

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 683

An Optimal and Distributed Checkpointing and Replication based

Fault-tolerant Strategy for Reliable Cloud Computing

M. Damodhar1, Dr. Ch. D. V. Subba Rao2

Submitted: 11/05/2024 Revised: 25/06/2024 Accepted: 03/07/2024

Abstract: In the area of information technology the emerging technology Cloud computing plays a major role. Cloud computing

virtualization and its dependency on Internet leads to a variety of failures to happen and hence there is a need for reliability and

availability becomes a major issue. To ensure proper reliability and availability of the cloud, an efficient fault tolerance strategy needs to

be developed and implemented. Majority of the earlier fault tolerant approaches focused on using only one method for tolerating faults.

This paper presents an efficient and effective fault-tolerant strategy to deal with the problem of fault tolerance in the environment of

cloud computing. This fault-tolerant strategy depends on optimal and distributed checkpointing and replication scheme for obtaining a

reliable cloud platform for carrying out customer requests. Further it determines the best fault tolerance strategy for every selected virtual

machine (VM). Simulation experiments are carried out to evaluate the performance of the fault-tolerant strategy. The experiment results

show that the proposed fault-tolerant strategy enhances the cloud performance in terms of overheads, throughput, availability and

maintenance cost.

Keywords: Cloud computing, fault-tolerant, optimal checkpointing, replication, virtual machines (VMs).

1. Introduction

The current market of Information Technology (IT) has

witnessed a considerable change due to the presence of

cloud computing, which has become an integral part of

most of the businesses [1]. Today, most of the businesses,

from single to large enterprises, migrated to cloud

computing in order to obtain a high level of productivity

by entrusting their IT issues to an expert one. Cloud

computing provides comprehensive IT services and

solutions for both companies and individual users [2].

They can lease components of the cloud without expending

time and money in constructing or buying these

components. In cloud servers, computing is introduced as

an abstract service on the Internet by hiding its

implementation details [3].

The deployment models of cloud computing systems are

public, private or hybrid. In public, services are pro- vided

through the Internet in forms of cloud practical application.

The main categories of these applications include

Infrastructure-as-a-Service (IaaS), Software-as-a- Service

(SaaS) and Platform-as-a-Service (PaaS). Most of IT

businesses cannot invest in certain services such as

supercomputer-class services. In IaaS, the cloud provides

computing, storage and networking resources with any

required configuration and capacity as paid services to the

customers. Examples of practical applications of IaaS can

include Amazon EC2 and Google Compute Engine. In

most IT organizations, there are no enough experts to

develop and run the required software applications. In SaaS,

the cloud provides customers with access to professionally

implemented software applications and thus they save the

customers’ money. Salesforce.com and Google Apps are

examples of practical applications of SaaS. In PaaS,

customers can run their custom applications on the general

purpose software and hardware with the most recent

configurations. Practical applications of PaaS include

Google App Engine and Microsoft Azure [4].

Private clouds are implemented and maintained by various

enterprises to provide internal services and further they

have additional flexibility compared to public clouds

however they are more expensive. In hybrid clouds, some

portions of computing can be done in a public cloud while

other portions can be done internally through the private

one [4].

In spite of various services offered by cloud systems in

cloud environment, they are not always perfectly reliable

further they could suffer from outages of their services due

to failures and sometimes disasters [5]. An outage is

known to be a situation where the request of a customer is

not completed in its required deadline. With the raise of

cloud usage, the number of required cloud services

increases and further there could be increased outage

probability. The foremost reasons of these outages

comprises software failures due to incorrect upgrade,

extreme work load, hacking, etc. and hardware failures

such as resource unavailability, network failure, power

down times, etc.

1 Research Scholar, Dept. of Computer Science and Engg., SVUCE, Sri

Venkateswara University, Tirupati, Andhra Pradesh - 517502, India

Email: mdr.damodhar@gmail.com
2 Professor & Head, Dept. of Computer Science and Engg., SVUCE, Sri

Venkateswara University, Tirupati, Andhra Pradesh - 517502, India

Email: subbarao_chdv@hotmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 684

In general, outages are popular in public clouds in which

an enormous number of services are provided to customers

with required levels of service quality. In the last decade,

many outages have occurred in most famous public cloud

environments. In 2021, AWS has experienced a severe

outage that disrupts services for several hours due to the

issue of US-East-1 region. In 2022, Google Search, Drive,

Maps and YouTube are down, returning HTTP 500 and

HTTP 502 errors. After their services came back online,

Google apologized and stated that there is a software

update issue [6]. Further, other cloud service providers

(CSP’s) such as Apple iCloud and Microsoft Azure are

among the technology vendors to experience major cloud

outages. In 2023, the foremost cloud vendors like Amazon

Web Services (AWS), Microsoft and Google experienced

major service disruptions. For example, AWS us-east-1, an

important critical region for Amazon Web Services, faced

an outage with down-time of 24-hours that might cost up

to $3.4 billion in their direct revenue.

Cloud outages or failures have a great impact on both the

cloud vendors and the customers. For vendors, there will

be no profit due to the cloud resources that are used to

come back from the effects of outages happened. K. Bilal

et al [7] have stated that each downtime hour in a data

center costs around U$ 50,000. For customers, their

requirements, such as deadline time, may not be achieved.

So, there is a tremendous requirement for an always

available and reliable cloud that consists of a dynamic

method for fault tolerance. The method should

transparently remove or reduce to some extent the effects

of failures on both customers and profit needs.

Fault tolerance methods can be reactive or proactive. The

foremost goal of the reactive methods is to reduce the

effect of fault occurrence while the goal of the proactive

methods is to avoid fault occurrence. Reactive methods

mainly include replication and checkpointing. Most cloud

computing systems depend on reactive methods, especially

replication [9].

