

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |720

Hadoop Distributed File System Write Operations

Renukadevi Chuppala*1, Dr. B. Purnachandra Rao2

Submitted: 18/05/2023 Revised: 27/06/2023 Accepted: 05/07/2023

Abstract: Hadoop is an open-source version of the MapReduce Framework for distributed processing. A Hadoop cluster possesses the

capacity to manage substantial volumes of data. Hadoop utilizes the Hadoop Distributed File System, also known as HDFS, to manage

large amounts of data. The client will transfer data to the DataNodes by retrieving block information from the NameNode. The pipeline

configuration will connect the DataNodes that store the blocks. If a DataNode or network fails during the data writing process, the pipeline

will remove the failed DataNode. The pipeline will add the new DataNode based on the existing DataNodes in the cluster. If there is a

scarcity of spare nodes in the cluster, customers may encounter an abnormally high frequency of pipeline failures due to the inability to

locate additional DataNodes or replacements. In the event of a network failure, the data packet is unable to reach the target DataNode due

to their interconnected pipeline structure. Interconnecting each DataNode with every other DataNode ensures that multiple pathways are

available through other DataNodes, thereby preventing network failure. The copy operation will take longer due to pipeline connectivity.

On the other hand, a direct connection between a DataNode and all other DataNodes significantly reduces the time required, as the

datapacket doesn't have to traverse through all other DataNodes to reach the final DataNode. This paper presents the utilization of the A*

algorithm to enhance the performance of write operations in the Hadoop Distributed File System.

Keywords: Hadoop Distributed File System (HDFS),NameNode , DataNode, Replica, Rackawareness, Data Packet, Data Packet Transfer

Time, Pipeline, Fully Connected Digrapgh Network Topology, A* algorithm.

1. Introduction

To store very large datasets reliably, have a high degree of fault

tolerance, and stream those data sets at high bandwidth for user

applications running on commodity hardware, the Hadoop

Distributed File System (HDFS) [1] is a distributed file system

designed to be deployed on inexpensive commodity hardware. The

system uses a master/slave architecture, referring to the master as

the NameNode and the slaves as the DataNodes. Although HDFS

and current distributed file systems are substantially different, they

share many commonalities. A distributed file system comprises a

single NameNode and numerous data nodes, ensuring availability

and reliability through the maintenance of multiple data replicas.

During periods of intense activity, the NameNode and DataNode

engage in extensive communication while performing file read or

write operations, resulting in a decline in performance. The

system's NameNode acts as the primary server. The NameNode is

responsible for managing the file system's metadata, including the

file structure and block placement for each file. Additionally, it

carries out file system tasks such as terminating, initiating, and

changing the names of files and directories. The blocks that each

storage node's Datanode process manages are under the authority

of a master NameNode process running on a different host. To

meet the growing storage demands of Hadoop [1], MapReduce [5],

Dryad [10], and HPCC (High-Performance Computing Cluster)

[15] frameworks, disk-based file systems are the most suitable

option. The reason for this is that the data is near, which enables

tasks to be executed more efficiently. When working with

extensive datasets, executing processes can reduce network traffic

and enhance throughput. The Hadoop distributed file system

(HDFS) [6] can store immense amounts of data because of the

significant number of nodes in each cluster. There is a

requirementto incur a time penality when obtaining or storing data

in a DataNode. A fully connected network is a communication

network in which each of the nodes is

connected to each other. Furthermore, data is replicated across

multiple nodes using various methods to enhance work completion

time. A completely linked network is a type of communication

network where every node is directly connected to every other

node. It is referred to as a full graph in the field of graph theory.

Each DataNode in the cluster will have many alternative paths to

connect to other DataNodes. The number of different paths will be

equal to the replication factor. In the event of a failure in the

existing path between two DataNodes, we can utilize the count of

alternative paths available from one DataNode to another

DataNode. The copy operation will be faster as we can use parallel

copy processes between the datanodes. This is done by connecting

the starting datanode directly to all other datanodes involved in the

replication process. The proposed method has two main

advantages: it reduces the time required for copy operations

between datanodes and provides multiple alternative paths to reach

the target datanode in case of network failure. In the current

process,we configure the parameters

dfs.client.block.write.replace-datanode-on-failure.enable and

dfs.client.block.write.replace-datanode-on-failure.policy. Once

we implement the suggested architecture, there will be no need to

modify the DataNodes in the event of a network failure. Instead,

we can access the DataNode using an alternative method different

routes among the data nodes. This paper includes concepts such as

conducting a literature survey on the current mechanism used for

HDFS memory operation, describing the components of HDFS,

identifying the issues in the existing architecture, proposing a new

architecture that utilizes a fully connected digraph DataNode

1 Western Union , Financial Services, CA, USA
2 Sr Solution Architect , HCL Technologies, Bangalore, India

* Corresponding Author Email: renu.chuppala@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |721

network topology, implementing the proposed architecture, and

evaluating it through simulation results. This paper introduces a

mechanism to minimize the duration of the copy operation to

DataNodes, which involves replicating datapackets.

2. HDFS with Linear DataNode Connectivity

When a client requests to read HDFS data, it first contacts the

NameNode to collect data regarding the initial blocks of the file it

wants to read. The NameNode determines the positions of all

DataNodes that store a copy of the original blocks, organizing the

DataNodes according to their accessibility to the client. In order to

begin writing the data blocks to the pipeline's first DataNode, the

client connects to it. The initial DataNode will establish a

connection with the subsequent DataNode in the sequence and

transmit the data blocks to it as soon as they are received. In the

pipeline, the second DataNode then makes a connection and sends

the data to the next DataNode. A confirmation packet is delivered

over the DataNode pipeline to the client when all three replicas

have been entirely written to, letting them know that the block has

been successfully written to every node. The client will commence

composing the subsequent block at this juncture.The block is

committed by the NameNode and recorded as "written" in the edit

log once all block replicas have been written. The file is closed by

the client after it has finished writing data to it. This requires that

all the blocks of the file have been replicated the minimum

necessary number of times. The client can encounter a delay in

closing the file if there are any DataNode errors during the

procedure. The client informs the NameNode that the file writing

procedure has been completed successfully. The block replicas are

written asynchronously. The client is not required to transmit the

data blocks it is sending to every DataNode. The NameNode

assigns the data to a particular DataNode from the received list.

