (0.214) when compared to 

other conventional models such as Salp Swarm Algorithm (SSA) and Dual Active Full Bridge (DAFB). Through the simulation results it 

clearly demonstrates that, this research optimizes PV self-consumption while preserving crucial power quality attributes such as power 

factor, harmonics, and grid voltage/current. 

Keywords: Electric Vehicles, Grid-to-Vehicle, Improved Mexican Axolotl Optimization, Photovoltaic Systems, Vehicle-to-Grid 

1. Introduction 

The increasing adoption of electric vehicles (EV) poses a 

huge challenge to the electrical grid, which modifying its 

ability frequently to satisfy demand while maintaining 

stability [1]. Furthermore, the growing amount of EVs 

imposes additional pressure on elements of the distribution 

system such as transformers and cables, during periods of 

peak demand. Integrating EV charging with Renewable 

Energy Sources (RESs) such as solar and wind [2] can help 

to offset these effects. RESs can meet the majority of the 

power demand for EV charging and minimizing grid 

dependence. EVs can simultaneously stabilize irregular 

RESs by addressing concerns such as voltage and frequency 

instability [3]. Due to similar properties, photovoltaic (PV) 

generation among diverse RESs enables considerable 

flexibility for integration with EV charging stations [4]. PV 

and EVs both link to the grid in a scattered fashion and at 

comparable voltage levels, making them compatible. This 

similarity extends to the areas where they are installed, 

which include residential residences, public charging 

stations [5], business buildings [6], offices [7], and even 

solar EVs [8]. Furthermore, both PV and EVs use power 

electronic interfaces [9] to generate intelligent nodes in the 

grid.  

Existing rules and standards for PV systems are apply to EV 

systems with minor revisions, thus demonstrating the grid's 

interoperability with both technologies. When PV systems 

and Level 2 (L2) AC chargers [10] are combined, they share 

a common AC bus to connect to the power grid. This setup 

adds new obstacles to the PV system's grid-tied DC-AC 

inverter [11-13]. The inverter requires precision 

management to control the DC-bus voltage, synchronize 

with the grid, and reduce power quality problems in the face 

of fluctuating environmental circumstances impacting 

generation and unexpected changes in EV loads. In grid-

connected PV systems, a Voltage Source Inverter (VSI) [14] 

with internal current and external voltage loops for active 

and reactive current control and DC-link voltage regulation 

is typically used. While the prior models are frequently 

sensitive to power line inductance and switching frequency. 

This study describes a novel tuning technique for the grid-

tied DC-AC inverter's Proportional-Integral (PI) controller 

[15], which supports an EV charging station using AC L2 
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ports. The performance of the controller is tested using 

simulations using different performance metrics. The major 

contributions of the present research are given below, 

• The research introduces a hybrid technique named 

MAO-PPS for effective energy distribution among the 

PV system, ESU, and the grid. 

• The suggested architecture integrates ESUs and the grid 

for the storage of PV energy. 

• The MAO-PPS controller manages the current from the 

Maximum Power Point Tracking (MPPT) converter 

and the voltage from the DC bus. 

The paper is organized as follows: Section 2 discusses the 

importance of previous researches. Section 3 provides an 

overall description of the proposed approach, which is used 

to optimize controller parameters. In Section 4, evaluation 

and the findings achieved by proposed method is given. The 

present research is concluded in Section 5. 

2. Literature Survey 

To obtain the optimal mixture of control settings for a VSI, 

Mohamed et al. [16] proposed an optimization technique. It 

was a shared grid-connected ac-bus that connected a PV to 

an EV charging station. Maintaining a balance between 

active power flow as well as injection of harmonics into the 

grid, the optimization process aims to minimize oscillations 

in the dc-bus voltage. This is achieved through the 

utilization of the Salp Swarm Algorithm (SSA). This 

research tests the controller using real-world irradiance 

profiles while simulating a L2 AC charging station for 

electric vehicles under different operational circumstances. 

