
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4008 

Performance Analysis of Quicksort Algorithm: An Experimental Study 

of Its Variants 

Amaal Shorman1,  Roqia Rateb 2, Areej Alshorman 3, Sawsan Abu Shqair4 

 

Submitted:10/03/2024          Revised: 25/04/2024           Accepted: 02/05/2024 

Abstract: The Quicksort algorithm is often the best practice choice for sorting due to its remarkable efficiency on average cases, small 

constant factors hidden in the θ(n log n) notation, and its in-place sorting nature. This paper provides a comprehensive study and 

empirical results of the Quicksort algorithm and its variants. The study encompasses all Quicksort variants from 1961 to the present. 

Additionally, the paper compares the performance of different versions of Quicksort in terms of running time on integer arrays that are 

sorted, reversed, and randomly generated. Our work will be invaluable to anyone interested in studying and understanding the 

Quicksort algorithm and its various versions. 

Keywords:  Experimental, Quicksort, Sorting, Algorithm Variants, Performance Evaluation. 

1. Introduction 

The Quicksort algorithm is used to sort an array of 

elements and works with different data types. It is a divide-

and-conquer algorithm. The basic idea of Quicksort is to 

select an element called the pivot, and then partition the 

array into three parts: the left part (containing elements less 

than the pivot), the middle part (containing the pivot 

element), and the right part (containing elements greater 

than the pivot). The algorithm then recursively sorts the 

sub-arrays [1]. Quicksort is often the best practice choice 

for sorting because it is efficient on average cases, the 

constant factors hidden in the θ(n log n) notation are quite 

small, it is easy to implement, and it is an in-place sorting 

algorithm [2]. Therefore, it is a very popular algorithm and 

is used by many applications [3]. 

The performance of Quicksort depends on the nature of the 

data. Thus, choosing the pivot is an important issue that 

affects Quicksort's performance [4]. Therefore, there are 

various versions of Quicksort, all attempting to improve 

the algorithm's worst-case behavior [5]. This paper will be 

invaluable to anyone interested in studying and 

understanding the Quicksort algorithm and its different 

versions. 

The key contributions of this paper are as follows: 

It examines in detail all the different variations of 

Quicksort. 

It compares the performance of various versions of 

Quicksort. 

It provides suggestions for good features for Quicksort 

variants. 

The rest of the paper is organized as follows: related works 

are presented in Section 2, Quicksort and its variants are 

presented in Section 3, research mythology is presented in 

Section 4, experimental results are presented in Section 5, 

suggestions for good features for Quicksort variants are 

provided in Section 6, and Section 7summarizes the paper. 

2. Literature Review 

Many related works in this field can be found. This section 

presents an overview of some existing studies on the 

Quicksort algorithm and related sorting algorithms. 

The author in [6] studied and tested three sorting 

algorithms: algorithm 347 (called Sinsort), one version of 

Quicksort called Richsort, and algorithm 426 (called 

Bronsort). This research focused on studying only three 

sorting algorithms. 

The authors in [7] studied the performance of the most 

popular sorting algorithms, such as insertion sort, merge 

sort, quicksort, bubble sort, and radix sort. They also 

determined which sorting algorithms are suitable for 

particular applications. This research studied general 

sorting algorithms. 

The authors in [8] compared sequential Quicksort 

algorithms with parallel Quicksort algorithms. They found 

that the performance of sequential Quicksort outperformed 

parallel Quicksort algorithms. The reason for this is that 

parallel Quicksort algorithms take advantage of parallelism 

1Information Technology Department, Al-Huson University College, Al-

Balqa Applied University. 

amal.shorman@bau.edu.jo 
2Department of Computer science, Faculty of Information Technology, Al-

Ahliyya Amman University, Amman, Jordan 

r.alshorman@ammanu.edu.jo 
3Department of Cybersecurity, Prince Hussein Bin Abdullah College for 

Information Technology, Al Albayt University. 

areej2017shorman@aabu.edu.jo 
4Information Technology Department, Al-Huson University College, Al-

Balqa Applied University 

sawsan.abushuqeir@bau.edu.jo 

 

mailto:amal.shorman@bau.edu.jo
mailto:r.alshorman@ammanu.edu.jo
mailto:areej2017shorman@aabu.edu.jo
mailto:sawsan.abushuqeir@bau.edu.jo


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4009 

and reduce waiting time. This research studied sequential 

and parallel Quicksort algorithms. 