That DataNode's next task is to send the data blocks to the other

DataNodes in the pipeline. In addition, each DataNode will keep a

checksum for each data block that it holds. This block's checksum

is checked after it has been read to make sure it is accurate and

uncorrupted. The block reports that the NameNode gets from the

DataNodes are the basis for the metadata that it creates. HDFS

stores the data blocks in a way that prevents data loss due to the

availability of one or more nodes. Hadoop employs automatic

block replication to replace any lost blocks. The premise of

Hadoop is to bring processing to the data, not the other way around,

as it is in traditional database systems. Data replication helps

enforce this philosophy by ensuring both availability and data

locality.The existing system is using dfs.client.block.write.replace-

datanode-on-failure.enable,dfs.client.block.write.replace-

datanode-on-failure.policy parameters to maintain the fault

tolerance even when the DataNode /network failure while writing

or reading data from DataNodes. DFSClient will request for data

blocks from the NameNode. Once the client gets the list of

datablocks , client will open the Out stream for write operation.

Data will be written to nearest DataNode (block) , and this

DataNode will be connected to other DataNodes (number of

DataNodes based on the replication factor) in pipeline fashion[7-

8].If there is a DataNode/network failure issue in the write

operation (pipeline), DFSClient will remove the failed DataNode

from the pipeline and then resume write operation with the

remaining DataNodes. As a result of this operation, the number of

DataNodes in the pipeline will go down. The feature is to add new

DataNodes to the pipeline.When the number of nodes in the cluster

is (cluster size) extremely small, example number of nodes is 3 or

less, cluster administrators may want to set the policy

dfs.client.block.write.replace-datanode-on-failure.enable to

NEVER in the default configuration file (hdfs-default.xml) or

disable this feature. Otherwise, users may face an unusually high

rate of pipeline failures since it is impossible to find new

DataNodes for replacement. If we have four nodes and a

replication factor of 3, each block will have a replica on three of

the live nodes in the cluster. If a node dies, the blocks living on the

other nodes are unaffected, but any blocks with a replica on the

dead node will need a new replica created. However, with only

three live nodes, each node will hold a replica of every block. If a

second node fails, the situation will result into under-replicated

blocks and Hadoop does not have anywhere to put the additional

replicas. Since both remaining nodes already hold a replica of each

block, their storage utilization does not increase. DataNodes will

be connected (based on the blocks from the Namespace) using

pipeline. In the existing architecture to deliver the packet it needs

to traverse through all the DataNodes to reach the last DataNode

(based on the replication factor we need to decide last

number).Refer with: Fig. 1, While writing the data if DataNode

network fails the failed DataNode will be removed from the

pipeline. Adding the new DataNode to pipeline will depend on the

available nodes in the cluster. The problem in the existing

architecture is users may experience an unusually high rate of

pipeline failures since it is impossible to find new DataNodes for

replacement. The time required to send the data packet and getting

the acknowledgement back to source DataNode will take longer

time since the DataNodes are connected in linear pipeline fashion.

Figure 1: DataNode pipeline connectivity.

If we consider one millisecond is for inter rack DataNode packet

transfer and 0.75 millisecond is for intra rack DataNode packet

transfer, then (replication factor is 4, DataNode2 and DataNode3

are in second rack, whereas DataNode1 and DataNode4 are in

rack1 and rack4 respectively) 1 millisecond to reach to second

DataNode , 0.75 to reach from DataNode2 to DataNode3 and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |722

1millisecond from DataNode3 to DataNode4. So the total time is

1+0.75+1 = 2.75 milliseconds. The same is applicable for

acknowledgement transfer as well. So total 5.50 milliseconds

required to complete one packet copy operation with replication

factor 4. Refer with: Table 1 for the time taken for copy operation

of one packet using different replication factors.

Table 1: Packet Transfer time with different replicationfactors

Replication Factor Packet Transfer(ms)

3 3.5

4 5.5

5 7.5

6 9.5

7 11.5

The time is growing up while increasing the replication factor,

because the DataNodes will be connected in pipeline fashion[3]

(one DataNode to another till the last DataNode and the number of

DataNodes in the pipeline depends on the replication factor). For

files which are frequently accessed or critical, setting the

replication factor improves their tolerance against faults and

increases the read bandwidth. In the existing system we are using

the parameter dfs.client.block.write.replace-datanode-on-

failure.enable[3] to replace the DataNode in case of DataNode

network failure. If the number of spare nodes are less or

unavailable , then we need to set the parameter to NEVER so that

we can externally informing to file system that , there will not be

any node replacement in case of any network/node failure. This is

having the limitation on number of DataNodes available in the

cluster. Refer with: Graph 1 for the time status while increasing the

replication factor.

Graph1: ReplicationFactor Vs PacketTransfer time

2.1. NameNode

Hadoop Distributed File System's central component is the

NameNode. People commonly refer to a NameNode as the master.

A NameNode only retains HDFS metadata, including the file

hierarchy and the block locations associated with each file. The

DataNodes store the physical data and the dataset, leaving the

NameNode without them. Typically, we configure the NameNode

with a substantial amount of memory, specifically RAM.

NameNode is aware of the block list and its location for each file

in HDFS. Given its understanding of blocks and locations,

NameNode can easily generate files from blocks. The NameNode

is a namespace that contains both files and folders. In this context,

inodes will serve as the representation for the files and directories.

An inode contains information about file permissions,

modification and access time, disk space, and namespace. Several

DataNodes separately copy each block of the file, typically 128

MB in size. The NameNode holds details about the mapping of file

blocks to DataNodes. When the client requests to read some HDFS

data, it contacts the NameNode to learn the locations of the first

few file blocks it wants to read. In contrast, in a write operation,

the client will request from NameNode the set of DataNodes that

will house the block copies. The client will carry out the pipeline-

style write operation to DataNodes in the upcoming phase [7–8].

The client wants to write the file to HDFS, dividing it into blocks

and storing them on different DataNodes. The client establishes a

connection with the initial DataNode in the pipeline and

commences the process of writing the data blocks on that particular

node.

