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Abstract: Hadoop is an open-source version of the MapReduce Framework for distributed processing. A Hadoop cluster possesses the 

capacity to manage substantial volumes of data. Hadoop utilizes the Hadoop Distributed File System, also known as HDFS, to manage 

large amounts of data. The client will transfer data to the DataNodes by retrieving block information from the NameNode. The pipeline 

configuration will connect the DataNodes that store the blocks. If a DataNode or network fails during the data writing process, the pipeline 

will remove the failed DataNode. The pipeline will add the new DataNode based on the existing DataNodes in the cluster. If there is a 

scarcity of spare nodes in the cluster, customers may encounter an abnormally high frequency of pipeline failures due to the inability to 

locate additional DataNodes or replacements. In the event of a network failure, the data packet is unable to reach the target DataNode due 

to their interconnected pipeline structure. Interconnecting each DataNode with every other DataNode ensures that multiple pathways are 

available through other DataNodes, thereby preventing network failure. The copy operation will take longer due to pipeline connectivity. 

On the other hand, a direct connection between a DataNode and all other DataNodes significantly reduces the time required, as the 

datapacket doesn't have to traverse through all other DataNodes to reach the final DataNode. This paper presents the utilization of the A* 

algorithm to enhance the performance of write operations in the Hadoop Distributed File System. 

Keywords: Hadoop Distributed File System (HDFS),NameNode , DataNode, Replica, Rackawareness, Data Packet, Data Packet Transfer 

Time, Pipeline, Fully Connected Digrapgh Network Topology, A* algorithm. 

1. Introduction 

To store very large datasets reliably, have a high degree of fault 

tolerance, and stream those data sets at high bandwidth for user 

applications running on commodity hardware, the Hadoop 

Distributed File System (HDFS) [1] is a distributed file system 

designed to be deployed on inexpensive commodity hardware. The 

system uses a master/slave architecture, referring to the master as 

the NameNode and the slaves as the DataNodes. Although HDFS 

and current distributed file systems are substantially different, they 

share many commonalities. A distributed file system comprises a 

single NameNode and numerous data nodes, ensuring availability 

and reliability through the maintenance of multiple data replicas. 

During periods of intense activity, the NameNode and DataNode 

engage in extensive communication while performing file read or 

write operations, resulting in a decline in performance. The 

system's NameNode acts as the primary server. The NameNode is 

responsible for managing the file system's metadata, including the 

file structure and block placement for each file. Additionally, it 

carries out file system tasks such as terminating, initiating, and 

changing the names of files and directories. The blocks that each 

storage node's Datanode process manages are under the authority 

of a master NameNode process running on a different host. To 

meet the growing storage demands of Hadoop [1], MapReduce [5], 

Dryad [10], and HPCC (High-Performance Computing Cluster) 

[15] frameworks, disk-based file systems are the most suitable 

option. The reason for this is that the data is near, which enables 

tasks to be executed more efficiently. When working with 

extensive datasets, executing processes can reduce network traffic 

and enhance throughput. The Hadoop distributed file system 

(HDFS) [6] can store immense amounts of data because of the 

significant number of nodes in each cluster. There is a 

requirementto incur a time penality when obtaining or storing data 

in a DataNode. A fully connected network is a communication 

network in which each of the nodes is  

connected to each other. Furthermore, data is replicated across 

multiple nodes using various methods to enhance work completion 

time. A completely linked network is a type of communication 

network where every node is directly connected to every other 

node. It is referred to as a full graph in the field of graph theory. 

Each DataNode in the cluster will have many alternative paths to 

connect to other DataNodes. The number of different paths will be 

equal to the replication factor. In the event of a failure in the 

existing path between two DataNodes, we can utilize the count of 

alternative paths available from one DataNode to another 

DataNode. The copy operation will be faster as we can use parallel 

copy processes between the datanodes. This is done by connecting 

the starting datanode directly to all other datanodes involved in the 

replication process. The proposed method has two main 

advantages: it reduces the time required for copy operations 

between datanodes and provides multiple alternative paths to reach 

the target datanode in case of network failure. In the current 

process,we configure the parameters 

dfs.client.block.write.replace-datanode-on-failure.enable and 

dfs.client.block.write.replace-datanode-on-failure.policy. Once 

we implement the suggested architecture, there will be no need to 

modify the DataNodes in the event of a network failure. Instead, 

we can access the DataNode using an alternative method different 

routes among the data nodes. This paper includes concepts such as 

conducting a literature survey on the current mechanism used for 

HDFS memory operation, describing the components of HDFS, 

identifying the issues in the existing architecture, proposing a new 

architecture that utilizes a fully connected digraph DataNode 
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network topology, implementing the proposed architecture, and 