The replication method assumes that the likelihood of a

single VM failure is extremely higher than the occurrence

of simultaneous failures of multiple VMs. It permits

multiple virtual machines to start concurrently by

executing redundant copies of a single request in order to

prevent re-computation of that task from the beginning in

case of failure. Hence, the service can be efficiently

offered to customers while providing their QoS

requirements even in the case of failures in cloud servers.

Whereas, in checkpointing, the cloud eventually saves the

execution state of current request and its executing VM to

a stable storage server in order to reduce the recovery time

during the situation of failure. In case of failure, instead of

starting the request from the beginning, it will be started

from the point where the last recent checkpoint was saved

[10], [11].

The key contribution of this paper is to provide an adaptive

fault-tolerant strategy to handle the proactive and reactive

faults in cloud environments. To cope with the proactive

faults, the implemented fault-tolerant strategy needs

customer requirements and the information about virtual

machines during task scheduling. Also, this fault-tolerant

strategy employs both optimal checkpointing and

replication methods and it dynamically chooses the

appropriate method based on the conditions of the cloud at

that instant.

The rest of the paper is arranged as follows: Section 2

presents a brief illustration of the related work. Section 3

describes the problem. Section 4 provides the details of the

proposed fault-tolerant strategy. In Section 5, the results

obtained from simulation experiments are presented and

finally the paper concludes in Section 6.

2. Literature Survey

The dynamic nature of the cloud raises the chances

probability of failures. Therefore, to reduce or completely

avoid the effects of such failures, the cloud should be

applied with fault-tolerant strategy, that can be either

reactive or proactive. Reactive fault tolerance methods are

useful to minimize or eradicate the effect of failures on

monetary and time costs. Generally, Checkpointing and

Replication are the two methods mostly used for reactive

fault tolerance.

The replication method is based on that the likelihood of

failures will be reduced when multiple virtual machines are

used to carry out the same customer’s request.

Recompilation of a request is avoided by performing

multiple replicas of the request on different virtual

machines at the same time. In case of virtual machine

failure the cloud can still execute the request within the

customer’s needs and deadlines. The results of the virtual

machine that finishes first are considered and results of

other virtual machines are neglected [12].

Checkpointing is the other reactive method, where the

request’s execution status will be saved repeatedly to a

stable and safe storage area during the task execution.

During the situation of failure, the cloud would continue

the execution of the requested task starting from the last

saved check point where the status was properly recorded.

This will avoid restarting the service of the request from its

initial point of execution. Even though this can reduce the

response time to carry a particular request, but could result

in more wasted time. This wasted time owing to the

recovery of a virtual machine from the failed state if it is

the only one that can carry out the task. On the other hand,

the cloud should make use of this method if there is only

one virtual machine is available which can carry out the

request of a customer’s. The time gap between two

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 685

consecutive checkpoints is known as the checkpoint

interval [13], [14].

In contrast, proactive methods are probabilistic and they

can be employed to predict the virtual machines faults to

some extent prior to their occurrence. The foremost goal of

these methods is trying to avoid the occurrence of failures

and then avoid recovery procedures of the reactive

methods. While scheduling the requests, proactive methods

take the advantage of scheduling decisions based on the

information of prior failures of particular virtual machines.

Consequently, the number of future failures can be reduced

and the reliability of the cloud environment will be

improved.

Fault tolerance is one of the most important issues in

distributed computing systems such as grid and cloud

computing systems. In grid computing, there is a lot of

fault tolerance work have been done in the literature,

whilst a little research has been devoted to the area of

cloud computing.

In 2013, Hui et al. [15] proposed a fault tolerant method

based on using coordinated checkpoints at the virtual

machine level. Their method eliminates the unavailability

with the usage of coordinated protocols for the recovery of

checkpoints. In 2014, Limam and Belalem [15] together

defined an adaptive checkpoint scheme with the goal of

removing unnecessary checkpoints otherwise add

additional checkpoints based on the existing status of a

server in cloud region. Their method generally increases or

decreases the checkpointing interval through a fixed rate.

In 2015, J. Cao et al. [16] have defined a uniform fault

tolerance strategy using checkpointing mechanism. Their

method supports extensive jobs and priorities were

allocated to jobs. In 2021, Purushottam S et al, [17] have

defined a realized and best checkpointing control

mechanism for computing systems. Their method based on

aggregation of checkpointing overhead and the expected

amount of rework after recovery for best checkpointing.

Their defined method reduces number of check point and

resulting in optimal checkpointing scheme considering

real-time MTBF (mean time between failures) estimation.

Further, in 2021, Yu Xiang et al, defined a Contention-

Free and distributed VM checkpointing mechanism to

provide reliability. Their method reduces checkpointing

interference and thus improves the reliability of distributed

network.

In 2013, Ganga and Karthik [9] have proposed a

replication based fault tolerant method for fault tolerance

while using scientific workflow systems. Das and Khilar

[18] proposed a replication based method to decrease the

service time and to increase the system availability. Their

method depends on the usage of software variants on

several virtual machines to tolerate faults. Furthermore, it

reduces the likelihood of faults in future by stopping tasks

scheduling to virtual machines of servers that has low

success rates. Alhosban et al. [3] introduced a scheme that

depends on the prediction and planning. A method of

recovery is selected to be applied during the case of fault

occurrance. The selection criterion depends on user

requirements, failure history and requested service weight

and its criticality. Methods that can be selected are

replication and retry.

In 2015, Saranya et al. [19] presented and evaluated a

method based on both replication and resubmission of

tasks. Their defined method based on assigned task

priority, task length, deadline of requested service and the

out-degree of every task. In 2015, Liu and Wei [20]

defined a replication scheme that considers the failures of

hardware and software. In 2020, Jinwei Liu, et al [21]

proposed a replication scheme for handling both correlated

and non-correlated server failures, with high availability.

Their replication scheme provides low cost to enterprises

by reducing the replicas using correlated and non-

correlated server failures. In 2021, Ahmed Awad, et al [22]

presented a dynamic data replication scheme for cloud for

selection and placement of data replicas. Their approach

uses swarm and ant colony optimization algorithm for

replica selection and placement and provides better data

availability, low cost, and fewer bandwidth consumption.