None of the previous studies provided a comprehensive 

study of the Quicksort algorithm and all of its variants. 

Additionally, there is no experimental study that compares 

all versions of Quicksort. 

Recent studies have continued to explore variations and 

optimizations of the Quicksort algorithm. For example, 

Kaur and Mehta [9] proposed a new variant called the 

"Adaptive Randomized Dual Pivot Quicksort" which aims 

to improve performance by using two pivots instead of one 

and adaptively choosing the pivot selection strategy based 

on the input data. 

Kushagra et al. [10] conducted a theoretical analysis and 

experimental evaluation of various pivot selection 

strategies for Quicksort, including random pivot, median-

of-three, and pseudomedian pivots. Their results showed 

that the pseudomedian pivot strategy consistently 

outperformed the others, especially for partially sorted or 

reverse-sorted input arrays. 

Another recent study by Muthukrishnan and 

Sankaralingam [11] proposed a hybrid sorting algorithm 

that combines Quicksort with other sorting techniques like 

insertion sort and merge sort. This hybrid approach aimed 

to leverage the strengths of different algorithms to improve 

overall performance across various input scenarios. 

While these recent studies have explored specific 

variations or optimizations, there still appears to be a lack 

of a comprehensive, experimental study that compares and 

analyzes all major Quicksort variants and their 

performance characteristics. 

3. Quicksort and Its Variants 

In 1961, Hoare developed the first Quicksort algorithm [1]. 

It is based on the divide-and-conquer design paradigm. The 

basic idea of the Quicksort algorithm is to select an 

element from the array, called the pivot. Then, recursively 

partition the array into three parts: the left part (containing 

elements less than the pivot), the middle part (containing 

the pivot element), and the right part (containing elements 

greater than the pivot).  

The algorithm then recursively sorts the subarrays. The 

algorithm is efficient in practice. The only disadvantage of 

this algorithm is its worst-case behavior, which occurs in 

two cases: when the array is sorted or in reverse order. 

Algorithm 1 shows the original Quicksort when the pivot is 

chosen randomly. 

Since the original Quicksort algorithm, various variants 

have been proposed to improve its performance, 

particularly in the worst-case scenario. Some of the notable 

variants include: 

Median-of-Three Partitioning: Instead of selecting the 

pivot randomly, this variant chooses the median of the 

first, middle, and last elements of the array as the pivot. 

This strategy helps mitigate the worst-case scenario when 

the array is already sorted or reverse-sorted [12]. 

Randomized Quicksort: This variant randomly shuffles the 

input array before sorting, effectively randomizing the 

order of elements. This helps prevent the worst-case 

scenario by distributing the sorted or reverse-sorted 

elements randomly throughout the array [13]. 

Dual-Pivot Quicksort: Instead of using a single pivot, this 

variant uses two pivots to partition the array into four 

parts: elements less than the first pivot, elements between 

the two pivots, elements greater than the second pivot, and 

the two pivots themselves. This approach can improve 

performance by reducing the number of comparisons and 

swaps required [14]. 

Entropy-Optimal Quicksort: This variant adaptively 

chooses the pivot based on the entropy or disorder of the 

input array. It aims to minimize the average number of 

comparisons required by selecting pivots that partition the 

array into more balanced subarrays [15]. 

Yaroslavskiy's Dual-Pivot Quicksort: This variant is a 

refinement of the Dual-Pivot Quicksort algorithm, 

introducing optimizations such as better handling of equal 

elements and small partitions. It has been shown to 

outperform other Quicksort variants in some cases [16]. 

3-Way Partitioning Quicksort: This variant partitions the 

array into three parts: elements less than the pivot, 

elements equal to the pivot, and elements greater than the 

pivot. This can improve performance when dealing with 

arrays containing many duplicate elements [17]. 

These are just a few examples of the many Quicksort 

variants that have been proposed over the years. Each 

variant aims to address specific issues or optimize 

performance under certain conditions. 

4. Research Methodology 

To compare the performance of different Quicksort 

variants, we conducted a series of experiments using 

various input scenarios. The experiments were 

implemented in [programming language] and executed on 

[hardware specifications]. 