The findings indicated a substantial reduction in the dc-bus 

voltage error with the use of SSA-based controller. 

However, the suggested approach performed worse in real-

time Power-In-the-Loop (PIL) testing, which is a result of 

power supply delays. 

Bourenane et al. [17] presented a hybrid energy system 

including a battery as the primary supply and a 

supercapacitor (SC) as a backup to solve the constraints of 

the former. This hybrid design required a sophisticated 

power management system to maintain optimal power flow 

in electric vehicle components. To do this, an artificial 

neural network (ANN) is trained using model calculations 

for power management in the traction chain. Simulation 

findings of the proposed hybrid system emphasize its 

usefulness in safeguarding the battery and supercapacitor 

life cycles, absorbing energy variations from the PV panel, 

and functioning as a secondary energy source in the event 

of faults. However, it's worth mentioning that the usage of 

ANNs consumed large computational resources, and more 

power, thus potentially providing difficulties for real-time 

onboard implementation. 

Akarne et al. [18] proposed an effective model and robust 

control strategy to ensure optimal power quality in an AC 

Micro Grid (MG). A PV and a Wind Turbine System (WTS) 

with a permanent magnet synchronous generator (PMSG) 

are the two renewable energy sources that make up the MG. 

The MPPT is based on the perturb-and-observe (PO) 

approach, which was used to improve efficiency and overall 

performance. The PO approach improved the operating 

voltage of the PV using minor disturbances to determine the 

maximum power point (MPP). However, it is recognized 

that the PO technique may display slow convergence and 

system oscillations around the MPP, mainly during fast 

changes in irradiance levels. 

To increase the PV system’s output power, Kumar and 

Rajan [19] developed a unique solution using a High Gain 

Zeta-SEPIC (HGZS) converter. A major novelty was the 

creation of a Type 2 Fuzzy MPPT controller, thus ensuring 

exact tracking of the MPP. This improvement raises the 

performance of the HGZS through increasing energy 

extraction from the PV. The proposed Hybrid Renewable 

Energy System (HRES) not only supports the utilization of 

EVs as a reasonable transportation choice but also 

contributes in minimizing greenhouse gas emissions. 

However, the complex control requirements of this system 

necessitate advanced algorithms, thereby creating 

complexity in the implementation process. 

To transfer power between the grid, battery and EV, Jatoth 

and Mangu [20] developed a DAFB module. With the help 

of Phase Shift Modulation (PSM) method, the DAFB circuit 

topology controls the G2V and V2G conditions. The PV 

array was optimized for EV battery charging utilizing β-

MPPT to harvest maximum power. The variations in battery 

current directions suggest that the same DAFB circuit 

functioned as a bidirectional power-sharing module. It is 

also shown that the efficiency under the G2V and V2G 

circumstances is maintained at an acceptable range for any 

power system. 

Merrington et al. [21] developed an effective technique for 

ideal planning of a solar PV and battery storage system 

(BSS) customized for owner households with EVs under 

time-of-use (TOU) power pricing. The major objective of 

this optimization was to minimize the Cost of Electricity 

(COE) while following to design restrictions across a 20-

year project lifecycle. Stochastic functions are incorporated 

into the energy management system by considering the EV's 

availability hours, departure and arrival, and its initial state-

of-charge. Notably, the study indicated that the ideal 

capacity of SPV and BSS remains unchanged by 

fluctuations in the battery capacity of the EV. However, an 

important shortcoming was the elimination of demand 

response programs inside the TOU pricing tariffs in the 

suggested system. Thus results a major tradeoff between the 

grid and PV power supply to EV. 
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3. Proposed Methodology 

3.1. Outline of PV-EV-Grid 

Daytime overload specifies a challenge as EVs experience 

interruptions in continuous charging, thus leads to user 

uncertainty. Combining grid-connected charging with 

battery and photovoltaic charging tackles this issue 

successfully. The recommended approach guarantees 

seamless EV charging, rapidly addressing requests while 

eliminating additional grid strain. The suggested system 

uses optimization strategies in its control algorithm 

development. Unlike existing models with restrictions of 

increased load during continuous charging and lower battery 

lifespan, the described technique merges V2G and V2V 

processes for continuous daytime EV charging. Simulations 

are undertaken to estimate the charging strategy's potential 

impact, and controllers play a critical role in reducing load 

on the grid. The concise flow diagram of the proposed 

method is illustrated in Fig. 1. 