In 2017, B Mohammed et al. [23] defined a smart failover

framework that provides fault tolerance by considering

redundancy, optimized selection of VMs, and

checkpointing. Their defined scheme is similar to our

scheme. Their proposed scheme uses various components

in cloud such as fault manager, cloud controller, load

balancer and further a selection mechanism. It is also able

to eliminate temporary software faults from recoverable

faulty nodes, thus making them available for further

requests in the future. Further, M Amoon, also provided a

similar framework that incorporates both replication and

checkpointing schemes.[4]

The study of literature shows that most of the preceding

work done are primarily based on using a single efficient

fault tolerance method, either checkpointing or replication.

There is a little work done that considers using both of the

two methods together to tolerate faults in cloud computing

systems. Also, most of the existing replication based work

considers a static or fixed number of replicas and they do

replication for all virtual machines in the cloud, which is

not an economic approach. In the case of checkpointing,

most of the proposed work assumes fixed or fixed change

of the length of the checkpoint interval during the

execution of the customer requests or jobs. There is a small

effort done that considers the adaptive length of the

checkpoint interval and also it is centralized mechanism.

So, there is a need for a fault-tolerant strategy that

considers both optimal checkpointing and replication

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 686

methods and selects the number of checkpoints or replica

in an adaptive manner.

3. Proposed Model

Cloud services are provided either as storage services or

computing services. Google, iCloud and Dropbox are best

examples in offering storage services and Microsoft Azure

and Amazon EC2 are examples cloud providers offering

computing services. In order to be served, a customer

submits his service request to the cloud provider along

with the requirements needed for his request. The provider

negotiates with the customer in order to determine both the

quality of service and the price. In case of customer

acceptance, the provider will formulate the cloud virtual

machine that can perform the request and the service gets

started.

Majority, cloud resources are not primarily designed to

achieve the cloud’s economic objective. These resources

are composed into several virtual machines to undertake

customer requests. So, it is expected that a number of

failures will occur and then increase time expected to

complete the customer requests and thus it will deplete the

cloud resources. For customers, they will not get their

services in the time expected. For the cloud, failures will

lead to loss of cloud resources and then money. This will

lead to a significant impact on the credibility, reliability,

availability and reputation of the cloud [23]. Hence, it is

more essential to implement and effective fault tolerance

strategy in cloud computing regions to alleviate or omit the

effect of failures on the cloud performance.

Replication of both data and applications are used by

majority of the existing cloud computing systems. It is

even applied in Amazon S3 via storage of data objects on

multiple storage server units. The iCloud can rent various

infrastructure services from Microsoft’s Azure or

Amazon’s EC2 to accomplish the replication. However,

cloud outage reports suggest the fact that the reliability is

still insufficient and necessary [22]. Applying fault

tolerance methods in clouds faces the following

challenges:

1. The cloud can have only a single copy of the virtual

machine that can carry out the request of the customer.

Also, the cloud can have multiple VMs that can perform

the customer’s request, but in case of only one server is

available and the other servers are busy in executing

other requests or else they are out of service. So,

replication method cannot be applied.

2. The number of replicas cannot be static or fixed as it

leads to a reduced influence on the cloud. This is due to

the fact that additional virtual machines will be used to

carry out the same service. Nevertheless, these virtual

machines are useful to perform other customer services.

Consequently, the cloud will lose profits.

3. It is not economical to implement replication for each

service or virtual machine. Replication should only be

applied for services that are allocated to the most

valuable virtual machines that will have a great impact

on the performance of the cloud if they fail.

Determining the most valuable virtual machines is a

great challenge.

4. In case of checkpointing method, predetermining the

checkpointing interval’s length is a crucial challenge.

Checkpointing with fixed or static checkpoint interval

could lead to redundant checkpoints that consume cloud

resources and increases checkpointing latency.

5. In order to cope with the first challenge, optimal and

distributed checkpointing method is involved in our

fault-tolerant scheme beside replication. The proposed

fault-tolerant strategy allows the cloud to choose either

optimal and distributed checkpointing or replication in

order to accomplish fault tolerance. Further, to address

the subsequent challenge, a replication algorithm that

adaptively regulates the number of replicas of an

application is offered. For the third challenge, the

percentage of profit gained by the cloud when using the

virtual machine is involved in determining the number

of replicas required for each virtual machine. For the

fourth challenge, an optimal algorithm that adaptively

determines the checkpointing interval’s length is

proposed. The algorithm assumes that the length of the

checkpointing interval must not be fixed during the

execution of the customer’s task. The algorithm takes

the failure probability of a virtual machine to estimate

the subsequent checkpointing interval.

3.1. Cloud and Proposed Architectures

Cloud computing environments should have the ability to

receive, perform, monitor and control customers’ requests.

The cloud should be reliable in order to provide its services

within the limits of customer requirements. This section

describes the proposed framework which enables the cloud

to be reliable. As shown in Figure 1, the architecture of the

proposed fault-tolerant strategy assumes that the cloud

comprises of three major layers: physical, VM and

application layers. One function of the application layer is

to allow customers to interact with the cloud. Furthermore,

it schedules the customers’ requests or jobs to the virtual

machines in the cloud. In addition, tolerating faults is the

responsibility of the application layer. In order to perform

these functions, the structure of the application layer

comprises four modules:

1. Service Verifier: This module is liable towards ensuring

the accomplishment of customer’s QoS requirements. In

this paper, the considered QoS requirements include

time and monetary costs. A customer can submit his

request to the cloud through this module along with the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 687

QoS requirements. The module queries the Status

Database module for appropriate VMs availability to

execute the customer request and gets a response. If the

response indicates the presence of appropriate VMs that

can carry out the request within the boundaries of

customer requirements, the Service Verifier will accept

the request and it will deliver it to the Task/Job

Scheduler module. Otherwise, the request will be

discarded.

