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Abstract: In the area of information technology the emerging technology Cloud computing plays a major role. Cloud computing 

virtualization and its dependency on Internet leads to a variety of failures to happen and hence there is a need for reliability and 

availability becomes a major issue. To ensure proper reliability and availability of the cloud, an efficient fault tolerance strategy needs to 

be developed and implemented. Majority of the earlier fault tolerant approaches focused on using only one method for tolerating faults. 

This paper presents an efficient and effective fault-tolerant strategy to deal with the problem of fault tolerance in the environment of 

cloud computing. This fault-tolerant strategy depends on optimal and distributed checkpointing and replication scheme for obtaining a 

reliable cloud platform for carrying out customer requests. Further it determines the best fault tolerance strategy for every selected virtual 

machine (VM). Simulation experiments are carried out to evaluate the performance of the fault-tolerant strategy. The experiment results 

show that the proposed fault-tolerant strategy enhances the cloud performance in terms of overheads, throughput, availability and 

maintenance cost. 
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1. Introduction 

The current market of Information Technology (IT) has 

witnessed a considerable change due to the presence of 

cloud computing, which has become an integral part of 

most of the businesses [1]. Today, most of the businesses, 

from single to large enterprises, migrated to cloud 

computing in order to obtain a high level of productivity 

by entrusting their IT issues to an expert one. Cloud 

computing provides comprehensive IT services and 

solutions for both companies and individual users [2]. 

They can lease components of the cloud without expending 

time and money in constructing or buying these 

components. In cloud servers, computing is introduced as 

an abstract service on the Internet by hiding its 

implementation details [3]. 

The deployment models of cloud computing systems are 

public, private or hybrid. In public, services are pro- vided 

through the Internet in forms of cloud practical application. 

The main categories of these applications include 

Infrastructure-as-a-Service (IaaS), Software-as-a- Service 

(SaaS) and Platform-as-a-Service (PaaS). Most of IT 

businesses cannot invest in certain services such as 

supercomputer-class services. In IaaS, the cloud provides 

computing, storage and networking resources with any 

required configuration and capacity as paid services to the 

customers. Examples of practical applications of IaaS can 

include Amazon EC2 and Google Compute Engine. In 

most IT organizations, there are no enough experts to 

develop and run the required software applications. In SaaS, 

the cloud provides customers with access to professionally 

implemented software applications and thus they save the 

customers’ money. Salesforce.com and Google Apps are 

examples of practical applications of SaaS. In PaaS, 

customers can run their custom applications on the general 

purpose software and hardware with the most recent 

configurations. Practical applications of PaaS include 

Google App Engine and Microsoft Azure [4]. 

Private clouds are implemented and maintained by various 

enterprises to provide internal services and further they 

have additional flexibility compared to public clouds 

however they are more expensive. In hybrid clouds, some 

portions of computing can be done in a public cloud while 

other portions can be done internally through the private 

one [4]. 

In spite of various services offered by cloud systems in 

cloud environment, they are not always perfectly reliable 

further they could suffer from outages of their services due 

to failures and sometimes disasters [5]. An outage is 

known to be a situation where the request of a customer is 

not completed in its required deadline. With the raise of 

cloud usage, the number of required cloud services 

increases and further there could be increased outage 

probability. The foremost reasons of these outages 

comprises software failures due to incorrect upgrade, 

extreme work load, hacking, etc. and hardware failures 

such as resource unavailability, network failure, power 

down times, etc. 
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In general, outages are popular in public clouds in which 

an enormous number of services are provided to customers 

with required levels of service quality. In the last decade, 

many outages have occurred in most famous public cloud 

environments. In 2021, AWS has experienced a severe 

outage that disrupts services for several hours due to the 

issue of US-East-1 region. In 2022, Google Search, Drive, 

Maps and YouTube are down, returning HTTP 500 and 

HTTP 502 errors. After their services came back online, 

Google apologized and stated that there is a software 

update issue [6]. Further, other cloud service providers 

(CSP’s) such as Apple iCloud and Microsoft Azure are 

among the technology vendors to experience major cloud 

outages. In 2023, the foremost cloud vendors like Amazon 

Web Services (AWS), Microsoft and Google experienced 

major service disruptions. For example, AWS us-east-1, an 

important critical region for Amazon Web Services, faced 

an outage with down-time of 24-hours that might cost up 

to $3.4 billion in their direct revenue.  

Cloud outages or failures have a great impact on both the 

cloud vendors and the customers. For vendors, there will 

be no profit due to the cloud resources that are used to 

come back from the effects of outages happened. K. Bilal 

et al [7] have stated that each downtime hour in a data 

center costs around U$ 50,000. For customers, their 

requirements, such as deadline time, may not be achieved. 

So, there is a tremendous requirement for an always 

available and reliable cloud that consists of a dynamic 

method for fault tolerance. The method should 

transparently remove or reduce to some extent the effects 

of failures on both customers and profit needs. 

Fault tolerance methods can be reactive or proactive. The 

foremost goal of the reactive methods is to reduce the 

effect of fault occurrence while the goal of the proactive 

methods is to avoid fault occurrence. Reactive methods 

mainly include replication and checkpointing. Most cloud 

computing systems depend on reactive methods, especially 

replication [9]. 