 

Fig. 1. Diagrammatical representation of proposed 

methodology 

As indicated in Fig. 1, the PV-grid charging system has three 

basic elements: (1) an Incremental conductance which is a 

MPPT dc–dc converter, which works as a dc to dc power 

converter, (2) bidirectional inverter, and (3) bidirectional dc 

charger. To boost stability and address the recurrent nature 

of renewable sources, researchers generally suggest the 

installation of an ESU in the system. Although the ESU 

delivers various benefits, it comes with high startup, 

operating, and maintenance expenditures. Nonetheless, the 

usage of cost-effective lead acid batteries can assist lower 

the initial expense. Integration of a BMS is advised for 

assuring safety and prolonging the battery life of EVs. The 

dc common bus plays a crucial role in offering a convenient 

integration link for key components. Although its voltage 

can vary among systems, a typical range is 200–400 V. The 

system incorporates a central controller for adopting a 

centralized or decentralized coordinated charging. This 

controller gathers data based on the grid, EV, PV, and ESUs, 

for facilitating automated decision-making. The controller 

effectively manages converters, and making decisions based 

on power flow direction to ensure seamless integration and 

operation. 

3.1.1. Photovoltaic Module 

Photovoltaic modules are actually solar panels [22] which 

work as a network to collect sunlight and turn it into clean 

electricity. The semiconductor material is essential to each 

solar cell that makes up these modules. These cells have the 

ability to produce electricity when exposed to sunlight, a 

phenomenon known as the photovoltaic effect. Solar panels 

are an important technology for utilizing clean and 

renewable power sources since the photovoltaic effect is 

essential in converting solar radiation into usable electrical 

energy which is mathematically expressed in (1). 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑅𝑆
+ 𝐼𝑅𝑆𝐻

                                             (1) 

Where, 

𝐼 - output current from the PV cell. 

𝐼𝑝ℎ - photocurrent generated by the incident light. 

𝐼𝐷 - diode current, representing the effects of the p-n 

junction diode in the PV cell. 

𝐼𝑅𝑆
 - current flowing through the series resistance. 

𝐼𝑅𝑆𝐻
 - current through the shunt resistance 

3.1.2. DC-DC Boost Converter 

The PV panel generates purely DC power because the 

electrons pass only in single direction during generation. On 

a normal day, the intensity of solar radiation changes from 

200W/mt2 – 1000 W/mt2 which determines the density of 

electrons. Hence the panel output power is directly 

proportional to the solar irradiation in a day which changes 

depending on the intensity. Therefore the voltage of panel 

should be stabilized by using the external circuit topology 

and maximize the magnitude based on the requirement. For 

this purpose, a DC-DC boost converter is used and it is 

controlled by MPPT controller. 

3.1.3. Inverter 

In rectifier mode, an inverter acts as an energy converter, by 

converting electricity from DC to AC and vice versa. The 

even number of inverters was chosen on purpose to allow 

for their hypothetical parallel installation across the 

settlement. According to simulation studies, using a parallel 

inverter design increases dependability, improves load 

management, and improves overall efficiency. 

3.1.4. Energy Storage Units (ESUs) 

Electric vehicles have systems or components called ESUs 

that can store electrical energy for use at a later time [23]. 