evaluating it through simulation results. This paper introduces a 

mechanism to minimize the duration of the copy operation to 

DataNodes, which involves replicating datapackets.  

2. HDFS with Linear DataNode Connectivity 

When a client requests to read HDFS data, it first contacts the 

NameNode to collect data regarding the initial blocks of the file it 

wants to read. The NameNode determines the positions of all 

DataNodes that store a copy of the original blocks, organizing the 

DataNodes according to their accessibility to the client. In order to 

begin writing the data blocks to the pipeline's first DataNode, the 

client connects to it. The initial DataNode will establish a 

connection with the subsequent DataNode in the sequence and 

transmit the data blocks to it as soon as they are received. In the 

pipeline, the second DataNode then makes a connection and sends 

the data to the next DataNode. A confirmation packet is delivered 

over the DataNode pipeline to the client when all three replicas 

have been entirely written to, letting them know that the block has 

been successfully written to every node. The client will commence 

composing the subsequent block at this juncture.The block is 

committed by the NameNode and recorded as "written" in the edit 

log once all block replicas have been written. The file is closed by 

the client after it has finished writing data to it. This requires that 

all the blocks of the file have been replicated the minimum 

necessary number of times. The client can encounter a delay in 

closing the file if there are any DataNode errors during the 

procedure. The client informs the NameNode that the file writing 

procedure has been completed successfully. The block replicas are 

written asynchronously. The client is not required to transmit the 

data blocks it is sending to every DataNode. The NameNode 

assigns the data to a particular DataNode from the received list. 

That DataNode's next task is to send the data blocks to the other 

DataNodes in the pipeline. In addition, each DataNode will keep a 

checksum for each data block that it holds. This block's checksum 

is checked after it has been read to make sure it is accurate and 

uncorrupted.  The block reports that the NameNode gets from the 

DataNodes are the basis for the metadata that it creates. HDFS 

stores the data blocks in a way that prevents data loss due to the 

availability of one or more nodes. Hadoop employs automatic 

block replication to replace any lost blocks. The premise of 

Hadoop is to bring processing to the data, not the other way around, 

as it is in traditional database systems. Data replication helps 

enforce this philosophy by ensuring both availability and data 

locality.The existing system is using dfs.client.block.write.replace-

datanode-on-failure.enable,dfs.client.block.write.replace-

datanode-on-failure.policy parameters to maintain the fault 

tolerance even when the DataNode /network failure while writing 

or reading data from DataNodes. DFSClient will request for data 

blocks from the NameNode. Once the client gets the list of 

datablocks , client will open the Out stream for write operation. 