The replication method assumes that the likelihood of a 

single VM failure is extremely higher than the occurrence 

of simultaneous failures of multiple VMs. It permits 

multiple virtual machines to start concurrently by 

executing redundant copies of a single request in order to 

prevent re-computation of that task from the beginning in 

case of failure. Hence, the service can be efficiently 

offered to customers while providing their QoS 

requirements even in the case of failures in cloud servers. 

Whereas, in checkpointing, the cloud eventually saves the 

execution state of current request and its executing VM to 

a stable storage server in order to reduce the recovery time 

during the situation of failure. In case of failure, instead of 

starting the request from the beginning, it will be started 

from the point where the last recent checkpoint was saved 

[10], [11]. 

The key contribution of this paper is to provide an adaptive 

fault-tolerant strategy to handle the proactive and reactive 

faults in cloud environments. To cope with the proactive 

faults, the implemented fault-tolerant strategy needs 

customer requirements and the information about virtual 

machines during task scheduling. Also, this fault-tolerant 

strategy employs both optimal checkpointing and 

replication methods and it dynamically chooses the 

appropriate method based on the conditions of the cloud at 

that instant. 

The rest of the paper is arranged as follows: Section 2 

presents a brief illustration of the related work. Section 3 

describes the problem. Section 4 provides the details of the 

proposed fault-tolerant strategy. In Section 5, the results 

obtained from simulation experiments are presented and 

finally the paper concludes in Section 6. 

2. Literature Survey 

The dynamic nature of the cloud raises the chances 

probability of failures. Therefore, to reduce or completely 

avoid the effects of such failures, the cloud should be 

applied with fault-tolerant strategy, that can be either 

reactive or proactive. Reactive fault tolerance methods are 

useful to minimize or eradicate the effect of failures on 

monetary and time costs. Generally, Checkpointing and 

Replication are the two methods mostly used for reactive 

fault tolerance. 

The replication method is based on that the likelihood of 

failures will be reduced when multiple virtual machines are 

used to carry out the same customer’s request. 

Recompilation of a request is avoided by performing 

multiple replicas of the request on different virtual 

machines at the same time. In case of virtual machine 

failure the cloud can still execute the request within the 

customer’s needs and deadlines. The results of the virtual 

machine that finishes first are considered and results of 

other virtual machines are neglected [12]. 

Checkpointing is the other reactive method, where the 

request’s execution status will be saved repeatedly to a 

stable and safe storage area during the task execution. 

During the situation of failure, the cloud would continue 

the execution of the requested task starting from the last 

saved check point where the status was properly recorded. 

This will avoid restarting the service of the request from its 

initial point of execution. Even though this can reduce the 

response time to carry a particular request, but could result 

in more wasted time. This wasted time owing to the 

recovery of a virtual machine from the failed state if it is 

the only one that can carry out the task. On the other hand, 

the cloud should make use of this method if there is only 

one virtual machine is available which can carry out the 

request of a customer’s. The time gap between two 
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consecutive checkpoints is known as the checkpoint 

interval [13], [14]. 

In contrast, proactive methods are probabilistic and they 

can be employed to predict the virtual machines faults to 

some extent prior to their occurrence. The foremost goal of 

these methods is trying to avoid the occurrence of failures 

and then avoid recovery procedures of the reactive 

methods. While scheduling the requests, proactive methods 

take the advantage of scheduling decisions based on the 

information of prior failures of particular virtual machines. 

Consequently, the number of future failures can be reduced 

and the reliability of the cloud environment will be 

improved. 

Fault tolerance is one of the most important issues in 

distributed computing systems such as grid and cloud 

computing systems. In grid computing, there is a lot of 

fault tolerance work have been done in the literature, 

whilst a little research has been devoted to the area of 

cloud computing. 

In 2013, Hui et al. [15] proposed a fault tolerant method 

based on using coordinated checkpoints at the virtual 

machine level. Their method eliminates the unavailability 

with the usage of coordinated protocols for the recovery of 

checkpoints. In 2014, Limam and Belalem [15] together 

defined an adaptive checkpoint scheme with the goal of 

removing unnecessary checkpoints otherwise add 

additional checkpoints based on the existing status of a 

server in cloud region. Their method generally increases or 

decreases the checkpointing interval through a fixed rate. 

In 2015, J. Cao et al. [16] have defined a uniform fault 

tolerance strategy using checkpointing mechanism. Their 

method supports extensive jobs and priorities were 

allocated to jobs. In  2021, Purushottam S et al, [17] have 

defined a realized and best checkpointing control 

mechanism for computing systems. Their method based on 

aggregation of checkpointing overhead and the expected 

amount of rework after recovery for best checkpointing. 

Their defined method reduces number of check point and 

resulting in optimal checkpointing scheme considering 

real-time MTBF (mean time between failures) estimation. 

Further, in 2021, Yu Xiang et al, defined a Contention-

Free and distributed VM checkpointing mechanism to 

provide reliability. Their method reduces checkpointing 

interference and thus improves the reliability of distributed 

network. 