An ESU's principal function in an electric vehicle is to 

collect and store energy produced during charging or 

regenerative braking, and then to transmit that energy to the 

electric motor of the vehicle as and when it is required. The 
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ESU in an EV is generally a rechargeable battery pack, and 

the type of battery technology utilized can vary. Due to the 

high energy density and efficiency, the lithium-ion batteries 

are being a popular choice. 

3.1.5. Grid 

An electrical grid is an integrated system containing power 

generating, transmission, and distribution networks. It 

supplies electricity seamlessly to households, businesses, 

and industries. Power plants create electricity [24], high-

voltage transmission lines carry it, and local distribution 

systems provide end-users. Grid operators control its real-

time operation, thus ensuring stability and balance. The grid 

is vital for delivering a dependable and continuous electrical 

supply to society [25]. 

3.2. Proposed Methodology 

The research introduces a hybrid technique as a combination 

of Mexican Axolotl Optimization (MAO) and Pilot Pattern 

Selection (PPS) technique to optimize the power stability 

between the components and to adapt the system whenever 

there is a change occurs. Even though the MAO can modify 

the impact of various processes throughout the optimization 

process. If the initial population does not include a wide 

variety of possible solutions, MAO falls in local optima. 

This indicates that while it cannot able to find the optimal 

solutions, it converges on a good solution which found 

within a constrained search space. Therefore, MAO can 

quickly converge on the best pilot pattern selection 

technique by offering a set of well-designed pilot patterns 

that represent different controller switching patterns. The 

MAO doesn't have to examine into wide area using possibly 

inefficient strategies.  

Pilot patterns are predefined set of steps which to be 

performed prior to controller switching. Through training 

the system for the new controller, each pilot pattern 

mitigates the effects of the transition. The optimal pilot 

pattern selection methodology reduces switching time and 

improves energy management by identifying the best way 

for selecting patterns from a predetermined set. Firstly, as 

the algorithm develops, the method focuses on generating 

the input patterns; the inverse probability of transition is 

applied to avoid high convergence. This minimizes the time 

required for the system to achieve a stable condition, and 

also helps in a quicker settling time.  

The Mexican Axolotl is commonly found in the Valley of 

Mexico's lakes and shallow streams, which exhibiting 

remarkable regenerative abilities for separated body parts. 

This algorithm incorporates distinct things such as axolotl's 

reproductive capacity, tissue regeneration, and aquatic 

lifestyle, even distinguishing between male and female 

individuals. Significantly, the proposed MAO-PPS 

algorithm surpasses existing optimization approaches in its 

ability to identify global solutions, showcasing superior 

performance in optimizing the model for system stability 

[26]. 

The step by step process of MAO-PPS is as follows, 

Step 1: Initialization 

IMA algorithm begins with the initialization of its 

parameters to set the foundation for the optimization 

process. 

Step 2: Random Generation 

Following initialization, input vectors are produced 

randomly and forming the initial candidate solutions. 

Step 3: Fitness Evaluation 

The fitness of each candidate solution is determined based 

on the switch control/decision making as shown in (2). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 [𝜇{𝐼
^

𝑟𝑥}]                    (2) 

Step 4: Transition Phase  

Considering a transition parameter represented as α, where 

mbest denotes the male axolotl reaching the greatest value 

F in the objective function. This value, ranging from 0 to 1, 

serves the function of altering the hue of male axolotl mj's 

body parts. The adjustment is implemented to align with the 

colors of mbest, as described in (3). 

𝑚𝑗𝑖 ← 𝑚𝑗𝑖 + (𝑚𝑏𝑒𝑠𝑡,𝑖 − 𝑚𝑗𝑖) × 𝜆                                           

 (3) 

Female axolotls involve a color metamorphosis as they 

transition from larval to adult stages, by adjusting their 

pigmentation to that of the female axolotl with the most 

efficient acculturation where this adjustment is regulated by 

(4). 