2.2. Data Node

Within a Hadoop cluster consisting of numerous nodes, there will

be one or more nodes designated as the master node [15]. The

master nodes are in charge of crucial Hadoop operations like

naming NameNode and managing resources. The worker nodes

that make up the remaining servers in a Hadoop cluster are called

DataNodes. These nodes have the responsibility of storing the data

blocks. The DataNode executes various tasks as instructed by the

NameNode, including the creation and deletion of data blocks,

replication of data across the cluster, storage of blocks on the local

file system to provide block storage, handling read/write requests

from clients accessing the stored data, and maintaining regular

communication with the NameNode through heartbeats and block

reports. A block report provides information on the blocks that are

under the management of the DataNode, while a pulse serves to

confirm the presence and well-being of the DataNode. A file

system will partition each file into one or more segments and/or

store them on distinct data nodes. These items are commonly

known as blocks. By altering the HDFS settings, you can increase

the default block size of 128 MB. At initialization, the NameNode

will shake hands with every DataNode. During the handshaking

step, the DataNode's namespace ID and software version will

undergo authentication. Once the match is successful, the

DataNode will initiate communication. In the event of a

discrepancy, the DataNode will promptly initiate an automatic

shutdown process. When necessary, DataNodes communicate with

the NameNode instead of directly connecting to it. Upon starting

or restarting, the DataNode initiates communication with the

NameNode, signaling its readiness to perform HDFS read and

write jobs. A newly added DataNode without a namespace ID can

join the cluster and obtain the group's namespace ID. Each

DataPacket Pipeline Transfer
Time

11.5

10 9.5

7.5 Transfer
 Time(ms)

5.5
5

3.5

0
3 4 5 6 7

Replication Factor

Packet Transfer(ms)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |723

DataNode retains its own unique storage ID, which makes it easier

to identify a DataNode even in the event of a restart with a changed

port or IP address. Every DataNode periodically transmits a pulse,

containing statistical usage information unique to that DataNode,

to a NameNode (with a default frequency of every three seconds).

Using this heartbeat signal, the NameNode can provide commands

to the DataNodes to cease replication or delete data. When the

NameNode does not get a heartbeat for a prolonged duration, it

immediately requests a block report from the DataNode. When the

NameNode restarts or the DataNode's network connection times

out, it asks the DataNode to register again if it doesn't acknowledge

the DataNode. The NameNode flags a DataNode as dead and

replicates its data on additional DataNodes, increasing the

replication factor of the blocks to the specified number of replicas.

If the DataNode consistently fails to send its periodic heartbeat for

an extended period, such as 10 minutes, this event will occur. The

NameNode sends instructions to the DataNodes in response to their

heartbeat signals. Refer to Figure 2 to analyze the structure of

HDFS.

Fig 2: HDFS Write Operation

3. Rackawareness

Hadoop components are designed with consideration for the

physical racks in a data center. Usually, Hadoop clusters with more

than thirty to forty nodes are housed on many racks. Inter-node

communication inside the same rack is more efficient than inter-

rack communication. In order to minimize network traffic while

reading or writing HDFS in large Hadoop clusters, NameNode

chooses DataNodes on the same rack or adjacent racks to read or

write requests . A NameNode maintains a record of the rack ID of

each DataNode. Rack awareness is the concept in Hadoop that

refers to choosing DataNodes based on rack information. Rack

awareness is a policy that is simple and direct in its approach to

distributing copies among racks. This feature ensures data integrity

in the event of a total failure of a rack and allows for the efficient

utilization of bandwidth across many racks while reading files. The

regulations oversee block replications across several rack clusters,

forbidding the arrangement of more than two replicas in the same

rack and more than one replica on a single DataNode. Furthermore,

the number of racks used for block replication must always be

lower than the total number of replicas. Upon creating a new block,

the initial replica is stored on the local DataNode, while the second

replica is stored on a distinct rack. The third duplicate is stored on

a distinct DataNode located within the same local rack. When

replicating a block, if there is just one duplicate, position the

second duplicate on a distinct rack. If there are two duplicates

currently on the same rack, relocate the third replica to a different

rack. While reading, the NameNode initially verifies the location

of the client's machine within the cluster. Upon the closure of a

DataNode, the client is provided with the block positions. This

policy aims to minimize the expense associated with data writing

while simultaneously improving the speed at which data may be

read. This guarantees that data can be accessed in case of a network

switch failure or partition occurring within the cluster.

4. HDFS Write Operation

An HDFS cluster is comprised of a NameNode and one or more

DataNodes. In this section, we have given a comprehensive

analysis about how a client communicates with the NameNode and

DataNodes when uploading data to HDFS[7-11].

4.1 File creation into the file system’s namespace:

The client first makes a create() HDFS call, which results in a

ClientProtocol RPC being invoked to create a new file on the

NameNode . Before the creation of the file in the namespace, the

NameNode conducts several checks, e.g., whether the file already

exists, whether the user has the right to create the file, and whether

safe mode is disabled. If all these checks pass, the NameNode

would create the corresponding file in the file system’s namespace;

otherwise it would throw an exception.

4.2 Packets forming from data and inserting into a data

queue:

When writing data to HDFS, client applications interpret the data

in the file as a conventional output stream. Each block in the data

stream has a standard size of 64 MB. We then automatically divide

each block into 64KB packets before sending it across the network.

Upon the creation of a new block by the client, the DataStreamer

thread initiates an addBlock() request to the NameNode, seeking a

new block ID and the DataNode IDs for block storage. Once the

packets are generated, the client transmits them to a first-in, first-

first-out (FIFO) queue, which subsequently forwards them to the

DataNodes.

4.3 Packets to DataNodes:

Using the DataNode IDs, DataStreamer builds a pipeline between

the client and these DataNodes. It then streams the packets, one at

a time, to the first DataNode in the pipeline and saves them in an

additional queue called the ACK queue in case some DataNodes

need to retransmit because of packet loss. When a packet is

received, the initial DataNode validates the packet's checksum,

stores it, and then passes it on to the next DataNode in the pipeline.

Until the packet reaches the last DataNode at the end of the

pipeline, this process will be repeated.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |724

4.4 Sending acknowledgement (ACK) to the client:

Once the final DataNode receives the packet, it will transmit an

acknowledgment (ACK) along the pipeline in a reverse sequence.

The client's PacketResponder thread receives acknowledgment

(ACK) responses. When the PacketResponder thread receives an

acknowledgment (ACK) packet from all DataNodes, it removes it

from the ACK queue.

4.5 Close the output stream:

The client runs close() on the stream and waits for all packet

ACKs after flushing all data into the output stream.