In 2013, Ganga and Karthik [9] have proposed a 

replication based fault tolerant method for fault tolerance 

while using scientific workflow systems. Das and Khilar 

[18] proposed a replication based method to decrease the 

service time and to increase the system availability. Their 

method depends on the usage of software variants on 

several virtual machines to tolerate faults. Furthermore, it 

reduces the likelihood of faults in future by stopping tasks 

scheduling to virtual machines of servers that has low 

success rates. Alhosban et al. [3] introduced a scheme that 

depends on the prediction and planning. A method of 

recovery is selected to be applied during the case of fault 

occurrance. The selection criterion depends on user 

requirements, failure history and requested service weight 

and its criticality. Methods that can be selected are 

replication and retry. 

In 2015, Saranya et al. [19] presented and evaluated a 

method based on both replication and resubmission of 

tasks. Their defined method based on assigned task 

priority, task length, deadline of requested service and the 

out-degree of every task. In 2015, Liu and Wei [20] 

defined a replication scheme that considers the failures of 

hardware and software. In 2020, Jinwei Liu, et al [21] 

proposed a replication scheme for handling both correlated 

and non-correlated server failures, with high availability. 

Their replication scheme provides low cost to enterprises 

by reducing the replicas using correlated and non-

correlated server failures. In 2021, Ahmed Awad, et al [22] 

presented a dynamic data replication scheme for cloud for 

selection and placement of data replicas. Their approach 

uses swarm and ant colony optimization algorithm for 

replica selection and placement and provides better data 

availability, low cost, and fewer bandwidth consumption. 

In 2017, B Mohammed et al. [23] defined a smart failover 

framework that provides fault tolerance by considering 

redundancy, optimized selection of VMs, and 

checkpointing. Their defined scheme is similar to our 

scheme. Their proposed scheme uses various components 

in cloud such as fault manager, cloud controller, load 

balancer and further a selection mechanism. It is also able 

to eliminate temporary software faults from recoverable 

faulty nodes, thus making them available for further 

requests in the future. Further, M Amoon, also provided a 

similar framework that incorporates both replication and 

checkpointing schemes.[4] 

The study of literature shows that most of the preceding 

work done are primarily based on using a single efficient 

fault tolerance method, either checkpointing or replication. 

There is a little work done that considers using both of the 

two methods together to tolerate faults in cloud computing 

systems. Also, most of the existing replication based work 

considers a static or fixed number of replicas and they do 

replication for all virtual machines in the cloud, which is 

not an economic approach. In the case of checkpointing, 

most of the proposed work assumes fixed or fixed change 

of the length of the checkpoint interval during the 

execution of the customer requests or jobs. There is a small 

effort done that considers the adaptive length of the 

checkpoint interval and also it is centralized mechanism. 

So, there is a need for a fault-tolerant strategy that 

considers both optimal checkpointing and replication 
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methods and selects the number of checkpoints or replica 

in an adaptive manner. 

3. Proposed Model 

Cloud services are provided either as storage services or 

computing services. Google, iCloud and Dropbox are best 

examples in offering storage services and Microsoft Azure 

and Amazon EC2 are examples cloud providers offering 

computing services. In order to be served, a customer 

submits his service request to the cloud provider along 

with the requirements needed for his request. The provider 

negotiates with the customer in order to determine both the 

quality of service and the price. In case of customer 

acceptance, the provider will formulate the cloud virtual 

machine that can perform the request and the service gets 

started. 

Majority, cloud resources are not primarily designed to 

achieve the cloud’s economic objective. These resources 

are composed into several virtual machines to undertake 

customer requests. So, it is expected that a number of 

failures will occur and then increase time expected to 

complete the customer requests and thus it will deplete the 

cloud resources. For customers, they will not get their 

services in the time expected. For the cloud, failures will 

lead to loss of cloud resources and then money. This will 

lead to a significant impact on the credibility, reliability, 

availability and reputation of the cloud [23]. Hence, it is 

more essential to implement and effective fault tolerance 

strategy in cloud computing regions to alleviate or omit the 

effect of failures on the cloud performance. 

Replication of both data and applications are used by 

majority of the existing cloud computing systems. It is 

even applied in Amazon S3 via storage of data objects on 

multiple storage server units. The iCloud can rent various 

infrastructure services from Microsoft’s Azure or 

Amazon’s EC2 to accomplish the replication. However, 

cloud outage reports suggest the fact that the reliability is 

still insufficient and necessary [22]. Applying fault 

tolerance methods in clouds faces the following 

challenges: 

1. The cloud can have only a single copy of the virtual 

machine that can carry out the request of the customer. 

Also, the cloud can have multiple VMs that can perform 

the customer’s request, but in case of only one server is 

available and the other servers are busy in executing 

other requests or else they are out of service. So, 

replication method cannot be applied. 

2. The number of replicas cannot be static or fixed as it 

leads to a reduced influence on the cloud. This is due to 

the fact that additional virtual machines will be used to 

carry out the same service. Nevertheless, these virtual 

machines are useful to perform other customer services. 

Consequently, the cloud will lose profits. 

3. It is not economical to implement replication for each 

service or virtual machine. Replication should only be 

applied for services that are allocated to the most 

valuable virtual machines that will have a great impact 

on the performance of the cloud if they fail. 

Determining the most valuable virtual machines is a 

great challenge. 