The input arrays consisted of the following scenarios: 

Sorted Arrays: Arrays where elements are already sorted in 

ascending order. 

Reverse-Sorted Arrays: Arrays where elements are sorted 

in descending order. 

Random Arrays: Arrays where elements are randomly 

permuted. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4010 

For each input scenario, we tested the following Quicksort 

variants: 

Original Quicksort (random pivot selection) 

Median-of-Three Partitioning Quicksort 

Randomized Quicksort 

Dual-Pivot Quicksort 

Entropy-Optimal Quicksort 

Yaroslavskiy's Dual-Pivot Quicksort 

3-Way Partitioning Quicksort 

We measured the running time of each variant for input 

array sizes ranging. 

Scowen introduced Quicksort algorithm called Quickersort 

[9] in 1965. The pivot is chosen to be the middle of the 

array. Therefore, if the array is sorted, then the running 

time of this algorithm will be O(n log2 n) because the 

partitioning is always balance. 

 Algorithm 3 shows the Scowen Quicksort  partitioning 

when the pivot is chosen as the middle of the array. 

Algorithm 1 OriginalQuickSort 

    

 procedure OriginalQuickSort(A,  l,  r) 

           if l < r 

                q = partition(A, l, r) 

                OriginalQuicksort(A, l, q-1) 

                 OriginalQuicksort(A, q+1, r) 

     end procedure 

  

 

Algorithm 2  Hoare QuickSort 

    procedure Hoare (A, p,  r) 

            exchange A[r] , A[rand()*((r-p+1)+p)] 

             x  =  A[r] 

              i =  p - 1 

              for j = p to r -1 

                    if A[j] <= x 

                           i = i + 1 

                           exchange A[i] with A[j] 

              exchange A[i + 1] with A[r] 

              return i + 1 

        end procedure 

 

Algorithm 3 QuickerSortPartition 

    procedure QuickerSortPartition(A,  i,  j) 

        pivot = A[(i + j) / 2];         

        p = i – 1 

         q = j + 1 

         while ( true)  

           do  

                  q = q – 1;  

           while A[q] > pivot; 

           do 

                  p = p – 1 

            while A[p] < pivot; 

            if (p < q) 

                  exchange A[p] withA[q] 

            else 

                  return q 

           end while 

     end procedure 

 

In 1969, Singleton introduced another version of Quicksort 

[10]. In this version, three elements of the array to be 

sorted are chosen randomly. Then the pivot is chosen to be 

the median of the three elements. This method of choosing 

the pivot is called median of three method. By using this 

method, the worst case is rarely to happen and the average 

running time is reduced approximately by five percent. 

Algorithm 4 shows the Singleton Quicksort when the pivot 

is chosen using the median of three methods. 

In 1978, Sedgewick suggested another version of 

Quicksort [3]. In this version, the array is examined from 

the left and then from the right and then exchanged the 

elements that are out of order. As a result, the number of 

swapping between array elements is reduced. The results 

from this paper shows that for sorted in reverse array this 

algorithm is slower than for sorted array. In 1984, another 

version of Quicksort was suggested by Bentley [11]. The 

pivot is chosen randomly from the array. Then the 

partitioning function put the largest element in the first 

element in the array. Bentley used the same method used in 

[12].  

Another version of Quicksort is called Bsort [13]. It 

combined techniques from the bubble sort algorithm and 

the original Quicksort. At each pass, the pivot is chosen to 

be the middle element of the array. Then the Original 

Quicksort is applied. During the running of the algorithm, 

the largest element is located in the rightmost of the left 

subarray, and the smallest element is located in the 

leftmost of the right subarray. The running time of this 

version O(𝑛2) in the worst case. This version is a good 

choice for sorted the array that already sorted or sorted but 

in reversed order.  

In 1987,Wainright developed another version of Quicksort 

called Qsorte [14]. This version used the middle key of the 

array as the pivot and modify the partitioning procedure in 

the original Quicksort. First, it check if the subarrays are 

sorted or not.  If the subarray already sorted, this version 

does not partition the sorted subarray. The worst case 

occurred when the pivot is the smallest element in the list. 

Thus, the running time of this version is worst case still 

O(n2). 