2. Task/Job Scheduler: The main function of the Task/Job

Scheduler is to allocate every request to the appropriate

virtual machine that can execute it within the boundaries

of customer requirements. Also, the Job scheduler has

the responsibility of determining the charge of serving

the request. In addition, Job Scheduler has the

responsibility of fault tolerance. In order to do its

responsibilities, the Task/Job Scheduler module should

contain the following components: VM Ranker, Price

Estimation, Scheduling and Fault Tolerance Manager

(SFTM), ODCP (Optimal and distributed

checkpointing), replication modules and Dispatcher.

Figure 2 illustrates the interactions between the main

components of the Scheduler. The main role of the VM

Ranker is to determine the most valuable VMs in the

cloud. It receives customer’s request with QoS

requirements from the Service Verifier and contacts the

Status Database module in order to get information

about the virtual machines that can accomplish the

request. Based on this information, it prepares a list of

VMs that can fulfill the time and monetary requirements

of the customer’s request. Price Estimation component

determines the charge associated to service that should

be paid by the customer. SFTM component implements

Algorithm 1 in order to select the appropriate fault

tolerance method for the virtual machine assigned to

each request. The algorithm selects either optimal and

distributed checkpointing or replication based on

information about virtual machines. Dispatcher delivers

the requests of customers to the allocated VMs.

3. Status Database: It is known to be the central repository

that contains all virtual machines information in the

cloud such as storage capacity, computing capacity,

failure history, usage history and cost.

4. VM Monitor: The foremost functionality of this module

is to observe the performance of the virtual machines in

the cloud. It notifies the Status Database to update the

record of a VM in a case of the failure or the recovery of

that VM. In addition, this module has the responsibility

for forming or reforming virtual machines of the cloud.

It has virtualization software that is helpful to produce

unique and isolated virtual machines through cloud

physical resources.

5.

Fig 1: Cloud computing system: A layered architecture.

Fig 2: Task/Job scheduler components and their

interactions.

VM layer is the second layer, which comprises virtual

machines of the cloud where each virtual machine is

formed with the usage of one or more physical resources.

Also, each physical resource may be shared and used by

multiple virtual machines. Furthermore, different VMs can

be emulated on a single physical resource in order to

satisfy the requirements needed by customer requests. The

Resource Monitor in this layer is useful to perceive the

performance of the physical resources of the cloud and

further it notifies the VM monitor about the changes

happened. Changes include resources leaving the cloud or

new resources joining the cloud. Based on these changes,

Resource Monitor is capable to reform the affected virtual

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 688

machines.

The physical layer is the bottom layer of the cloud which

contains hardware and software resources. Resources are

the real operators in the cloud environment.

Fig 3: Architecture of ODCP scheduling consisting two requests allotted with 1 and 3 VMs respectively and hosted on 2

hosts.

Figure 3 shows an overview of the proposed system

architecture. It illustrates 2 jobs consisting of 1 and 3 VMs

respectively and placed on 2 hosts. Our checkpoints are

organized at the job level - if a checkpoint of a job is

triggered, all VMs that belong to the job first save their

checkpoint images to the local storage (in order to

minimize VM downtime) and then transfer them to the

networked storage to avoid host failure.

In our design, each job achieves reliability optimization via

self-management in two ways: first, each job

autonomously determines its own checkpointing

scheduling based on locally available information, e.g., the

co-location of other jobs and occurrence of checkpoint

contention. Second, each job autonomously updates its

checkpoint rate based on locally available optimal

solutions, which is done at runtime with no dependence on

any centralized management decisions.

3.2. Implementation of Fault-tolerant Strategy

3.2.1. SFTM Algorithm

Algorithm 1 is called the Selecting Fault Tolerance

Manager (SFTM) algorithm and it is proposed with the

objective to select the appropriate method for tolerating

faults in the cloud computing system. The algorithm is

implemented in the SFTM component of the Scheduler

module. In order to achieve its objective, the algorithm

depends on using customer’s requirements and the

available information about virtual machines. First, the

algorithm prepares a list of virtual machines that can carry

out the customer’s request and satisfies the customer’s

requirements. The customer’s requirements considered by

the algorithm include both time costs and monetary costs.

Thereafter, the algorithm selects checkpointing method if

there is only a single VM in the list. Otherwise, the

algorithm selects replication method.

3.2.2. Replication Algorithm

Replication is applied when there are multiple and

available virtual machines in the cloud that can carry out

the customer’s request. However, it is a central challenge

to define the optimal number of replicas. Furthermore, it is

not an economical method to carry out replication for

every virtual machine [24]. So, we only need to replicate

requests executed on the most valuable virtual machines

that will have a great impact on the performance of the

cloud if they fail.

Algorithm 1: SFTM Algorithm

Input: ciu is the required cost by the customer u for request

i,

 τiu is the required deadline time by the customer u

for request i,

 cij is the estimated cost if the request i is executed by

VMj,

 τij is the expected time if the request i is executed by

VMj,

 i = 1;

 while (there are requests not served){

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 689

 for each request i do{

 Identify a list of VMs that can execute i;

 for each VMj in the list do

 if (cij > ciu||τij > τiu)/∗VMj cannot serve request i∗/

 remove VMj from the list;

 if (list is not empty) /∗The request can be served
∗/{

 Sort the VMs list ascending based on cij × τij;

 if (there is more than one VM in the list)

 Replication is selected;

 else

 Optimal and distributed checkpointing is

selected;

 }

 else {

 Send ‘‘Request cannot be served’’ to the QoS

Controller;

 End the algorithm for i;

 }

 i++; /∗ next request ∗/

 }/∗ for end∗/

 }/∗ while end∗/

In order to find the top valuable VMs in the cloud, VMs

ranking need to be performed according to their price and

influence on the cloud. The ranking is based on failure

probability of the virtual machine and the profit gained

through using it. Failure history of a VM can determine its

failure probability. For each virtual machine, failure

history can be represented by the number of failures

occurring, failure time, the time between failures and

failure types. The need of a virtual machine to a fault

tolerance method is determined by failure probability. As

the value of the failure probability becomes high, the need

for applying fault tolerance methods increases.