4. In case of checkpointing method, predetermining the 

checkpointing interval’s length is a crucial challenge. 

Checkpointing with fixed or static checkpoint interval 

could lead to redundant checkpoints that consume cloud 

resources and increases checkpointing latency. 

5. In order to cope with the first challenge, optimal and 

distributed checkpointing method is involved in our 

fault-tolerant scheme beside replication. The proposed 

fault-tolerant strategy allows the cloud to choose either 

optimal and distributed checkpointing or replication in 

order to accomplish fault tolerance. Further, to address 

the subsequent challenge, a replication algorithm that 

adaptively regulates the number of replicas of an 

application is offered. For the third challenge, the 

percentage of profit gained by the cloud when using the 

virtual machine is involved in determining the number 

of replicas required for each virtual machine. For the 

fourth challenge, an optimal algorithm that adaptively 

determines the checkpointing interval’s length is 

proposed. The algorithm assumes that the length of the 

checkpointing interval must not be fixed during the 

execution of the customer’s task. The algorithm takes 

the failure probability of a virtual machine to estimate 

the subsequent checkpointing interval. 

3.1. Cloud and Proposed Architectures 

Cloud computing environments should have the ability to 

receive, perform, monitor and control customers’ requests. 

The cloud should be reliable in order to provide its services 

within the limits of customer requirements. This section 

describes the proposed framework which enables the cloud 

to be reliable. As shown in Figure 1, the architecture of the 

proposed fault-tolerant strategy assumes that the cloud 

comprises of three major layers: physical, VM and 

application layers. One function of the application layer is 

to allow customers to interact with the cloud. Furthermore, 

it schedules the customers’ requests or jobs to the virtual 

machines in the cloud. In addition, tolerating faults is the 

responsibility of the application layer. In order to perform 

these functions, the structure of the application layer 

comprises four modules: 

1. Service Verifier: This module is liable towards ensuring 

the accomplishment of customer’s QoS requirements. In 

this paper, the considered QoS requirements include 

time and monetary costs. A customer can submit his 

request to the cloud through this module along with the 
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QoS requirements. The module queries the Status 

Database module for appropriate VMs availability to 

execute the customer request and gets a response. If the 

response indicates the presence of appropriate VMs that 

can carry out the request within the boundaries of 

customer requirements, the Service Verifier will accept 

the request and it will deliver it to the Task/Job 

Scheduler module. Otherwise, the request will be 

discarded. 

2. Task/Job Scheduler: The main function of the Task/Job 

Scheduler is to allocate every request to the appropriate 

virtual machine that can execute it within the boundaries 

of customer requirements. Also, the Job scheduler has 

the responsibility of determining the charge of serving 

the request. In addition, Job Scheduler has the 

responsibility of fault tolerance. In order to do its 

responsibilities, the Task/Job Scheduler module should 

contain the following components: VM Ranker, Price 

Estimation, Scheduling and Fault Tolerance Manager 

(SFTM), ODCP (Optimal and distributed 

checkpointing), replication modules and Dispatcher. 

Figure 2 illustrates the interactions between the main 

components of the Scheduler. The main role of the VM 

Ranker is to determine the most valuable VMs in the 

cloud. It receives customer’s request with QoS 

requirements from the Service Verifier and contacts the 

Status Database module in order to get information 

about the virtual machines that can accomplish the 

request. Based on this information, it prepares a list of 

VMs that can fulfill the time and monetary requirements 

of the customer’s request. Price Estimation component 

determines the charge associated to service that should 

be paid by the customer. SFTM component implements 

Algorithm 1 in order to select the appropriate fault 

tolerance method for the virtual machine assigned to 

each request. The algorithm selects either optimal and 

distributed checkpointing or replication based on 

information about virtual machines. Dispatcher delivers 

the requests of customers to the allocated VMs. 

3. Status Database: It is known to be the central repository 

that contains all virtual machines information in the 

cloud such as storage capacity, computing capacity, 

failure history, usage history and cost. 

4. VM Monitor: The foremost functionality of this module 

is to observe the performance of the virtual machines in 

the cloud. It notifies the Status Database to update the 

record of a VM in a case of the failure or the recovery of 

that VM. In addition, this module has the responsibility 

for forming or reforming virtual machines of the cloud. 

It has virtualization software that is helpful to produce 

unique and isolated virtual machines through cloud 

physical resources. 

5.  

 

Fig 1: Cloud computing system: A layered architecture. 

 

Fig 2: Task/Job scheduler components and their 

interactions. 

VM layer is the second layer, which comprises virtual 

machines of the cloud where each virtual machine is 

formed with the usage of one or more physical resources. 

Also, each physical resource may be shared and used by 

multiple virtual machines. Furthermore, different VMs can 

be emulated on a single physical resource in order to 

satisfy the requirements needed by customer requests. The 

Resource Monitor in this layer is useful to perceive the 

performance of the physical resources of the cloud and 

further it notifies the VM monitor about the changes 

happened. Changes include resources leaving the cloud or 

new resources joining the cloud. Based on these changes, 

Resource Monitor is capable to reform the affected virtual 
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machines. 

The physical layer is the bottom layer of the cloud which 

contains hardware and software resources. Resources are 

the real operators in the cloud environment. 