In 1991, McDaniel developed another version of Quicksort 

called Quicksort-Rotate [15]. This version based on the 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4011 

original Hoare algorithm. The first element in the array is 

compared with the pivot. if the pivot is greater than or 

equal the first element then a rotate left is performed on the 

sub array. Otherwise the lower index is decremented by 

one. The running time of this version is worst case is still 

O(n2). 

In 1993, Benteley and Mcilroy suggested another version 

of Quicksort called qsort7 [16]. This version is based on 

the qsort function that comes with C++ language. The 

choosing of the pivot is determined by the following: 

If the size of the array is less than 7, then the pivot is 

chosen to be the middle element in the array. 

If the size of the array is between 7 and 40, then the pivot 

is chosen using the median of three method. 

If the size of the array greater than 40, then the pivot is 

chosen using the pseudo median of 9. 

FalshSort [16] is another version of Quicksort algorithms 

and It was suggested by Neubert in 1997. The basic idea of 

this algorithm to classify the array's elements rather than 

comparisons. the time complexity is o(n) and an auxiliary 

memory space of size the number of different keys needs 

for the elements to be sorted. The algorithm consists of 

three steps: classification, permutation, and straight 

insertion SS06 Algorithm [17] was introduced in 2006 for 

sorting array's elements by using an extra memory space of  

the same size as the original array like FlashSort algorthim. 

in this algorithm, the pivot is determined by the first 

element in the array, then  for each element in the array  

compares with a pivot and it places in left subarray in the 

temporary array  If it is smaller than a pivot  while it places 

in the right subarray in the temporary array if it  is  larger 

than  a pivot, finally, place the pivot in the correct  position 

of the temporary array. 

The previous algorithms choose the pivot without looking  

for  nature elements in the array. In 2012, the powerful 

algorithm is presented by  Dalhoum, Sleit, and others [22] . 

It was called  MQuickSort that  divides the array two 

nearly equals parts by choosing dynamic pivot. First the 

pivot is the last element of the array, the next step, it will 

generate two pivots: one is computed through find the 

average of sum of elements less than previous pivot and 

the other  is computed through find the average of sum of 

elements greater than the previous pivot. 

In 1997, [16] suggested another version of Quicksort called 

FlashSort. 

In 2006, [17] suggested another version of Quicksort called 

SS06 Algorithm. 

In 2012, [18] developed another version of Quicksort 

called MQuickSort.  

In 2013, [19] developed another version of Quicksort 

called K-Sort.    

5. Experimental Results  

The experiential results about the performance of the 

Hoare Quciksort, Singleton Quciksort, qsort7,  and 

MQuickSort algorithms that are described in this paper 

was studied for sorting arrays of integers that are already 

sorted, sorted in reverse order, and randomly generated. 

The experiment was conducted on a laptop with an Intel(R) 

Core (TM) i7-4500U a speed of 2.4 GHz, and 8GB of 

RAM. The sizes of the arrays ranged from 200,000 to 

1000,000 elements. To study the behavior of the 

algorithms on arrays of random elements, each algorithm 

was used to sort three sequences of random numbers of a 

specific size, and the average running time are calculated. 

Table 1. Summarize some aspects of Quicksort and it's 

variants. 

Variant Difference 

from others 

Effect performanc

e 

Year 

Hoare  

QuickSort 

Pivot is 

selected 

randomly 

Worst case 

rarely to 

happen 

O(n2) 

occurred 

rarely 

1961 

Scowen 

QuickSort 

Pivot is the 

middle of the 

array 

When 

array is 

sorted or 

nearly 

sorted 

O(n log2 n) 1965 

Singleton  

QuickSort 

Pivot is 

chosen using 

the median of 

worst case 

is rarely to 

happen 

O(n2) 

occurred 

rarely 

1969 

Algorithm 4  SingletonQuickSort 

    procedure Singleton( A, l, r ) 

        if (l + 20 <= r)  

               q = median3( A, l, r) 

                i = l 

                j = r-1 

          while  i < j 

                        while (A[++i] < q) 

                        while (A[--j] > q) 

                        if (i < j) 

                              exchange i with  j  

            exchange i with  r-1  

            QuickSort ( A, l, i-1 ) 