Algorithm 2: Replication Algorithm

• Fj(X) : The failure probability of a VMj

• Pj : The percentage of profit gained through the usage

of VMj

• Rep : The number of replicas

• Fj (X) (k), k = 0, 1, 2, . . . , n, are integers such that,

0 <= Fj (X) (k) <= 1.0 and Fj (X) (0) < Fj (X) (1) < . . .

< Fj(X)(n)

• Pj(y), y = 0, 1, 2, . . . , m, are the percentage of cloud

profit gained by virtual machine j such that,

0 <= Pj(y) <= 100 and Pj (0) < Pj (1) < . . . < Pj (m)

• Rep (l) (w) , l = 0, 1, 2, . . . , n and w = 0, 1, 2, . . . , m,

are integers

for (a = 0; a < n; a++){

 for (b = 0; b < m; b++){

 if (Fj (X) (a) ≤ Fj(X) < Fj(X)(a + 1) and Pj (b) ≤ Pj <

Pj (b + 1))

 Rep = Rep (a) (b);

 }

}

In general, the occurrence of random failures is a

stochastic process [25] and Jump Linear Systems (JLSs)

can be used to model it because they involve event driven

and time evolving techniques. The process depends on the

time period between two successive faults. In clouds, this

time period is a random variable following general

probability distributions and the process is often called

semi-Markov process. The jump linear system of the semi-

Markov process is known as semi-Markovian JLS with

time-varying transition rates [26].

In this work, the failure probability of a virtual machine is

assumed to follow Poisson distribution. This means that

the number of failures in any two different or disjoint

periods of time is independent over the time change. The

failure probability distribution of VMj at any given time

interval can be expressed as follows:

𝐹𝑗(𝑋) =
𝑒−µµ𝑥

𝑥!
, 0 ≤ 𝐹𝑗(𝑋) ≤ 1𝑎𝑛𝑑 𝑥

= 0,1,2, … , 𝑛, (1)

where X (x0, x1, x2, . . . , xn) represents the number of

failures occurred in a certain time period and µ is the

average number of failures in the specified time period for

a virtual machine j. The value of µ is calculated using:

µ =
𝑓𝑗

𝑇𝑗 𝜏𝑖𝑗⁄
 , (2)

where, fj is the number of failures of a virtual machine j

and Tj is the period of time in which fj failures have

occurred. 𝜏ij represents the estimated time when request or

application i is executed on virtual machine j. Thus, the

probability of one failure (x = 1) to take place during the

execution of a request

is given by:

𝐹𝑗(𝑥1) = µ𝑒−µ. (3)

The virtual machine profit, denoted as Pj, represents the

percentage of cloud profit gained through the usage of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 690

virtual machine j in performing requests. The value of the

virtual machine j to the cloud is determined by its profit. If

the profit obtained by virtual machine is huge then it

attains more value in the cloud.

The rank of a virtual machine is computed by the VM

Ranker component of the Task/Job scheduler. The VM

Ranker component acquires the failure probability and

associated VM’s profit from the Status Database.

Thereafter, it calculates the rank of each virtual machine

using the formula:

𝑅𝑗 = µ𝑒−µ × 𝑃𝑗 , (4)

where Rj is the rank of VMj, µe−µ is the probability of a

failure to occur and Pj is the profit of VMj.

The fixed number of replicas is not an efficient choice in

cloud computing environments because additional virtual

machines will be used to carry out the same request.

However, these virtual machines can be used to carry out

requests of other customers. Thus, profit charges will be

wasted. Also, it is not economically to implement

replication for each request or for each VM.

Algorithm 2 is the replication algorithm proposed in this

paper in order to adaptively determine the number of

replicas of a request. The number of replicas will not be

fixed for all requests or virtual machines. In order to

adaptively determine the number of replicas, the operation

of the algorithm depends on both the failure probability

and the percentage of cloud profit gained by the virtual

machine allocated to execute the customer’s request. As

either the failure probability or profit percentage of a

virtual machine increases the need for more replicas

increases. Consequently, virtual machines with higher

values of profit or failure probability have higher fault-

tolerance needs and then higher priority of replication than

other VMs.

3.2.3. Checkpoint and ODCP Scheduling Algorithms

Distributed systems, such as grid computing systems, have

widely used checkpointing as a reactive fault tolerance

method to alleviate the impact of failures when occurred.

Furthermore, most cloud computing systems implement

replication techniques. However, from the perspective of

the cloud service provider, replication results in profit loss

due to allocating additional components to execute the

replicas of a request, mostly these components may be

useful for other requests. Also, from the perspective of

customers, replication leads to time loss due to waiting for

components that execute replicas to be free from executing

other requests. So, the main advantage of using

checkpointing over replication is to preserve the computing

resources of the cloud to other customers’ requests and to

reduce the profit loss because of using replication.

Checkpointing interval and latency are the two parameters

that strongly affect a checkpointing algorithm. The

checkpointing interval represents the time between a

checkpoint and the next checkpoint. Checkpointing latency

is the time consumed in saving a checkpoint. In the case of

smaller checkpoint interval, there will be a large number of

checkpoints. This large number of checkpoints will heavily

consume cloud resources when saving checkpoints and

thus high checkpointing latency results in. Additionally,

long checkpoint interval leads to a lesser number of

checkpoints and then a considerable part of the request

should be recomputed in the case of failure. This least

number of checkpoints will slightly consume cloud

resources while saving checkpoints and consequently low

checkpointing latency results in.

So, determining the length of the checkpointing interval is

the major challenge for a checkpointing technique. Fixed

interval leads to redundant checkpoints that consume cloud

resources and increase checkpointing latency. So, the main

objective of our work is to develop an algorithm that

adaptively determines the length of the checkpointing

interval. Algorithm 3 assumes that the length of the

checkpointing interval must not be fixed during the

execution of the customer’s task. The algorithm calculates

the next checkpointing interval at the time of the current

checkpoint. It is calculated based on the failure history of

the VM on which the task is executed. In the case of a poor

failure history, the algorithm will shorten the checkpoint

interval. Additionally, the algorithm will prolong the

checkpoint interval if there is a good failure history.