 

 

Fig 3: Architecture of ODCP scheduling consisting two requests allotted with 1 and 3 VMs respectively and hosted on 2 

hosts. 

Figure 3 shows an overview of the proposed system 

architecture. It illustrates 2 jobs consisting of 1 and 3 VMs 

respectively and placed on 2 hosts. Our checkpoints are 

organized at the job level - if a checkpoint of a job is 

triggered, all VMs that belong to the job first save their 

checkpoint images to the local storage (in order to 

minimize VM downtime) and then transfer them to the 

networked storage to avoid host failure. 

In our design, each job achieves reliability optimization via 

self-management in two ways: first, each job 

autonomously determines its own checkpointing 

scheduling based on locally available information, e.g., the 

co-location of other jobs and occurrence of checkpoint 

contention. Second, each job autonomously updates its 

checkpoint rate based on locally available optimal 

solutions, which is done at runtime with no dependence on 

any centralized management decisions. 

3.2. Implementation of Fault-tolerant Strategy  

3.2.1. SFTM Algorithm 

Algorithm 1 is called the Selecting Fault Tolerance 

Manager (SFTM) algorithm and it is proposed with the 

objective to select the appropriate method for tolerating 

faults in the cloud computing system. The algorithm is 

implemented in the SFTM component of the Scheduler 

module. In order to achieve its objective, the algorithm 

depends on using customer’s requirements and the 

available information about virtual machines. First, the 

algorithm prepares a list of virtual machines that can carry 

out the customer’s request and satisfies the customer’s 

requirements. The customer’s requirements considered by 

the algorithm include both time costs and monetary costs. 

Thereafter, the algorithm selects checkpointing method if 

there is only a single VM in the list. Otherwise, the 

algorithm selects replication method. 

3.2.2. Replication Algorithm 

Replication is applied when there are multiple and 

available virtual machines in the cloud that can carry out 

the customer’s request. However, it is a central challenge 

to define the optimal number of replicas. Furthermore, it is 

not an economical method to carry out replication for 

every virtual machine [24]. So, we only need to replicate 

requests executed on the most valuable virtual machines 

that will have a great impact on the performance of the 

cloud if they fail. 

Algorithm 1: SFTM Algorithm 

Input: ciu is the required cost by the customer u for request 

i, 

           τiu is the required deadline time by the customer u 

for request i, 

           cij is the estimated cost if the request i is executed by 

VMj, 

           τij is the expected time if the request i is executed by 

VMj, 

    i = 1; 

    while (there are requests not served){ 
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        for each request i do{ 

            Identify a list of VMs that can execute i; 

            for each VMj in the list do 

                if (cij > ciu||τij > τiu)/∗VMj cannot serve request i∗/ 

                    remove VMj from the list; 

                if (list is not empty) /∗The request can be served 
∗/{ 

                    Sort the VMs list ascending based on cij × τij; 

                    if (there is more than one VM in the list) 

                        Replication is selected; 

                    else 

                        Optimal and distributed checkpointing is 

selected; 

                } 

                else { 

                    Send ‘‘Request cannot be served’’ to the QoS 

Controller;  

                    End the algorithm for i; 

                } 

                i++; /∗ next request ∗/ 

        }/∗ for end∗/ 

    }/∗ while end∗/ 

In order to find the top valuable VMs in the cloud, VMs 

ranking need to be performed according to their price and 

influence on the cloud. The ranking is based on failure 

probability of the virtual machine and the profit gained 

through using it. Failure history of a VM can determine its 

failure probability. For each virtual machine, failure 

history can be represented by the number of failures 

occurring, failure time, the time between failures and 

failure types. The need of a virtual machine to a fault 

tolerance method is determined by failure probability. As 

the value of the failure probability becomes high, the need 

for applying fault tolerance methods increases. 

Algorithm 2:  Replication Algorithm 

• Fj(X ) : The failure probability of a VMj 

• Pj : The percentage of profit gained through the usage 

of VMj 

• Rep : The number of replicas 

• Fj (X) (k), k = 0, 1, 2, . . . , n, are integers such that,  

0 <= Fj (X) (k) <= 1.0 and Fj (X) (0) < Fj (X) (1) < . . . 

< Fj(X )(n) 

• Pj(y), y = 0, 1, 2, . . . , m, are the percentage of cloud 

profit gained by virtual machine j such that, 

0 <= Pj(y) <= 100 and Pj (0) < Pj (1) < . . . < Pj (m) 

• Rep (l) (w) , l = 0, 1, 2, . . . , n and w = 0, 1, 2, . . . , m, 

are integers 

for (a = 0; a < n; a++){ 

    for (b = 0; b < m; b++){ 

        if (Fj (X) (a) ≤ Fj(X ) < Fj(X )(a + 1) and Pj (b) ≤ Pj < 

Pj (b + 1)) 

            Rep = Rep (a) (b); 

    } 

} 

In general, the occurrence of random failures is a 

stochastic process [25] and Jump Linear Systems (JLSs) 

can be used to model it because they involve event driven 

and time evolving techniques. The process depends on the 

time period between two successive faults. In clouds, this 

time period is a random variable following general 

probability distributions and the process is often called 

semi-Markov process. The jump linear system of the semi-

Markov process is known as semi-Markovian JLS with 

time-varying transition rates [26]. 