𝑓𝑗𝑖 ← 𝑓𝑗𝑖 + (𝑓best,𝑖 − 𝑓𝑗𝑖) × 𝜆                                           (4) 

To avoid high convergence to the optimal adaptation in 

every person, the idea of inverse probability of transition is 

applied. Random selection of dummy individuals involves 

generating a random number (𝑛) within the range [0, 1] and 

comparing it with the inverse transitional probability. If 𝑛 is 

below the inverse probability, the corresponding individual 

is chosen. In the scenario of a minimization problem, the 

inverse probability of transition for the male axolotl (𝑚𝑗) is 

determined using (5), where 𝑚𝑜𝑗signifies the optimization 

value of the male axolotl. Similarly, for a female axolotl (𝑓𝑗), 

(6) is employed to compute the inverse probability of 

transition, with 𝑓𝑜𝑗 indicating the optimization value of the 

female axolotl. During this procedure, the worst individuals 

have a higher probability of random transitions.  

𝑝𝑚𝑗 =
𝑚𝑜𝑗

∑𝑚𝑜𝑗
                                                                         

 (5) 
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𝑝𝑓𝑗 =
𝑓𝑜𝑗

∑𝑓𝑜𝑗
                                                                             

 (6) 

The selection of individuals, each undergoing a random 

transition of their 𝑖𝑡ℎ body component based on the function 

defined in (7) and (8). The criteria for choosing individuals 

for these random shifts will be defined by using 

optimization function's value. 

𝑚𝑗𝑖 ← 𝑚𝑖𝑛
𝑖

 + (𝑚𝑎𝑥
𝑖

 − 𝑚𝑖𝑛
𝑖

 ) × 𝑛𝑖                                             

(7) 

𝑓𝑗𝑖 ← 𝑚𝑖𝑛
𝑖

 + (𝑚𝑎𝑥
𝑖

 − 𝑚𝑖𝑛
𝑖

 ) × 𝑛𝑖                                               

 (8) 

Where, 

𝑛𝑖 - randomly generated value within the range [0, 1]. 

Step 5: Updating the adaptive position based on Dingo 

Optimization Algorithm (DOA) 

Utilizing the DOA, the reliability of the MAO increases in 

its convergence towards the optimal solution. The 

mathematical model of updation of DOA based adaptive 

position is given in (9-15) 

𝑅⃗ 𝑑 = |𝑃⃗ ⋅ 𝑆 𝑝(𝑥) − 𝑆 (𝑖)|                                                      

 (9) 

𝑆 (𝑖 + 1) = 𝑆 𝑃(𝑖) − 𝑄⃗ ⋅ 𝑅⃗ (𝑑)                                                   

 (10) 

𝑚𝑗𝑖 ← 𝑚𝑗𝑖 + 𝐴
→

(𝑚best,𝑖 − 𝑚𝑗𝑖) × 𝜆                                         

 (11) 

𝑓𝑗𝑖 ← 𝑓𝑗𝑖 + 𝐵
→

(𝑓best,𝑖 − 𝑓𝑗𝑖) × 𝜆                                             

 (12) 

𝐴
→

= 2 ⋅ 𝑎
→

1                                                                           

 (13) 

𝐵
→

= 2𝑏
→

⋅ 𝑎
→

2 − 𝑏
→

                                                             (14) 

𝑏
→

= 3 − (𝑖 × (
3

𝑖𝑚𝑎𝑥
))                                                            

 (15) 

The algorithm’s each Dingo agents move within a 

hypercube in the search space around the best possible 

solution. 

Step 6: Injury and restoration phase 

Axolotls can sustain injuries and accidents while swimming. 

If the possibility of harm (Pd) for each axolotl Si in the 

population is realized, there is a possibility of experiencing 

limited or whole loss of one or more body parts. Following 

that, the axolotl begins the regeneration process for the lost 

body part based on the regeneration probability per bit (Pr). 

As shown in Eq. (16), the replacement of the missing body 

part is determined by a function of P′ ij. 