4.6 Completing file write:

The PacketResponder thread wakes up the client when it receives

all of the packets' ACKs. The client would provide a

comprehensive signal to the NameNode in order to finalize this

file-write operation. Consult using: Figure 3 illustrates the HDFS

write operation.

Figure 3: HDFS Write Operation

As per the namespace DN1,DN2,DN3 and DN4 are connected in

a pipeline fashion. Once the packet has been written to DN2 by

FSDataOutputStream, then it will be transferred to DN3 by DN2 ,

DN3 to DN4 and DN4 to DN1. Acknowledgement will be

transferred back from DN1 to DN4, DN4 to DN3, DN3 to

DN2.The solid lines from DN2 ->DN3->DN4->DN1 in the figure

is showing data packet transfer and dotted lines from DN1->DN4

->DN3->DN2 is showing acknowledgement. Using the

configuration (hdfs-site.xml) we can set the replication factor of a

file. By defaultthe replication factor is three. Here we are taking

the replication factor as four. DN1 is in rack1, DN2 and DN3 are

in rack2 and DN4 is in rack3. As discussed assume that one

millisecond is for inter rack DataNode packet transfer and 0.75

millisecond is for intra rack DataNode packet transfer, then

(replication factor is 4, DataNode2 and DataNode3 are in second

rack, whereas DataNode1 and DataNode4 are in rack1 and rack4

respectively) 1 millisecond to reach to second DataNode , 0.75 to

reach from DataNode2 to DataNode3 and 1 millisecond from

DataNode3 to DataNode4. So the total time is 1+0.75+1 = 2.75

milliseconds. The same is applicable for acknowledgement

transfer as well. So total 5.50 milliseconds required to complete

one packet copy operation with replication factor 4. We can reduce

this time using fully connected network topology among the

DataNodes.

5. Problem Statement

Based on blocks from the Namespace, a pipeline joins DataNodes.

In the event of a network failure in the DataNode, the pipeline will

eliminate the non-functioning DataNode. Drawing from the

available DataNodes inside the cluster, the pipeline will

incorporate a new DataNode. Because it is unable to identify new

DataNodes to replace the lost ones, customers may encounter an

abnormally high rate of pipeline failures if the cluster has relatively

few spare nodes. The pipeline connection keeps the data packet

from getting to the intended DataNode in the event of a network

failure. Because the copy operation must go via each connected

DataNode in the pipeline until it reaches the last DataNode, it takes

longer when pipeline connectivity is present. Users may encounter

an uncharacteristically high rate of pipeline failures, and the copy

process takes longer since pipeline connectivity makes it

impossible to identify new DataNodes to replace the ones in the

current architecture.

5.1. Proposal

We can connect the DataNodes using fully connected digraph

network topology[4] , where each DataNode is connected to every

other DataNode as per the list from the NameNode. We can have

number of alternative paths in case of network failure in the current

part and we can improvethe write operation performance by

decreasing the operation time using the new architecture.

DFSClient will request for data blocks from the NameNode . Once

the client gets the list of data blocks , client will open the Out

stream for write operation. Data will be written to nearest

DataNode (block) , and this DataNode will be connected to other

DataNodes (number of DataNodes based on the replication factor)

in pipeline fashion. If there is a network failure in the write

pipeline, the operation cannot be completed . To avoid this

connectivity issues , we can use the DataNodes using fully

connected digraph network topology[4] , where each DataNode is

connected to every other DataNode as per the list from the

NameNode . Total number of edges are n(n-1) if there are n

DataNodes in the pipeline. Each DataNode is having n-1 outgoing

edges to connect to n-1 DataNodes.The existing architecture each

DataNode is having 2(n-1) edges where as n-1 edges for datapacket

copy operation and the other n-1 for acknowledgement. Solid lines

are datapacket transfer operation and dotted lines for

acknowledgement operation. Here the dotted lines mentioned with

double direction.

Refer with: Fig 4. for proposed architecture. Replication factor is

the number of copies the data block will be copied in cluster. The

replication factor 4 has been used here, so the data is available in

four DataNodes. The cluster is having three racks Rack1, Rack2

and Rack3 and each rack is having 6 DataNodes. DN1, DN2, DN3,

Output
FileHDFS

HDFS
Client

NameNode
MetaData:
Data blocks

and Datanode
info

Write API

FSOutputSt
ream

DN2 Ack

DN1
DN3

DataPacket

Ack Ack
DN4

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |725

DN4, DN5 and DN6 are represented as 1, 2, 3, 4, 5 and 6

respectively. The representation is same for each rack. As shown

in the figure the data packet (using distinct colors to distinguish

datapackets) is stored into DN4 in Rack1 , DN1 and DN2 in Rack2

followed by DN4 in Rack3(Replicationfactor is 4). Here single

direction lines are for datapacket transfer operation and

bidirectional dotted lines for acknowledgement operation.

DataNode DN4 in Rack1 is connected to three DataNodes

DN1(Rack2),DN2(Rack2) and DN4(Rack3). Once the client

writes data packet to DataNode DN4 in Rack1 this will get copied

to all other DataNodes in the list DN1 in Rack2, DN2 in Rack2 and

DN4 in Rack3 simultaneously. The acknowledgement packet will

be transferred back to DN4 in Rack1 from all other DataNodes

simultaneously. Since this is parallel operation both in forward

(sending packet) and backward (acknowledgement) direction , the

time required to complete one packet copy operation is just twice

the time required for inter rack packet copy operation , and if there

is intra rack DataNode is available in the replication list then the

total time will be lesser than the time which we have counted in

inter rack packet transfer. If there is any network failure while copy

operation is in progress we can reach the destination DataNode

using number of alternative paths, i.e,if the replication factor is 3

we can have one alternate path, if it is 4 we can have 4 alternative

paths , for 5there will be 15 alternate paths and for replication

factor 6 we can have 40 alternate paths. The complexity of network

implementation[9] is high compared to existing architecture but we

can nullify the network issues and we can decrease the time

required to write the datapacket. In the existing system we are

using the parameter dfs.client.block.write.replace-datanode-on-

failure.enable [3] to replace the DataNode in case of DataNode

network failure. We need to set this parameter to NEVER in case

of cluster size is very small like having three DataNodes. If the

number of DataNodes are three then in case of network failure

there will be any choice to replace , instead of that we need to face

the consequences of failure. Need to set as true in case of having

more number of nodes in the cluster so that we can replace with

new DataNode . In the proposed architecture in case of network

failure we no need to depend on the replacement of the DataNode

with new DataNode , instead of that we can reach the target

DataNode using the shortest path from the remaining paths. We

can find the shortest path from single source DataNode to all other

DataNodes using Dijkstras’s shortest path algorithm[9]. In the

context of the

research paper focused on HDFS write operations utilizing a fully

connected digraph data node network topology [10], the current

approach employs Dijkstra's algorithm. To enhance performance

further, I propose leveraging the A* algorithm.