In this work, the failure probability of a virtual machine is 

assumed to follow Poisson distribution. This means that 

the number of failures in any two different or disjoint 

periods of time is independent over the time change. The 

failure probability distribution of VMj at any given time 

interval can be expressed as follows: 

𝐹𝑗(𝑋) =
𝑒−µµ𝑥

𝑥!
, 0 ≤ 𝐹𝑗(𝑋) ≤ 1𝑎𝑛𝑑 𝑥

= 0,1,2, … , 𝑛,       (1)  

where X (x0, x1, x2, . . . , xn) represents the number of 

failures occurred in a certain time period and µ is the 

average number of failures in the specified time period for 

a virtual machine j. The value of µ is calculated using: 

µ =
𝑓𝑗

𝑇𝑗 𝜏𝑖𝑗⁄
 ,                                              (2) 

where, fj is the number of failures of a virtual machine j 

and Tj is the period of time in which fj failures have 

occurred. 𝜏ij represents the estimated time when request or 

application i is executed on virtual machine j. Thus, the 

probability of one failure (x = 1) to take place during the 

execution of a request 

is given by: 

𝐹𝑗(𝑥1) = µ𝑒−µ.                                          (3) 

The virtual machine profit, denoted as Pj, represents the 

percentage of cloud profit gained through the usage of 
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virtual machine j in performing requests. The value of the 

virtual machine j to the cloud is determined by its profit. If 

the profit obtained by virtual machine is huge then it 

attains more value in the cloud. 

The rank of a virtual machine is computed by the VM 

Ranker component of the Task/Job scheduler. The VM 

Ranker component acquires the failure probability and 

associated VM’s profit from the Status Database. 

Thereafter, it calculates the rank of each virtual machine 

using the formula: 

𝑅𝑗 = µ𝑒−µ × 𝑃𝑗  ,                                     (4) 

where Rj is the rank of VMj, µe−µ is the probability of a 

failure to occur and Pj is the profit of VMj. 

The fixed number of replicas is not an efficient choice in 

cloud computing environments because additional virtual 

machines will be used to carry out the same request. 

However, these virtual machines can be used to carry out 

requests of other customers. Thus, profit charges will be 

wasted. Also, it is not economically to implement 

replication for each request or for each VM. 

Algorithm 2 is the replication algorithm proposed in this 

paper in order to adaptively determine the number of 

replicas of a request. The number of replicas will not be 

fixed for all requests or virtual machines. In order to 

adaptively determine the number of replicas, the operation 

of the algorithm depends on both the failure probability 

and the percentage of cloud profit gained by the virtual 

machine allocated to execute the customer’s request. As 

either the failure probability or profit percentage of a 

virtual machine increases the need for more replicas 

increases. Consequently, virtual machines with higher 

values of profit or failure probability have higher fault- 

tolerance needs and then higher priority of replication than 

other VMs. 

3.2.3. Checkpoint and ODCP Scheduling Algorithms 

Distributed systems, such as grid computing systems, have 

widely used checkpointing as a reactive fault tolerance 

method to alleviate the impact of failures when occurred. 

Furthermore, most cloud computing systems implement 

replication techniques. However, from the perspective of 

the cloud service provider, replication results in profit loss 

due to allocating additional components to execute the 

replicas of a request, mostly these components may be 

useful for other requests. Also, from the perspective of 

customers, replication leads to time loss due to waiting for 

components that execute replicas to be free from executing 

other requests. So, the main advantage of using 

checkpointing over replication is to preserve the computing 

resources of the cloud to other customers’ requests and to 

reduce the profit loss because of using replication. 

Checkpointing interval and latency are the two parameters 

that strongly affect a checkpointing algorithm. The 

checkpointing interval represents the time between a 

checkpoint and the next checkpoint. Checkpointing latency 

is the time consumed in saving a checkpoint. In the case of 

smaller checkpoint interval, there will be a large number of 

checkpoints. This large number of checkpoints will heavily 

consume cloud resources when saving checkpoints and 

thus high checkpointing latency results in. Additionally, 

long checkpoint interval leads to a lesser number of 

checkpoints and then a considerable part of the request 

should be recomputed in the case of failure. This least 

number of checkpoints will slightly consume cloud 

resources while saving checkpoints and consequently low 

checkpointing latency results in. 

So, determining the length of the checkpointing interval is 

the major challenge for a checkpointing technique. Fixed 

interval leads to redundant checkpoints that consume cloud 

resources and increase checkpointing latency. So, the main 

objective of our work is to develop an algorithm that 

adaptively determines the length of the checkpointing 

interval. Algorithm 3 assumes that the length of the 

checkpointing interval must not be fixed during the 

execution of the customer’s task. The algorithm calculates 

the next checkpointing interval at the time of the current 

checkpoint. It is calculated based on the failure history of 

the VM on which the task is executed. In the case of a poor 

failure history, the algorithm will shorten the checkpoint 

interval. Additionally, the algorithm will prolong the 

checkpoint interval if there is a good failure history. 