Data will be written to nearest DataNode (block) , and this 

DataNode will be connected to other DataNodes (number of 

DataNodes based on the replication factor) in pipeline fashion[7-

8].If there is a DataNode/network failure issue in the write 

operation (pipeline), DFSClient will remove the failed DataNode 

from the pipeline and then resume write operation with the 

remaining DataNodes. As a result of this operation, the number of 

DataNodes in the pipeline will go down. The feature is to add new 

DataNodes to the pipeline.When the number of nodes in the cluster 

is (cluster size) extremely small, example number of nodes is 3 or 

less, cluster administrators may want to set the policy 

dfs.client.block.write.replace-datanode-on-failure.enable to 

NEVER in the default configuration file (hdfs-default.xml) or 

disable this feature. Otherwise, users may face an unusually high 

rate of pipeline failures since it is impossible to find new 

DataNodes for replacement. If we have four nodes and a 

replication factor of 3, each block will have a replica on three of 

the live nodes in the cluster. If a node dies, the blocks living on the 

other nodes are unaffected, but any blocks with a replica on the 

dead node will need a new replica created. However, with only 

three live nodes, each node will hold a replica of every block. If a 

second node fails, the situation will result into under-replicated 

blocks and Hadoop does not have anywhere to put the additional 

replicas. Since both remaining nodes already hold a replica of each 

block, their storage utilization does not increase. DataNodes will 

be connected (based on the blocks from the Namespace) using 

pipeline. In the existing architecture to deliver the packet it needs 

to traverse through all the DataNodes to reach the last DataNode 

(based on the replication factor we need to decide last 

number).Refer with: Fig. 1, While writing the data if DataNode 

network fails the failed DataNode will be removed from the 

pipeline. Adding the new DataNode to pipeline will depend on the 

available nodes in the cluster. The problem in the existing 

architecture is users may experience an unusually high rate of 

pipeline failures since it is impossible to find new DataNodes for 

replacement. The time required to send the data packet and getting 

the acknowledgement back to source DataNode will take longer 

time since the DataNodes are connected in linear pipeline fashion. 

 

Figure 1: DataNode pipeline connectivity. 

If we consider one millisecond is for inter rack DataNode packet 

transfer and 0.75 millisecond is for intra rack DataNode packet 

transfer, then (replication factor is 4, DataNode2 and DataNode3 

are in second rack, whereas DataNode1 and DataNode4 are in 

rack1 and rack4 respectively) 1 millisecond to reach to second 

DataNode , 0.75 to reach from DataNode2 to DataNode3 and  
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1millisecond from DataNode3 to DataNode4. So the total time is 

1+0.75+1 = 2.75 milliseconds. The same is applicable for 

acknowledgement transfer as well. So total 5.50 milliseconds 

required to complete one packet copy operation with replication 

factor 4. Refer with: Table 1 for the time taken for copy operation 

of one packet using different replication factors. 

Table 1: Packet Transfer time with different replicationfactors 

Replication Factor  Packet Transfer(ms)  

3  3.5  

4  5.5  

5  7.5  

6  9.5  

7  11.5  

 

The time is growing up while increasing the replication factor, 

because the DataNodes will be connected in pipeline fashion[3] 

(one DataNode to another till the last DataNode and the number of 

DataNodes in the pipeline depends on the replication factor). For 

files which are frequently accessed or critical, setting the 

replication factor improves their tolerance against faults and 

increases the read bandwidth. In the existing system we are using 

the parameter dfs.client.block.write.replace-datanode-on-

failure.enable[3] to replace the DataNode in case of DataNode 

network failure. If the number of spare nodes are less or 

unavailable , then we need to set the parameter to NEVER so that 

we can externally informing to file system that , there will not be 

any node replacement in case of any network/node failure. This is 

having the limitation on number of DataNodes available in the 

cluster. Refer with: Graph 1 for the time status while increasing the 

replication factor. 

Graph1: ReplicationFactor Vs PacketTransfer time 

 

 

 

 

2.1. NameNode  

Hadoop Distributed File System's central component is the 

NameNode. People commonly refer to a NameNode as the master. 

A NameNode only retains HDFS metadata, including the file 

hierarchy and the block locations associated with each file. The 

DataNodes store the physical data and the dataset, leaving the 

NameNode without them. Typically, we configure the NameNode 

with a substantial amount of memory, specifically RAM. 

NameNode is aware of the block list and its location for each file 

in HDFS. Given its understanding of blocks and locations, 

NameNode can easily generate files from blocks. The NameNode 

is a namespace that contains both files and folders. In this context, 

inodes will serve as the representation for the files and directories. 

An inode contains information about file permissions, 

modification and access time, disk space, and namespace. Several 

DataNodes separately copy each block of the file, typically 128 

MB in size. The NameNode holds details about the mapping of file 

blocks to DataNodes. When the client requests to read some HDFS 

data, it contacts the NameNode to learn the locations of the first 

few file blocks it wants to read. In contrast, in a write operation, 

the client will request from NameNode the set of DataNodes that 

will house the block copies. The client will carry out the pipeline-

style write operation to DataNodes in the upcoming phase [7–8]. 