Figure 4: DataNodes with fully connected digraph

network topology

A* algorithm [11], renowned for its efficiency in pathfinding,

introduces a heuristic component to intelligently navigate the data

node network, potentially optimizing the overall HDFS write

operation process. This strategic integration of A* algorithm aims

to elevate performance to the next level, surpassing the capabilities

of the existing Dijkstra's algorithm implementation.

Table2:A* algorithm heuristic values

Node Heuristic value

1 20

2 8

3 14

4 6

5 11

f(x)=g(n)+h(n), f(x) is final value where as g(n) and h(n) are actual

distance(value),heuristic value. Please find the A* algorithm

heuristic values. As shown in figure 5 the distance between nodes

1 and 2 is 10, but the traveling distance is heuristic value and actual

distance is 30. The traveling distance between nodes 1 and 4 is sum

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |726

of actual distance and sum of heuristic values is 10+1+20+8 = 39.

We have other options to reach node 4 from 1(1-3-4,1-3-5-4,1-2-

3-4) and the final f(x) values for all the mentioned paths are 48 ,

58 and 63. In the above set of minimal values 39 is the least value.

We can consider path 1-2-4 is the minimal distance path. Similarly

considering the distance between nodes 1 to 5(1-3-5) is 41. We

have other options to reach node 5 from 1(1-2-3-5) is 56 . In the

above set minimal values 41 in least value. So this is the best path

1-3-5. The traveling distance between nodes 3 and 4 is sum of

actual distance and sum of heuristic values is 9 + 14 = 23.We have

other options to reach node 4 from 3(3-5-4) and the final f(x)

values for all the mentioned paths are 33. In the above set of

minimal values 23 is the least value. We can consider path 3-4 is

the minimal distance path. The traveling distance between nodes 2

and 5 is sum of actual distance and sum of heuristic values is

2+2+8+14 = 26. In this case we can consider this is the only option

as per the given graph. Since we are taking fully connected directed

graph each node is having n-1 edges. The traveling distance

between nodes 1 and 5 is sum of actual distance and sum of

heuristic values is 5+2+20+14 = 41. We have other option to reach

5 from 1 , it is 1-2-3-5. The total value is 10+2+2+20 + 8 +14=56.

In the above set of minimal values 41 is the least value. We can

consider path 1-3-5 is the minimal distance path. source to this

node can be reduced while using the selected edge. If this is going

to happen then the distance is updated and the node is added to the

nodes which need evaluation. This is how can have number of

alternative paths so that users will escape from experiencing an

unusually high rate of pipeline failures.

Figure 5: Input Graph

Here I am considering the weights as real numbers just to explain

the A* algorithm instead of taking one millisecond and 0.75

millisecond. Please Refer with: Fig 5.

Figure 6: Input Graph

Node being considered: 1

Nodes Not yet finalized: {2,3,4,5}

Distances={INF,INF,INF,INF,INF}

Please Refer with: Fig 6. In this we are considering node 1. The

remaining we are not considering. So the distances are INFINITE.

Figure 7: Input Graph

Node being considered:3

Nodes Not yet finalized: {2,4,5}

Distances={0,10,4,INF,INF

Please Refer with: Fig 7. Here considering node 3 after 1.We

will we take the minimum i.e, 3 and proceed.

Figure 8: Input Graph

Please Refer with: Fig 8 for the status of nodes and distances

while considering node 5. Nodes Not yet finalized: {2,4}

Distances={0,8,5,14,7}

Distance[2]=Distance[3]+wt(3,2)=8

Distance[4]=Distance[3]+wt(3,4)=14

1
1

2
4

10

3 2
1 9 6

5
7

3 5
2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |727

Distance[5]=Distance[3]+wt(3,5)=7

We need to add heuristic values as well and finalize the minimum

distance node. For example we consider minimum node5 and

proceed.

Figure.9: Input Graph

Please Refer with: Fig 9 for the status of nodes and distances

while considering node 2. Nodes Not yet finalized: {2,4}

Distances={0,8,5,13,7}

Distnace[4]=Distance[5]+wt(5,4)=13

We need to add heuristic values as well and finalize the minimum

distance node. For example we consider minimum node2 and

proceed.

Figure 10: Input Graph

Please Refer with: Fig 10 for the status of nodes and distances

while considering nodes 2,4,5

Nodes Not yet finalized: {2}

Distances={0,8,5,11,7}

No update is required. hence distance between 1 and all other

nodes are given in distance.

For obtaining the shortest paths in a weighted network with

positive or negative edge weights (but no negative cycles), an

additional approach is the Floyd-Warshall algorithm [9]. One

iteration of the algorithm will calculate the total weights of the

shortest pathways between every pair of vertices. Alternative

names for this algorithm include the Roy-Warshall algorithm, the

Roy-Floyd algorithm, and the WFI algorithm. Let's examine a

graph G that consists of vertices M, which are numbered from 1 to

N. Think of a function called shortestPath(i,j,k) that finds the

shortest path between two points, I and j, using only vertices from

the set {1,2,3,4...k} as intermediate points. The weight of the edge

between vertices i and j can be defined as w(i,j).The function

shortestPath(i,j,k+1) is computed using the recursive formula:

shortestPath(i,j,0) = w(i,j). The equation shortestPath(i,j,K+1) is

defined as the minimum value between shortestPath(i,j,k) and the

sum of shortestPath(i,k+1,k) and shortestPath(k+1,j,k). The

algorithm operates by performing computations. The algorithm

calculates the shortest path between all pairs of (i,j) by iterating

from k = 1 to k = N. This process persists until the value of k

reaches N.