Algorithm 3:  Checkpoint Algorithm 

• τij : The execution time of job i on VMj 

• Τrij : The remaining execution time of job i on VMj 

• Fj (x1) : Failure probability of VMj 

• Fj (x0) : Probability of no failure of VMj 

• l: Checkpoint interval 

• z: Number of failures during the task execution  

Calculate Fj (x1) = µe−µ; 

For each task j allocated to VMj do{ 

    z = 0; l = τij × Fj (xz) ; //Initial checkpoint interval 

    τrij = τij; 

    Start execution of i on j; 

    do{ 

        τrij = τrij − l; 

        if failure occurred then{ 

            z++; 

            τrij = τrij + l; 
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            l = l(1 – Fj (xz)); // decrease checkpoint interval  

            Restore last checkpoint; 

            Restart execution from τij – τrij; 

        } 

        At time τij – τrij create and schedule a checkpoint; 

        l = l(1 + Fj (xz)); // increase checkpoint interval  

        Resume execution; 

    }While (τ rij ≠ 0) 

} 

 

Algorithm 4:  ODCP Scheduling Algorithm 

• λi : Sensing rate of request i 

• ℌi:Servicing hosts in cloud 

• Bi: Back-off time  

Assign positive sensing rates λi > 0 ∀i 

Each request independently performs: 

Initialize backoff timer Bi 

while request i is running 

    while Bi > 0 

        if any server in ℌi is busy  

            request i becomes silent 

            Generate new backoff: Bi = exponential with mean 

1/ λi 

        end if 

        Update Bi = Bi − 1 

    end while 

    Checkpoint all VMs of request i 

    Generate new backoff: Bi = exponential with mean 1/ λi 

end while 

 

The proposed ODCP scheduling works as follows: Each 

request i makes the decision to create a remote checkpoint 

image based only on its local parameters and observation 

of contention. If request i senses there are ongoing 

checkpoints at any of its serving hosts (i.e., any host s such 

that s ϵ ℌi), then it becomes silent. If none of its serving 

hosts are busy, then request i waits (or backs-off) for a 

random amount of time that is exponentially distributed 

with the mean 1/λi and later starts its checkpointing. 

During the back-off time, if some contending request starts 

taking checkpoints, then request i suspend its back-off until 

the contending checkpoint is complete. We note that 

waiting a random back-off time with different mean 

permits us to regulate different requests’ checkpointing 

probabilities. It will not cause too much idle time because 

only the relative values of 1/λi matter and the mean waiting 

time can be set small enough in this CSMA (Carrier Sense 

Multiple Access) based model. 

4. Results 

There are many available cloud-simulator environments 

and CloudSim is one of the most of them [27], [28]. 

Among all classes and packages of the CloudSim, there is 

no one that supports the implementation of fault-tolerant 

clouds. So, the creation of an extra package is needed in 

order to support the implementation of fault-tolerant 

methods in the cloud computing systems. This created 

package provides services of fault tolerance through 

allowing some virtual machines of cloud data centers to be 

faulty. The classes of the package allow the development 

of fault tolerant based algorithms that can monitor virtual 

machines in order to detect failures and resolve them. The 

package can implement both checkpointing and replication 

techniques. The package provides the ability to measure 

throughput, availability, time overhead and monetary 

waste overhead. 

The cloud used in our experiments is generated with 150 

heterogeneous virtual machines that are connected with 

fast Ethernet technology (100Mb/s). The number of data 

centers used in each experiment ranges from 6 to 10. Each 

data center contains 3 to 4 hosts. The size of each host’s 

memory is 16 GB and the storage is 2TB. The processing 

capacity of computational units in each host is assumed to 

be in the range from 1000 to 10000 MIPS. The number of 

customer requests ranges from 500 up to 3000 requests. 

Each virtual machine has a memory of 4 GB and one 

computational unit. The size of data required for each 

request processing is randomly selected from 10 MB and 

up to 1 GB. The cost associated with each cloud computing 

unit is assumed to be in the range from $0.1 to $12. 

We evaluate the performance of our proposed fault-

tolerance strategy by comparing it with the checkpointing 

based algorithm proposed in 2021 [12], named contention-

free and distributed checkpointing scheduling (CDCS) 

scheme, which is based on using distributed checkpointing 

mechanism. Various simulation experiments have been 

carried out with a variable size of customers’ requests. The 

performance metrics adopted in the evaluation consist of 

availability, throughput, checkpoints overheads and 

monetary cost. 

Figure 4 demonstrates the results of the throughput 

comparison between the proposed fault-tolerant strategy 

and contention-free and distributed checkpointing scheme. 

The number of requests is presented in the x-axis and the 
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results of throughput, measured in requests per hour, are 

plotted as columns. Generally, the throughput of the 

proposed fault-tolerant strategy when compared with 

CDCS scheme increases with the increase in the submitted 

customers’ requests. The figure clearly demonstrates that 

the proposed fault-tolerant strategy has a better throughput 

than the CDCS scheme. This is because the proposed fault-

tolerant strategy has less turnaround time than the CDCS 

algorithm. This is attributed to the fact that the proposed 

algorithm considers the failure probability as a criterion 

when selecting virtual machines to carry out requests. 