Algorithm 3: Checkpoint Algorithm

• τij : The execution time of job i on VMj

• Τrij : The remaining execution time of job i on VMj

• Fj (x1) : Failure probability of VMj

• Fj (x0) : Probability of no failure of VMj

• l: Checkpoint interval

• z: Number of failures during the task execution

Calculate Fj (x1) = µe−µ;

For each task j allocated to VMj do{

 z = 0; l = τij × Fj (xz) ; //Initial checkpoint interval

 τrij = τij;

 Start execution of i on j;

 do{

 τrij = τrij − l;

 if failure occurred then{

 z++;

 τrij = τrij + l;

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 691

 l = l(1 – Fj (xz)); // decrease checkpoint interval

 Restore last checkpoint;

 Restart execution from τij – τrij;

 }

 At time τij – τrij create and schedule a checkpoint;

 l = l(1 + Fj (xz)); // increase checkpoint interval

 Resume execution;

 }While (τ rij ≠ 0)

}

Algorithm 4: ODCP Scheduling Algorithm

• λi : Sensing rate of request i

• ℌi:Servicing hosts in cloud

• Bi: Back-off time

Assign positive sensing rates λi > 0 ∀i

Each request independently performs:

Initialize backoff timer Bi

while request i is running

 while Bi > 0

 if any server in ℌi is busy

 request i becomes silent

 Generate new backoff: Bi = exponential with mean

1/ λi

 end if

 Update Bi = Bi − 1

 end while

 Checkpoint all VMs of request i

 Generate new backoff: Bi = exponential with mean 1/ λi

end while

The proposed ODCP scheduling works as follows: Each

request i makes the decision to create a remote checkpoint

image based only on its local parameters and observation

of contention. If request i senses there are ongoing

checkpoints at any of its serving hosts (i.e., any host s such

that s ϵ ℌi), then it becomes silent. If none of its serving

hosts are busy, then request i waits (or backs-off) for a

random amount of time that is exponentially distributed

with the mean 1/λi and later starts its checkpointing.

During the back-off time, if some contending request starts

taking checkpoints, then request i suspend its back-off until

the contending checkpoint is complete. We note that

waiting a random back-off time with different mean

permits us to regulate different requests’ checkpointing

probabilities. It will not cause too much idle time because

only the relative values of 1/λi matter and the mean waiting

time can be set small enough in this CSMA (Carrier Sense

Multiple Access) based model.

4. Results

There are many available cloud-simulator environments

and CloudSim is one of the most of them [27], [28].

Among all classes and packages of the CloudSim, there is

no one that supports the implementation of fault-tolerant

clouds. So, the creation of an extra package is needed in

order to support the implementation of fault-tolerant

methods in the cloud computing systems. This created

package provides services of fault tolerance through

allowing some virtual machines of cloud data centers to be

faulty. The classes of the package allow the development

of fault tolerant based algorithms that can monitor virtual

machines in order to detect failures and resolve them. The

package can implement both checkpointing and replication

techniques. The package provides the ability to measure

throughput, availability, time overhead and monetary

waste overhead.

The cloud used in our experiments is generated with 150

heterogeneous virtual machines that are connected with

fast Ethernet technology (100Mb/s). The number of data

centers used in each experiment ranges from 6 to 10. Each

data center contains 3 to 4 hosts. The size of each host’s

memory is 16 GB and the storage is 2TB. The processing

capacity of computational units in each host is assumed to

be in the range from 1000 to 10000 MIPS. The number of

customer requests ranges from 500 up to 3000 requests.

Each virtual machine has a memory of 4 GB and one

computational unit. The size of data required for each

request processing is randomly selected from 10 MB and

up to 1 GB. The cost associated with each cloud computing

unit is assumed to be in the range from $0.1 to $12.

We evaluate the performance of our proposed fault-

tolerance strategy by comparing it with the checkpointing

based algorithm proposed in 2021 [12], named contention-

free and distributed checkpointing scheduling (CDCS)

scheme, which is based on using distributed checkpointing

mechanism. Various simulation experiments have been

carried out with a variable size of customers’ requests. The

performance metrics adopted in the evaluation consist of

availability, throughput, checkpoints overheads and

monetary cost.

Figure 4 demonstrates the results of the throughput

comparison between the proposed fault-tolerant strategy

and contention-free and distributed checkpointing scheme.

The number of requests is presented in the x-axis and the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 692

results of throughput, measured in requests per hour, are

plotted as columns. Generally, the throughput of the

proposed fault-tolerant strategy when compared with

CDCS scheme increases with the increase in the submitted

customers’ requests. The figure clearly demonstrates that

the proposed fault-tolerant strategy has a better throughput

than the CDCS scheme. This is because the proposed fault-

tolerant strategy has less turnaround time than the CDCS

algorithm. This is attributed to the fact that the proposed

algorithm considers the failure probability as a criterion

when selecting virtual machines to carry out requests.

Conversely, the CDCS algorithm considers only reducing

checkpointing overhead. This makes our proposed fault-

tolerant strategy is less prone to fail consequently more

reliable than the CDCS algorithm.

Figure 5 demonstrates the comparison of checkpointing

overheads of proposed fault-tolerant strategy with respect

to CDCS algorithm. The figure indicates that the overheads

of the proposed fault-tolerant strategy are less than that of

the CDC algorithm. This is because our proposed fault-

tolerant strategy adaptively determines the length of the next

checkpointing interval and also distributed while the

CDCS scheme changes it with constant rates. Thus, the

proposed fault-tolerant strategy eliminates the redundant

checkpoints and finally overheads are reduced with

distributed nature.

Fig 4: Comparison of Throughput.