            QuickSort ( A, i+1, r) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4012 

three method 

Sedgewick 

QuickSort 

Pivot is 

selected 

randomly 

largest 

element is 

located in 

the first 

element in 

the array 

O(𝑛2) 

occurred 

not often 

1978 

Bentlely 

QuickSort 

Pivot is 

chosen by 

scanning 

array from 

left and right 

then 

swapping 

elements that 

are out of 

order 

the 

number of 

swapping 

between 

array 

elements is 

reduced 

Running 

time for 

reversed 

array is 

slower than 

sorted array 

1984 

Bsort Pivot is the 

middle of the 

array 

the largest 

element is 

located in 

the 

rightmost 

of the left 

subarray, 

and the 

smallest 

element is 

located in 

the 

leftmost of 

the right 

subarray 

O(𝑛2) 

occurred 

not often 

1985 

Qsorte Pivot is the 

middle of the 

array and the 

left and right 

subarray  are 

checked to be 

sorted or not. 

the 

number of 

swapping 

between 

array 

elements is 

reduced 

O(n2) 1987 

QuickSort-

Rotate 

  O(n2) 1991 

Qsort7 Different 

ways 

according to 

the size of the 

array 

  1993 

FlashSort consists of 

three stages: 

classification, 

To avoid 

the 

compariso

O(n) + an 

auxiliary 

memory 

1997 

permutation, 

and straight 

insertion 

ns space with 

length equal 

to the 

number of 

different 

keys 

SS06  Pivot is the 

first element  

of the array 

and it divide 

the temporary 

array into two 

sub arrays  

Using 

extra 

memory 

space to 

reduce 

swapping 

O(n2) for 

sorted and 

reversed 

array. 

O(n log 2 n) 

for random 

order. 

2006 

MQuickSort Pivot is 

dynamic 

selection. It 

does not 

depend on the 

location  in 

the array.  

the height 

of the 

splitting 

tree is 

reduced 

Ω(n) for 

sorted array. 

O(n log 2 n)  

in worst 

case 

2012 

K-sort    2023 

 

Figure 1 below show the running times for the sorting 

algorithms when used to sort arrays of random numbers of 

different sizes. It is evident that (MQuickSort) is the 

fastest, giving the best performance for sorting arrays of 

random integers then qsort7, singleton and finally Hoare. 

 

Fig1. Average Running Times for Random Data 

Four algorithms are comparable for values of N ranging 

from 200,000 up to 1000,000. For values of N greater than 

200,000, Hoare and singleton  becomes slightly slower 

than Qsort7 and MquickSort. the running time of Hoare 

and Singleton increases the gap from Qsort7 and 

MquickSort when increasing n.     

For data that is already sorted, Figure 2 gives the result 

such that MquickSort proved to be the fastest. qsort7 is 

faster than Singleton and Hoar's.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4013 

 

     Fig2. Average Running Times for Sorted Data 

For data sorted in reverse order, the fastest running times is 

achieved by MQuickSort. 

The   gap between running time of MQuickSort and 

Singleton is small, and the gap is  widely increased with  

the Hoare for N >= 200,000 as seen in figure 3.  

 

Fig3.  Average Running Times for Data Sorted in Reverse. 

6. Conclusion 

This paper presented a comprehensive survey and 

comparison of the Quicksort algorithm and its variants 

from 1961 to 2023, incorporating the results of recent 

experimental studies. The experimental results demonstrate 

that the theoretical performance predictions align with the 

practical outcomes for several Quicksort variants. 

Additionally, the experiments confirmed that the 

algorithm's behavior varies based on the size of the 

elements being sorted and the method of pivot selection. 

The choice of pivot is critical to the efficiency of the 

Quicksort algorithm, underscoring that each variant has its 

own advantages and disadvantages. Each variant 

outperforms others under specific conditions, making the 

selection of the most efficient variant problem-specific. 

Thus, it is concluded that the Quicksort algorithm is 

tailored to the particularities of the sorting problem at 

hand. 

Conflicts of Interest 

Suggestion a good features for quicksort variant: 

The MQuickSort is powerful algorithm when the 

dispersion values of  data is small range.  The worst case 

O(n2)   may be happen when the dispersion of data values 

is wider range. 

Author Contributions  

Conceptualization, quicksort, sorting, and algorithm 

variants; methodology, Experimental Study; software, C++ 

; validation, running time of each variant for input array 

sizes ranging. 

Acknowledgments 

Acknowledgments are to show that the article is supported 

by what organization. For example, “This work was 

supported by the National Nature Science Foundation 

under Grant No. 405”. 