Conversely, the CDCS algorithm considers only reducing 

checkpointing overhead. This makes our proposed fault-

tolerant strategy is less prone to fail consequently more 

reliable than the CDCS algorithm. 

Figure 5 demonstrates the comparison of checkpointing 

overheads of proposed fault-tolerant strategy with respect 

to CDCS algorithm. The figure indicates that the overheads 

of the proposed fault-tolerant strategy are less than that of 

the CDC algorithm. This is because our proposed fault-

tolerant strategy adaptively determines the length of the next 

checkpointing interval and also distributed while the 

CDCS scheme changes it with constant rates. Thus, the 

proposed fault-tolerant strategy eliminates the redundant 

checkpoints and finally overheads are reduced with 

distributed nature. 

 

 

 

 

 

 

 

 

Fig 4: Comparison of Throughput. 

 

 

 

 

 

 

 

 

Fig 5: Comparison of Checkpointing Overhead. 

Figure 6 shows the comparison of monetary cost between 

the proposed fault-tolerant strategy and CDCS mechanism. 

We can see that the proposed fault-tolerant strategy has a 

lesser monetary cost than the CDCS mechanism. This is 

due to that the proposed fault-tolerant strategy has a less 

failure rate and a fewer number of checkpoints than the 

CDCS algorithm. This will protect the cloud resources for 

further customer requests and consequently money is 

saved. 

 

 

 

 

 

 

 

 

Fig 6: Comparison of Monetary Cost. 

The service availability of a cloud depends on percentage 

of the service time and failure rate. The service time is 

known as cloud operational time at certain instant of time. 

Figure 7 shows the comparison of availability between the 

proposed fault-tolerant strategy and CDCS algorithm. The 

figure illustrates that the proposed fault-tolerant strategy 

provides better availability than the CDCS algorithm. This 

is owing to the nature of adaptive checkpoint interval that 

our proposed fault-tolerant strategy provides which helps 

to reduce the failure rate. 

 

 

 

 

 

 

 

 

Fig 7: Comparison of Availabilty. 

Also, we evaluate the performance of our proposed fault-

tolerant strategy by comparing it with the replication based 

algorithm proposed in 2023 [12]. As this algorithm 

considers a dynamic with variable number of replicas but it 

is done initially, we will denote it the dynamic resource 

estimation as static algorithm only. Figure 8 illustrates 

overheads’ comparison between the proposed fault-tolerant 

strategy and static resource estimation algorithm. The term 

overhead denotes the number of replicas required for a task in 

the cloud. The figure demonstrates that the overheads of the 

proposed fault-tolerant strategy are better than static 
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resource estimation algorithm. This is because the 

proposed scheme chooses an adaptive number of replicas 

that can dynamically change for every request based on the 

existing conditions of the virtual machine allocated to 

execute the request. Conversely, the static resource 

estimation algorithm selects a fixed number of replicas 

without considering the current situation of the virtual 

machines allocated. 

 

Fig 8: Comparison of Replica Overhead. 

Figure 9 shows the monetary waste comparison between 

the proposed fault-tolerance strategy and static algorithm. 

We can see that the proposed fault-tolerance strategy has a 

lower monetary waste than the static algorithm. This is 

because the proposed fault-tolerance strategy only replicates 

the top-most valuable virtual machines compared to the static 

algorithm that replicates all VMs. This will decrease the 

number of virtual machines consumed in the replication. 

Thus, profit of the cloud will not be lost. 

From the above results of the experiments, it is shown that the 

proposed fault-tolerance strategy improves the performance of 

the cloud in terms of availability, throughput, overheads and 

monetary cost. The adaptive nature of the proposed strategy 

gives it supremacy over the other similar ones. This adaptive 

nature appears when determining the number of replicas for 

virtual machines or when calculating the checkpoint intervals 

with distributed nature for storage. Improving throughput will 

improve the number of services the cloud can serve in the 

same time and then the profit of the cloud increases. 

Improving the overheads leads to saving resources of the 

cloud for other customers. This will decrease the waiting time 

of a customer request in the cloud. Improving the amount of 

monetary waste will permit the cloud provider to improve the 

services of the cloud via continuous maintenance and new 

resources are added efficiently. Increasing availability of the 

cloud will strengthen the customers trust. 

 

Fig 9: Comparison of Monetary cost. 

Table 1: Performance Improvement 

Metrics Percentage of Improvement 

Throughput 2% 

Availability 3% 

Overheads 6.6% 

Monetary cost 5.3% 

5. Conclusion 

Failures are unavoidable in cloud computing environments. 

To treat this issue, an adaptive fault-tolerant strategy for 

tolerating faults in cloud computing environments has been 

proposed in this paper. The proposed strategy has one 

algorithm for selecting virtual machines to carry out 

customers’ requests and another algorithm for selecting the 

suitable fault tolerance method. Both replication and 

checkpointing methods are included in the proposed 

strategy. The performance of the scheme is evaluated with 

a replication-based algorithm and also with a 

checkpointing based algorithm in terms of throughput, 

monetary cost, cloud overheads and availability. 

Experimental results indicate that the proposed scheme 

improves the cloud’s performance as shown in Table 1. 

In the future work, we will provide more considerations 

towards replication and the task migration between data 

centers. 
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