𝑃𝑖𝑗
′ ← 𝑚𝑖𝑛

𝑖
+ (𝑚𝑎𝑥

𝑖
− 𝑚𝑖𝑛

𝑖
) × 𝑛𝑖, 0 ≤ 𝑛𝑖 ≤

1for each body part                                                   

(16) 

Step 7: Population Reproduction 

A randomly selected male axolotl pairs with each female 

axolotl to facilitate offspring production. In the pairing 

process, the female axolotl collects spermatophores using 

her cloaca and deposits them into her spermatheca. 

Subsequently, the chosen male axolotl participates in the 

depositing process. To generate two eggs, each mating 

partner contributes genetic features uniformly. The female 

lays the eggs and watches them hatch. Newly hatched larvae 

vie with their parents for admittance into the colony. The 

parents get replaced if the young offspring outperforms 

them in the optimization process. 

Step 8: Return-Best Position of the Solution  

Step 9: End 

4. Result and Discussion 

To validate experimental results in the construction and 

evaluation of PV-grid-EV systems, this research employs 

MATLAB programming, primarily MATLAB R2022a. 

MATLAB supports the thorough assessment of PV-grid-EV 

functions when run on a Windows 11 configuration with an 

i9 processor and 32GB of RAM. The study investigates 

various ways for utilizing V2G-G2V integration to assist 

EV charging throughout the day. The proposed ideas are 

intended to improve the charging station's ability to provide 

a consistent and stable power supply. Fig. 2 shows a detailed 

Simulink depiction that provides a visual overview of the 

complete analytical process. 
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Fig. 2. MATLAB depiction of proposed method 

Fig. 3 and 4 show the PV power extracted with MAO and 

IMOA controllers. The figures also provide several 

performance measures, including as voltage and duty cycle 

numbers. 

 

Fig. 3. Extracted power for MAO 

 

Fig. 4. Extracted power for MAO-PPS 

4.1. Performance Analysis 

MPPT is achieved by adapting the duty cycle over the 

essential load at a constant output voltage. Table 1 displays 

the MPPT precision values and MPP outcomes. The data 

evidently reveals that the suggested MAO-PPS outperforms 

standard MAO by obtaining a high precision of 98.39%. 

Table 1. Evaluation of Different Algorithms for PV 

Performance Metrics MAO MAO-PPS 

Generated Power (kW) 83.25 85.68 

MPP Power (kW) 85.14 87.11 

Precision (%) 96.17 98.39 

 

The MAO-PPS surpasses the MAO controller in terms of 

MPP power by obtaining 87.11 kW whereas the MAO 

controller obtains the maximum power of 85.14 kW, as seen 

in Table 1. To further improve the system, the voltage 

source inverter should include capabilities such as active 

power filtering as well as power factor change. Nonlinear 

loads associated to the grid introduce current harmonics, 

which degrade power quality; this difficulty is minimized 

by active power filters that compensate for armature 

currents. With the incorporation of PV into the grid, new 

voltage regulation challenges emerge. 

Table 2 presents a comparative analysis of various 

algorithms by detailing their performance in terms of 

efficiency, power loss, and THD. Additionally, the table 

offers insights into load demand, appropriate charging 

conditions, and a diminished voltage profile, which details 

the overall information provided. 

Table 2. Assessment of different controller regards to EV 

Performance Metrics MAO MAO-PPS 

THD (%) 3.54 0.29 

Efficiency (%) 94.88 99.77 

Power loss (KW) 0.124          0.111 

 

Fig 5. Performances of THD and Power loss 

 

Fig. 6. Performance of Efficiency 

The graphical representation of THD and power loss 

evaluation in given in Fig. 5, while Fig. 6 shows the 

efficiency computation in MATLAB where the amount of 

energy delivered by a model to the amount of energy 

supplied to it. In the modeling phase, raising the dc-link 

voltage above the input is regarded as irrelevant. The 

recommended charger setup assures continuous efficiency 

in the second phase while also delivering an impressively 

wide output voltage range. All constrainenrgts in this 

situation have already been discussed in the appropriate 

section. Fig. 7 depicts the nominal current and discharge 

parameters of the battery. 
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Fig. 7. Characteristics of discharge current 

4.2. Comparative Analysis 

Here, the comparison evaluation is performed to analyse the 

enhanced performance of the proposed MAO-PPS method. 