Let the dist be |M| * |M| array of minimum distnaces initialized to

INFINITY.

for each vertex i

 dist[i][i] <- 0

for each edge (a,b)

 dist[a][b] <- w(a,b)

for k from 1 to |M|

for i from 1 to |M|

 for j from 1 to |M|

 if dist[i][j] > dist[i][k] + dist[k][j]

 dist[i][j] <- dist[i][k] + dist[k][j]

 endif
Let n represent the number of vertices, which is equivalent to the

cardinality of set M. It takes n2 operations in total to separate the

n2 instances of shortestPath(i,j,k) from those of shortestPath(i,j,k-

1). The sequence of n matrices shortestPath(i,j,1),

shortestPath(i,j,2), and shortestPath(i,j,n) are computed starting

with shortestPath(i,j,0) = edgeCost(i,j). The total number of

operations utilized is equal to n multiplied by 2 raised to the power

of n squared, which can be simplified as 2n cubed. The overall

complexity is O(n3). When all nodes are run through the A*

algorithm, the complexity is O(E log V), whereas Floyd's difficulty

is O(V3). Here, V represents the number of vertices and E the

number of edges. If the time complexity of algorithm E is O(V2),

then these two algorithms are mathematically equivalent.

However, in practice, Floyd's technique is more efficient. E = O(V)

indicates that it is better, practically and theoretically, to run A* for

every node. If the graph is complete, Floyd's technique should be

used; if not, run A* from every node if the number of edges is equal

to the number of nodes. If you possess sufficient memory and time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |728

resources, Floyd's approach is evidently superior due to its

significantly reduced coding time. Nevertheless, if you have no

interest in obtaining all potential routes, the Floyd-Warshall

algorithm may consume unnecessary time by computing numerous

undesired shortest paths. Given those circumstances, we can

employ the A* algorithm. A different algorithm is the Bellman-

Ford algorithm, which determines the shortest path between each

vertex in the graph and the source. The graph has the potential to

include negative edges. Nevertheless, the negative edge holds little

significance. The Bellman-Ford algorithm is less complex than the

A* algorithm and is highly compatible with distributed systems.

The A* algorithm is not as time-efficient as the Bellman-Ford

algorithm, with O(VE) time complexity.

5.2. Implementation

For an implementation of a fully connected digraph network

topology [4] among the DataNodes within the Hadoop Distributed

File System, refer to Fig. 17. The HDFS client sends creation

requests to the DistributedFileSystem APIs. The

DistributedFileSystem initiates an RPC (Remote Procedure Call)

to the NameNode in order to create a new file within the namespace

of the filesystem. The NameNode performs numerous verifications

to ensure that the file does not already exist and that the client has

the necessary rights to create it. If the result of the check is positive,

the NameNode creates a record of the new file. Otherwise, if the

check fails, the file creation is unsuccessful, and the client receives

an IOException. The DistributedFileSystem provides the client

with an FSDataOutputStream to initiate the process of writing data

to the DataNode. As the client writes data, DFSOutputStream

divides it into packets and adds them to an internal queue called

the data queue. The DataStreamer then processes this queue,

requesting the NameNode to allocate new blocks. The

DataStreamer selects a list of appropriate DataNodes to store the

data replicas. A fully connected digraph network topology

connects the DataNodes, enabling the simultaneous transfer of data

packets to all DataNodes.

Figure.11: Fully Connected Digraph network topology

implementation in HDFS

In the existing architecture the data packet needs to traverse

through all the DataNodes to reach the last DataNode (based on the

replication factor we need to decide last number). If we consider

one millisecond is the time required to transfer packet from one

DataNode to another DataNode between two racks and 0.75 for

intra rack DataNode transfer, then to reach the 4th DataNode

(replication factor is 4) is 2.75 milliseconds. The same is applicable

for acknowledgement transfer as well. So total 5.5 milliseconds

required to complete one packet copy operation with replication

factor 4. Whereas in fully connected digraph network topology

data packet will be transferred in parallel fashion i.e, it will take

one millisecond to transfer the packet to all DataNodes irrespective

of replication factor. Acknowledgement as well will be transferred

to source DataNode in one millisecond. So total 2 milliseconds

required for successful one packet copy operation irrespective of

replication factor. If we consider intra rack DataNode transfer less

than one millisecond then the total time is max 2 milliseconds. DN1 is

connected to all DataNodes and the same is applicable to all DataNodes.

So the total number of connections are n(n-1) excluding acknowledgement

edges. If there is any network failure while writing datapacket to

DataNodes which were connected using fully connected network topology,

no need look for the new DataNode for replacement , instead of that there

will be number of alternative paths to reach the target DataNode . As shown

in the Fig.11 DN2 will receive the write request (datapacket) from the

IOstream. DN2 will send the packet to DN1,DN4 and DN3 simultaneously.

So the total time is max one millisecond (considering DN1 in Rack1,

DN2,DN3 are in Rack2 and DN4 in Rack3) for writing datapacket and the

acknowledgement time is max one millisecond. While writing datapacket

to DN4 from DN2 if there is network failure issue , using the parameter no

need to replace the new DataNode , instead of that,datapacket can reach

DN4 using DN2->DN1->DN4, DN2->DN3->DN4, DN2->DN3->DN1-

>DN4, DN2->DN1->DN3->DN4. Like this depends on the replication

factor we can have multiple number of paths i.e, if the replication factor is

3 we can have one alternate path, if it is 4 we can have 4 alternative paths

(as shown above) , for 5 there will be 15 alternate paths and for replication

factor 6 we can have 40 alternate paths from DN2 to DN4. Since we have

alternative paths we no need to think about replacement .This is how we

can avoid replacement of new node in case of network failure.