Fig 5: Comparison of Checkpointing Overhead.

Figure 6 shows the comparison of monetary cost between

the proposed fault-tolerant strategy and CDCS mechanism.

We can see that the proposed fault-tolerant strategy has a

lesser monetary cost than the CDCS mechanism. This is

due to that the proposed fault-tolerant strategy has a less

failure rate and a fewer number of checkpoints than the

CDCS algorithm. This will protect the cloud resources for

further customer requests and consequently money is

saved.

Fig 6: Comparison of Monetary Cost.

The service availability of a cloud depends on percentage

of the service time and failure rate. The service time is

known as cloud operational time at certain instant of time.

Figure 7 shows the comparison of availability between the

proposed fault-tolerant strategy and CDCS algorithm. The

figure illustrates that the proposed fault-tolerant strategy

provides better availability than the CDCS algorithm. This

is owing to the nature of adaptive checkpoint interval that

our proposed fault-tolerant strategy provides which helps

to reduce the failure rate.

Fig 7: Comparison of Availabilty.

Also, we evaluate the performance of our proposed fault-

tolerant strategy by comparing it with the replication based

algorithm proposed in 2023 [12]. As this algorithm

considers a dynamic with variable number of replicas but it

is done initially, we will denote it the dynamic resource

estimation as static algorithm only. Figure 8 illustrates

overheads’ comparison between the proposed fault-tolerant

strategy and static resource estimation algorithm. The term

overhead denotes the number of replicas required for a task in

the cloud. The figure demonstrates that the overheads of the

proposed fault-tolerant strategy are better than static

0.35

0.36

0.37

0.38

0.39

0.4

500 1000 1500 2000 2500

T
h

ro
u

g
h
p

u
t

Number of Requests

Proposed ODCP Algorithm

CDCS Algorithm

0

250

500

750

1000

1250

1500

1750

500 1000 1500 2000 2500

C
h

e
c
k

p
o
in

t O
v
e

rh
e
a
d
 (
H

o
u

rs
)

Number of Requests

Proposed ODCP Algorithm

CDCS Algorithm

0

0.5

1

1.5

2

2.5

3

3.5

500 1000 1500 2000 2500

M
o

n
e

ta
ry

 C
o

s
t

(U
$
 t
h

o
u

s
a
n

d
s
)

Number of Requests

Proposed ODCP Algorithm

CDCS Algorithm

0

20

40

60

80

100

500 1000 1500 2000 2500

A
v
a
il
a
b

il
it

y
 (
%

)

Number of Requests

Proposed ODCP Algorithm

CDCS Algorithm

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 693

resource estimation algorithm. This is because the

proposed scheme chooses an adaptive number of replicas

that can dynamically change for every request based on the

existing conditions of the virtual machine allocated to

execute the request. Conversely, the static resource

estimation algorithm selects a fixed number of replicas

without considering the current situation of the virtual

machines allocated.

Fig 8: Comparison of Replica Overhead.

Figure 9 shows the monetary waste comparison between

the proposed fault-tolerance strategy and static algorithm.

We can see that the proposed fault-tolerance strategy has a

lower monetary waste than the static algorithm. This is

because the proposed fault-tolerance strategy only replicates

the top-most valuable virtual machines compared to the static

algorithm that replicates all VMs. This will decrease the

number of virtual machines consumed in the replication.

Thus, profit of the cloud will not be lost.

From the above results of the experiments, it is shown that the

proposed fault-tolerance strategy improves the performance of

the cloud in terms of availability, throughput, overheads and

monetary cost. The adaptive nature of the proposed strategy

gives it supremacy over the other similar ones. This adaptive

nature appears when determining the number of replicas for

virtual machines or when calculating the checkpoint intervals

with distributed nature for storage. Improving throughput will

improve the number of services the cloud can serve in the

same time and then the profit of the cloud increases.

Improving the overheads leads to saving resources of the

cloud for other customers. This will decrease the waiting time

of a customer request in the cloud. Improving the amount of

monetary waste will permit the cloud provider to improve the

services of the cloud via continuous maintenance and new

resources are added efficiently. Increasing availability of the

cloud will strengthen the customers trust.

Fig 9: Comparison of Monetary cost.

Table 1: Performance Improvement

Metrics Percentage of Improvement

Throughput 2%

Availability 3%

Overheads 6.6%

Monetary cost 5.3%

5. Conclusion

Failures are unavoidable in cloud computing environments.

To treat this issue, an adaptive fault-tolerant strategy for

tolerating faults in cloud computing environments has been

proposed in this paper. The proposed strategy has one

algorithm for selecting virtual machines to carry out

customers’ requests and another algorithm for selecting the

suitable fault tolerance method. Both replication and

checkpointing methods are included in the proposed

strategy. The performance of the scheme is evaluated with

a replication-based algorithm and also with a

checkpointing based algorithm in terms of throughput,

monetary cost, cloud overheads and availability.

Experimental results indicate that the proposed scheme

improves the cloud’s performance as shown in Table 1.

In the future work, we will provide more considerations

towards replication and the task migration between data

centers.

References

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I.

Brandic, ‘‘Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility,’’ Future Generat.

Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] M. Chen, Y. Ma, J. Song, C. -F. Lai, and B. Hu,

‘‘Smart Clothing: Connecting human with clouds and

big data for sustainable health monitoring,’’ Mobile

Netw. Appl., vol. 21, no. 5, pp. 825–845, Oct. 2016.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 694

[3] A. Alhosban, K. Hashmi, Z. Malik, and B. Medjahed,

‘‘Self-healing framework for cloud-based services,’’

in Proc. Int. Conf. Comput. Syst. Appl., May 2013,

pp. 1–7.

[4] Mohammad Amoon, “Adaptive Framework for

Reliable Cloud Computing Environment”, IEEE

Access, vol. 4, pp. 9469-9478, Nov. 2016.