The existing models such as SSA [16] to determine the 

optimal combination of control settings and DC–DC Boost 

Converter [20] to increase the power output of a PV system 

are considered for the comparison evaluation in terms of 

THD which is given in table 3. 

Table 3. Comparison of conventional models interms of 

THD 

Models THD (%) 

SSA [16] 0.49 

DAFB [20] 3.21 

Proposed MAO-PPS 0.29 

Table 4. Comparison of SSA and proposed MAO-PPS 

interms of distinct performance 

Models PO (%) PU (%) Settling time (𝑇𝑠 

(msec)) 

SSA [16] 0.275 0.0225 20.1 

Proposed MAO-

PPS 

0.214 0.0211 17.12 

Table 5. MPPT Comparison evaluation of conventional 

and proposed models 

Models 𝑃𝑖𝑛𝑡 𝑝𝑒𝑎𝑘 

(kw) 

𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑑(kw) 𝑉𝑑𝑐 𝑝𝑒𝑎𝑘 

(V) 

𝑉𝑑𝑐 

(V) 

𝛽 − 𝑀𝑃𝑃𝑇 [20] 95.3 94.5 700 500 

Proposed  

MAO-PPS  

97.8 97.5 850 750 

 

From the tables (3-5) it clearly demonstrates that the THD 

of the recommended method is less (0.29%) and high 

efficiency (99.77%) 𝑃𝑖𝑛𝑡 𝑝𝑒𝑎𝑘 (97.8), 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑑  (97.5), 

𝑉𝑑𝑐 𝑝𝑒𝑎𝑘(850) and 𝑉𝑑𝑐(750) with minimum settling time 

(17.12), undershoot (0.0211), overshoot (0.214), when 

compared to other conventional models. The integrated 

device maintains a consistent recharging aspect even though 

different integrated units have different motor impedance 

settings when using the recommended control approach. 

5. Conclusion 

A modern V2G organization is precisely constructed in this 

research work by flawlessly interfacing with EV motors to 

uncover unparalleled possibilities. Beyond transportation, 

the mutual interaction between EVs and the grid provides 

vital auxiliary services such as power leverage, reactive 

power support, and excellent frequency and voltage 

management. This interaction not only improves efficiency 

but also reduces costs. Therefore, this research introduces a 

hybrid MAO-PPS technique to optimize the power stability 

between the components and to adapt the system whenever 

there is a change occurs. MAO can quickly converge on the 

best pilot pattern selection technique by offering a set of 

well-designed pilot patterns that represent different 

controller switching patterns. Through utilizing the DOA, 

the reliability of the MAO increases in its convergence 

towards the optimal solution. So, the algorithm’s each 

Dingo agents move within a hypercube in the search space 

around the best possible solution thus helps to balance grids 

and control the frequency. The simulation results shows that 

the the THD of the recommended method is less (0.29%) 

and high efficiency (99.77%), 𝑃𝑖𝑛𝑡 𝑝𝑒𝑎𝑘 (97.8), 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑑  

(97.5), 𝑉𝑑𝑐 𝑝𝑒𝑎𝑘(850) and 𝑉𝑑𝑐(750) with minimum settling 

time (17.12), undershoot (0.0211), overshoot (0.214), when 

compared to other conventional models. In future, the 

research aims to broaden its scope by conducting a thorough 

examination of the PV-Grid-EV nexus using varied hybrid 

approaches to improve overall performance indicators. 
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