5.3. Evaluation

The simulation results are here with the assumption that inter rack

datanodepacket transfer will take one millisecond and intra rack

DataNode packet transfer will take 0.75 millisecond. There is best

case scenario, medium and worst case scenariosbased on the path

which we consider toreach to target node. Suppose DN2 to DN4

datapacket needs to be copied and considering DN1 in Rack1,

DN2,DN3 are in Rack2 and DN4 in Rack3 Direct path from DN2

to DN4 is the best case scenario where it will take max one

millisecond to copy the data and one millisecond for

acknowledgement. So total 2 milliseconds required for data packet

copy operation including acknowledgement. Whereas in medium

case scenario, DN2->DN1->DN4, DN2->DN3-DN4 it will take

one millisecond for DN2->DN1 different rack, DN1->DN4 one

millisecond for different rack . So total 2 milliseconds required for

copy and 2 milliseconds for acknowledgement. So total 4

milliseconds in medium case scenario. In the worst case scenario

DN2->DN1->DN3->DN4(3+3), DN2->DN3->DN1-DN4

(2.75+2.75) total time is max 6 milliseconds and min 5.5

milliseconds including acknowledgement. Refer with: Table 3 for

the Access Time Analysis using Fully Connected DataNode

Topology. In the linear pipeline connectivity time required for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |729

datapacket copy operation including acknowledgement is 5.5

milliseconds, which is almost two times to worst case scenario of

fully connected digraph network topology. Refer to: Table 4 for

the results of linear fashion DataNode pipeline connectivity and a

fully connected digraph network topology with different level

replication factors using the best casescenario of fully connected

digraph network topology. That means no network failure and

using the direct path from source DataNode to destination

DataNode . In this proposed architecture the time required to

complete one packet copy operation is 2milliseconds if there are

no intra rack DataNodes , and max 2milliseconds in case of the

DataNodes list includes intra rack DataNodes. Based on the results

mentioned here for replication factor 4 FullyConnectedDataNode

Digraph topology is better than Liner Pipeline data packet transfer

time.

Table 3: Access Time Analysis using Fully

ConectedDataNode Topology.

BestCase

Scenario

DataNode

Connectivity

Transfer Time

Rack1 DN1

Rack2 DN2,DN3

Rack3 DN4

DN2->DN4 :

1 ms, different rack

1 +1 : 2ms

(copy+ack)

MediumCase

Scenario

DataNode

Connectivity

Transfer Time

Rack1 DN1 ,

Rack2 DN2,DN3

Rack3 DN4

DN2->DN1->DN4,

DN2->DN3->DN4

DN2->DN1 : 1 ms

DN1->DN4 :1 ms

DN2->DN3: 0.75ms

same rack

1+1 : 2

2+2:4 (copy+ack)

0.75+1:1.75

1.75+1.75:3.50

(copy+ack)

0.75+0.75:1.5

1.5+1.5=3ms

(copy+ack)

WorstCase

Scenario

DataNode

Connectivity

Transfer Time

Rack1 DN1

Rack2 DN2,DN3

Rack3 DN4

DN2->DN1->DN3-

>DN4

DN2->DN3->DN1-

>DN4

1+1+1:3

3+3 : 6 ms

(copy+ack)

0.75+1+1:2.75

2.75 + 2.75 : 5.50

ms

(copy+ack)

Table 4: LinearPipeline vs FullyConnectedPipelinePacket

Best Case Transfer time

Replication

Factor

Linear

Pipeline(ms)

Fully

Connected

Pipeline(ms)

3 3.5 2

4 5.5 2

5 7.5 2

6 9.5 2

7 11.5 2

Refer to: Graph 2 for the time required to complete copy operation

in Linear Pipeline DataNode connectivity is increasing once we

increase the replication factor.Whereas in Fully Connected digraph

DataNode network topology the time is constant irrespective of the

replication factor.

Graph 2:.PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Possible paths from DN2 to DN4 using replication factor 4 incase

of network failure is there from DN2->DN4 is DN2->DN1->DN4,

DN2->DN3->DN4. Refer with: Table 5 for the results of linear

fashion DataNode pipeline connectivity and the fully connected

digraph network topology with different level of replication factors

especially with medium case scenario of fully connected digraph

network topology for replication factor 4. In this proposed

Linear Pipeline vs Fully

Connected Pipeline

Transfer

Time(ms)

11.5
9.5

10
7.5

5.5
5 3.5

2 2 2 2 2

0
3 4 5 6 7

Replication Factor

Linear Pipeline(ms)

Fully Connected Pipeline(ms)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |730

architecture the time required to complete one packet copy

operation from DN2->DN1 is 1 millisecond and DN1->DN4 is 1

millisecond. So total is is 2 milliseconds and including

acknowledgement is 4 milliseconds. In case of DN2->DN3->DN4

the total time including acknowledgement is 3 milliseconds. Based

on the results mentioned here for replication factor 4 Fully

Connected DataNode Digraph topology is better than Liner

Pipeline data packet transfer time.

Table 5: LinearPipeline vs FullyConnectedPipelinePacket

medium case Transfer time

Replication Factor Linear

Pipeline(ms)
Fully Connected

Pipeline(ms)

3 3.5 2

4 5.5 3

5 7.5 2

6 9.5 2

7 11.5 2

Graph 3: PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Refer to: Graph 3 for the time required to complete copy operation

in Linear Pipeline DataNode connectivity is increasing once we

increase the replication factor. Whereas in Fully Connected

digraph DataNode network topology the time is constant

irrespective of the replication factor. If we consider the network

failure from DN2-DN4 in two combinations DN1->DN4 or DN3-

>DN4, then the possible paths from DN2->DN4 are DN2->DN1-

>DN3-DN4 and DN2->DN3->DN1->DN4.

Refer with: Table 6 for the results of linear fashion DataNode

pipeline connectivity and the fully connected digraph network

topology with different level of replication factors especially with

worst case scenario of fully connected digraph network topology

for replication factor 4. In this proposed architecture the time

required to complete one packet copy operation from DN2->DN1

is 1 millisecond , DN1->DN3 is 1 millisecond and DN3->DN4 is

1 millisecond. . So total is 3 milliseconds and including

acknowledgement is 6 milliseconds. In case of DN2->DN3->DN1-

>DN4 ,DN2->DN3 is 0.75 millisecond , DN3->DN1 is 1

millisecond and DN1->DN4 is 1 millisecond. The total time is 2.75

millisecond and including acknowledgement is 5.50milliseconds .

Only in the worst casescenari Linear pipeline connectivity id equal

to FullyConnectedDataNode Digraph topology. Two network

failures I have taken to create the worst case scenario. But this very

rare case. So we can conculde that FullyConnectedDataNode

Digraph topology is giving always better results than liner fashion

DataNode pipeline connectivity.