[5] M. Armbrust et al., ‘‘Above the clouds: A Berkeley

view of cloud computing,’’ Univ. California at

Berkeley, Berkeley, CA, USA, Tech. Rep.

UCB/EECS-2009-28. [Online]. Available: http://

www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-

2009-28.pdf.

[6] Ng, Abigail, "Google is back online after users

around the world reported a brief outage". CNBC.

[Online] Available: https://www.cnbc.com/2022/

08/09/google-down-outage-reported-by-thousands-

users-around-the-world.html. Retrieved 9 Aug. 2022.

[7] K. Bilal et al., ‘‘Trends and challenges in cloud data

centers,’’ IEEE Cloud Comput. Mag., vol. 1, no. 1,

pp. 10–20, 2014.

[8] Zulfiqar Ahmad, Ali Imran Jehangiri, Nader

Mohamed, et al, “Fault Tolerant and Data Oriented

Scientific Workflows Management and Scheduling

System in Cloud Computing”, in IEEE Access, vol.

10, pp. 77614-77632, 2022.

[9] K. Ganga and S. Karthik, ‘‘A fault tolerent approach

in scientific workflow systems based on cloud

computing,’’ in Proc. Int. Conf. Pattern Recognit.,

Informat. Mobile Eng. (PRIME), Feb. 2013, pp. 378–

390.

[10] A. U. Rehman , Rui L. Aguiar, et al, “Fault-Tolerance

in the Scope of Cloud Computing”, in IEEE Access,

vol. 10, pp. 63422-63441, June 2022.

[11] Vahid Mohammadian, Nima Jafari Navimipour, et al,

“Fault-Tolerant Load Balancing in Cloud Computing:

A Systematic Literature Review”, in IEEE Access,

vol. 10, pp. 12714-12731, 2022.

[12] Deepika Saxena and Ashutosh Kumar Singh, “A

High Availability Management Model based on VM

Significance Ranking and Resource Estimation for

Cloud Applications”, IEEE Transactions On Services

Computing, vol. 16, Issue 3, pp. 1604-1615, 2023.

[13] H. Hui et al., ‘‘An efficient checkpointing scheme in

cloud computing environment,’’ in Proc. 2nd Int.

Conf. Comput. Appl., Harbin, China, 2013, pp. 251–

254.

[14] Yu Xiang, Hang Liu, Tian Lan, et al, “Optimizing

Job Reliability Through Contention-Free, Distributed

Checkpoint Scheduling”, Vol. 18, Issue: 2, pp. 2077-

2088, 2021.

[15] S. Limam and G. Belalem, ‘‘A migration approach

for fault tolerance in cloud computing,’’ Int. J. Grid

High Perform. Comput., vol. 6, no. 2, pp. 24–37,

Apr./Jun. 2014.

[16] J. Cao, M. Simonin, G. Cooperman, and C. Morin,

‘‘Checkpointing as a service in heterogeneous cloud

environments,’’ in Proc. 15th IEEE/ACM Int. Symp.

Cluster, Cloud Grid Comput., Shenzhen, China, May

2015, pp. 61–70.

[17] Purushottam Sigdel, Xu Yuan, et al, “Realizing Best

Checkpointing Control in Computing Systems”, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 32, Issue: 2, pp.315-329, 2021.

[18] P. Das and P. M. Khilar, ‘‘VFT: A virtualization and

fault tolerance approach for cloud computing,’’ in

Proc. IEEE Conf. Inf. Commun. Tech- nol. (ICT),

Apr. 2013, pp. 473–478.

[19] S. M. Saranya, T. Srimathi, C. Ramanathan, and T.

Venkadesan, ‘‘Enhanced fault tolerance and cost

reduction using task replication using spot instances

in cloud,’’ Int. J. Innov. Res. Sci., Eng. Technol., vol.

4, no. 6, pp. 12–16, May 2015.

[20] Y. Liu and W. Wei, ‘‘A replication-based mechanism

for fault tolerance in mapreduce framework,’’ Math.

Problems Eng., vol. 2015, 2015, Art. no. 408921.

[21] Jinwei Liu; Haiying Shen, et al., “A Low-Cost Multi-

Failure Resilient Replication Scheme for High-Data

Availability in Cloud Storage”, in IEEE/ACM

Transactions on Networking, Vol. 29, Issue: 4, pp.

1436-1451, Aug. 2021.

[22] Ahmed Awad, Rashed Salem, “A Novel Intelligent

Approach for Dynamic Data Replication in Cloud

Environment”, in IEEE Access, vol. 9, pp. 40241-

40254, 2021.

[23] Bashir Mohammed, Mariam Kiran, et al., “Failover

strategy for fault tolerance in cloud computing

environment”, in Wiley Online Library, DOI:

10.1002/spe.2491, 2017. [Online].

[24] E. Bauer and R. Adams. Reliability and Availability

of Cloud Computing. Hoboken, NJ, USA: Wiley,

2012.

[25] Y. Wei, J. Qiu, H. Lam, and L. Wu, ‘‘Approaches to

T-S fuzzy- affine-model-based reliable output

feedback control for nonlinear Ito stochastic

systems,’’ IEEE Trans. Fuzzy Syst., to be published,

doi: 10.1109/TFUZZ.2016.2566810.

[26] Y. Wei, X. Peng, and J. Qiu, ‘‘Robust and non-fragile

static output feedback control for continuous-time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 683–695 | 695

semi-Markovian jump systems,’’ Trans. Inst. Meas.

Control, vol. 38, no. 9, pp. 1136–1150, 2016.

[27] CloudSim: A Framework for Modeling and

Simulation of Cloud Computing Infrastructures and

Services. (Apr. 2016). [Online]. Available:

http://www.cloudbus.org/cloudsim.

[28] Amit Sundas, Surya Narayan Panda, “An

Introduction of CloudSim Simulation tool for

Modelling and Scheduling”, 2020 International

Conference on Emerging Smart Computing and

Informatics (ESCI), [Online]. DOI:

10.1109/ESCI48226.2020.9167549.