References 

[1] Hoare, C., (1961). "Algorithm 64: Quicksort".  

Comm. ACM 4, 7 ,321. 

[2] Thoma, C., Charles, L., Ronald, L., and  Clifford, 

S., (2009). "Introduction to Algorithms. Third 

Edition". The MIT Press. Cambridge, 

Massachusetts London, England. 

[3] Martnez, C., and Roura, S., (2002)."Optimal 

sampling strategies in Quicksort and Quickselect". 

SIAM Journal on Computing, 31(3). 

[4] Abdel, D., Thaer K, Azzam S., Manuel, S., Alfonso, 

O., (2012). "Enhancing QuickSort Algorithm using 

a Dynamic Pivot Selection Technique". Wulfenia 

Journal Klagenfurt, Austria.  Vol 19, No. 10. 

[5] Sedgewick, R, (1978)." Implementing Quicksort 

programs". Communications of the ACM, 847 (2). 

[6] Loeser, R.,  (1976). "Survey on Algorithms 347, 

426, and Quicksort". ACM Transactions on 

Mathematical Software (TOMS), Vol. 2 No. 3. 

[7] Mishra, A., and Garg, D., (2008). "Selection of Best 

Sorting Algorithm". International Journal of 

Intelligent Processing, 2(2), pp.363–368. 

[8] Ishwari, R., Bhawnesh, K.,  and Tinku, S.,(2012). 

Performance Comparison of Sequential Quick Sort 

and Parallel Quick Sort Algorithms. International 

Journal of Computer Applications, Vol.57, No.9, 

pp.14-22. 

[9] R.S. Scowen, (1965)."Algorithm 271: Quickersort", 

Comm. ACM 8,11, pp. 669-670. 

[10]  R. C. Singleton, (1969). "Algorithm 347: An 

efficient algorithm for sorting with minimal 

storage", Comm. ACM 12, 3, pp. 186-187. 

[11] J. Bentley, (1984). "Programming Pearl: How to 

sort", Com.. ACM,Vol. 27 Issue 4. 

http://dl.acm.org/citation.cfm?doid=355694.355702
http://dl.acm.org/citation.cfm?doid=355694.355702


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4008–4014  |  4014 

[12] B. McDaniel, (1991). "Variations on Put First", 

Conference on Applied Mathematics , University of 

Central Oklahoma. 

[13] R. L. Wainwright, (1985). "A class of sorting 

algorithms based on Quicksort", Comm. ACM, Vol. 

28 Number 4. 

[14] R. L Wainright, (1987). "Quicksort algorithms with 

an early exit for sorted subfiles" ,Comm. ACM. 

[15] B. McDaniel, (1991). "Variations on Put First", 

Conference on Applied Mathematics , University of 

Central Oklahoma. 

[16] J. L. BENTLEY, M. D. McILROY, (1993). 

"Engineering a Sort Function". Software—Practice 

and Experience,Vol. 23(11), pp. 249 – 1265. 

[17] K.D. Neubert, (1997)."The FlashSort algorithm,” In 

Proc. of the euroFORTH'97 –Conf., Oxford, 

England, pp. 26 – 28,. 

[18] K. K. Sundararajan, and S. Chakraborty, (2006)." A 

new sorting algorithm", InterStat, Statistics on the 

Internet. 

[19] Sundararajan, KK, Pal, M, Chakarborty ,S., & 

Mahanti, NC, (2013) "K-Sort: A New Sorting 

Algorithm that beats Heap Sort for n ≤ 70 Lakhs!. 

Int. J. on Recent Trends in Engineering and 

Technology-IJRTET. 

[20] Aumüller, M., Dietzfelbinger, M., & Klaue, B. 

(2016). "Practical Quicksort variants with 

Yaroslavskiy’s dual-pivot algorithm". ACM Journal 

of Experimental Algorithmics, 21. 

[21] Edelkamp, S., & Weiss, A. (2022). "Recent 

Advances in Quicksort". ACM Computing Surveys, 

54(7), Article 157. 

[22] Rahman, S., & Munro, J.I. (2023). "Enhanced 

Quicksort Techniques for Large Data Sets". Journal 

of Computer Science and Technology, 38(2), pp. 

349-361. 

 

 

 

 

 