Table 6:.LinearPipeline vs FullyConnectedPipelinePacket

worst caseTransfer time

Replication
Factor

Linear
Pipeline(ms)

Fully Connected
Pipeline(ms)

3 3.5 2

4 5.5 5.5

5 7.5 2

6 9.5 2

7 11.5 2

Graph 4: .PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Linear Pipeline vs Fully
Connected Pipeline

Transfer

Time(ms)

11.5
9.5 10 7.5

5.5
5 3.5 3 2 2 2 2

0
3 4 5 6 7

Replicatio

n

 Facto

r

Linea

r

 Pipeline(ms

)

Full

y

 Connecte

d

 Pipeline(ms

)

Linear Pipeline vs Fully

Connected Pipeline

Transfer

Time(ms)

11.5
9.5

10
7.5

5.55.5
5 3.5

2 2 2 2

0
3 4 5 6 7

Replication Factor

Linear Pipeline(ms)

Fully Connected Pipeline(ms)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731 |731

Refer with: Graph 4 for the time required to complete copy

operation in Linear Pipeline DataNode connectivity is increasing

once we increase the replication factor. Whereas in Fully

Connected digraph DataNode network topology the time is

constant irrespective of the replication factor.

6. Conclusion and Future Work

Based on the analysis of the values using different replication

factors we can say that the time required to copy data packet to all

DataNodes as per the list available from the metadata from the

NameNode is constant. Whereas in linear Pipeline DataNode

connectivity the time increases while increasing the replication

factor. In Linear Pipeline DataNode connectivity we need to

support network failure by using the

parameterdfs.client.block.write.replace-datanode-on failure.

enable using true or NEVER options based on the available

DataNodes in the cluster (cluster size), whereas in fully connected

digraph DataNode network topology if there is any chance of

network failure in one edge we can have multiple paths to reach to

destination node, i.e, if the replication factor is 3 we can have one

alternate path, if it is 4 we can have 4 alternative paths , for 5 there

will be 15 alternate paths and for replication factor 6 we can have

40 alternate paths. So we can nullify the network failure issues.

In this architecture the time required to copy the datapacket to

DataNodes in the network is max one millisecond and

acknowledgement is max one millisecond. With the replication

factor 4 max 2 milliseconds required to complete the datapacket

write operation in the best casescenario, that means there is no

network failure , whereas 3 milliseconds for the same operation in

medium case scenario , that is where there is one network failure

issue and 5.50 milliseconds requiredin worst case scenario where

there are two network failure issues. Here we have verified that no

need of replacement of DataNode in case of network failure issues.

So the usage of dfs.client.block.write.replace,datanode-on-

failure.enable,dfs.client.block.write.replace-datanode-on-failure

parameters is not required. This is how we can reduce or nullify

the network failure issues among DataNodes. Since we have

number of alternative paths among the DataNodes, users can

escape from experiencing an unusually high rate ofnetwork

failures. Using this shortest paths we can reduce the copy operation

time as well as we have proved using the Access Time Analysis

using Fully Connected DataNode Topology. As we change the

architecture to fully connected digraph DataNode network

topology the complexity and the cost to implement the architecture

will also increase. We can ignore this cost and complexity since

there is an improvement in data packet write operation

performance and nullifying the network failure issues among the

DataNodes. The future work includes reducing the cost of the

network by using network cost optimization techniques.

References

[1] Apache Hadoop. Available at Hadoop Apache.

[2] Deepak Vohra, Practical Hadoop Ecosystem:A

Definitive Guide to Hadoop-Related Frameworks and Tools,

Appress; 1st ed. edition ,October 1, 2016

[3] Tom White, "Hadoop:The Definitive Guide", Storage

and Analysis at Internet Scale, Second ed., Yahoo Press, 2010

[4] J.L.Mott, A.Kandel, Mott & Kandel, Discrete

Mathematics For Computer Scientists And Mathematicians

(English) , 2 Ed, Pearson India, (2015)

[5] Hadoop Distributed File System with Cache system – a

paradigm for performnace improvement by Archana Kakade and

Dr. SuhasRaut, International journal of scientific research and

management (IJSRM), Vol.2,Issue.1: Pp,1781-1784 /Aug. 2014.

[6] KonstantinShvachko, HairongKuang, Sanjay Radia,

Robert Chansler , "The Hadoop Distributed File System". Vol.1,

No.1, pp.1-10, 2010.

[7] Debajyoti Mukhopadhyay, Chetan Agrawal, Devesh

Maru, Pooja Yedale, Pranav Gadekar, Addressing NameNode

Scalability Issue in Hadoop Distributed File System using Cache

Approach.Vol.1, pp.1-6, 2014

[8] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li,Ying

Li, " Hadoop High Availability through Metadata Replication",

IBM China Research Laboratory, ACM, pp 37-44 ,2009.

[9] Ellis Horowitz and Sartaj Sahni, Sanguthevar

Rajasekaran, Fundamentals of Computer Algorithms, Galgotia

Publications, 2010.

[10] B. Purnachandra Rao, Dr. N. Nagamalleswara Rao,

HDFS Write Operation Using Fully Connected Digraph DataNode

Network Topology, International Journal of Applied Engineering

Research ISSN 0973- 4562 Volume 12, Number 16 (2017) pp.

6076-6090, © Research India Publications.

http://www.ripublication.com

[11] A Systematic Literature Review of A* Pathfinding,

https://www.sciencedirect.com/science/article/pii/S187

7050921000399

[12] John Ousterhout, Parag Agrawal, David Erickson, Christos

Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra,

Aravind Narayanan, Guru Parulkar, Mendel Rosenblum, Stephen

M. Rumble, Eric Stratmann, and Ryan Stutsman “The Case for

RAMClouds: Scalable High-Performance Storage Entirely in

DRAM” Department of Computer Science Stanford University,

Vol. 43, No. 4, pp. 92-105, December 2009

[13] Hong Zhang1, Liqiang Wang1, and Hai Huang2,

"SMARTH: Enabling Multi-pipeline Data Transfer in HDFS", in:

Proc of. Parallel Processing (ICPP), 2014 43rd International

Conference on, HDFS DataTransfer

[14] J. Shafer and S Rixner (2010), "The Hadoop distributed file

system: balancing portability and performance”, In 2010 IEEE

International Symposium on Performance Analysis of System

andSoftware (ISPASS2010), White Plains, NY, Pp.122-133,

March 2010.

[15] SAM R. ALAPATI , Expert Hadoop Administration,

Managing, Tuning and Securing Spark, YARN , and HDFS,

Addision Wesley Data Analytics series, 2017.

http://www.ripublication.com/
https://www.sciencedirect.com/science/article/pii/S187