The client wants to write the file to HDFS, dividing it into blocks 

and storing them on different DataNodes. The client establishes a 

connection with the initial DataNode in the pipeline and 

commences the process of writing the data blocks on that particular 

node.  

2.2.  Data Node 

Within a Hadoop cluster consisting of numerous nodes, there will 

be one or more nodes designated as the master node [15]. The 

master nodes are in charge of crucial Hadoop operations like 

naming NameNode and managing resources. The worker nodes 

that make up the remaining servers in a Hadoop cluster are called 

DataNodes. These nodes have the responsibility of storing the data 

blocks. The DataNode executes various tasks as instructed by the 

NameNode, including the creation and deletion of data blocks, 

replication of data across the cluster, storage of blocks on the local 

file system to provide block storage, handling read/write requests 

from clients accessing the stored data, and maintaining regular 

communication with the NameNode through heartbeats and block 

reports. A block report provides information on the blocks that are 

under the management of the DataNode, while a pulse serves to 

confirm the presence and well-being of the DataNode. A file 

system will partition each file into one or more segments and/or 

store them on distinct data nodes. These items are commonly 

known as blocks. By altering the HDFS settings, you can increase 

the default block size of 128 MB. At initialization, the NameNode 

will shake hands with every DataNode. During the handshaking 

step, the DataNode's namespace ID and software version will 

undergo authentication. Once the match is successful, the 

DataNode will initiate communication. In the event of a 

discrepancy, the DataNode will promptly initiate an automatic 

shutdown process. When necessary, DataNodes communicate with 

the NameNode instead of directly connecting to it. Upon starting 

or restarting, the DataNode initiates communication with the 

NameNode, signaling its readiness to perform HDFS read and 

write jobs. A newly added DataNode without a namespace ID can 

join the cluster and obtain the group's namespace ID. Each 
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DataNode retains its own unique storage ID, which makes it easier 

to identify a DataNode even in the event of a restart with a changed 

port or IP address. Every DataNode periodically transmits a pulse, 

containing statistical usage information unique to that DataNode, 

to a NameNode (with a default frequency of every three seconds). 

Using this heartbeat signal, the NameNode can provide commands 

to the DataNodes to cease replication or delete data. When the 

NameNode does not get a heartbeat for a prolonged duration, it 

immediately requests a block report from the DataNode. When the 

NameNode restarts or the DataNode's network connection times 

out, it asks the DataNode to register again if it doesn't acknowledge 

the DataNode. The NameNode flags a DataNode as dead and 

replicates its data on additional DataNodes, increasing the 

replication factor of the blocks to the specified number of replicas. 

If the DataNode consistently fails to send its periodic heartbeat for 

an extended period, such as 10 minutes, this event will occur. The 

NameNode sends instructions to the DataNodes in response to their 

heartbeat signals. Refer to Figure 2 to analyze the structure of 

HDFS. 

 

Fig 2: HDFS Write Operation 

3. Rackawareness 

Hadoop components are designed with consideration for the 

physical racks in a data center. Usually, Hadoop clusters with more 

than thirty to forty nodes are housed on many racks. Inter-node 

communication inside the same rack is more efficient than inter-

rack communication. In order to minimize network traffic while 

reading or writing HDFS in large Hadoop clusters, NameNode 

chooses DataNodes on the same rack or adjacent racks to read or 

write requests . A NameNode maintains a record of the rack ID of 

each DataNode. Rack awareness is the concept in Hadoop that 

refers to choosing DataNodes based on rack information. Rack 

awareness is a policy that is simple and direct in its approach to 

distributing copies among racks. This feature ensures data integrity 

in the event of a total failure of a rack and allows for the efficient 

utilization of bandwidth across many racks while reading files. The 

regulations oversee block replications across several rack clusters, 

forbidding the arrangement of more than two replicas in the same 

rack and more than one replica on a single DataNode. Furthermore, 

the number of racks used for block replication must always be 

lower than the total number of replicas. Upon creating a new block, 

the initial replica is stored on the local DataNode, while the second 

replica is stored on a distinct rack. The third duplicate is stored on 

a distinct DataNode located within the same local rack. When 

replicating a block, if there is just one duplicate, position the 

second duplicate on a distinct rack. If there are two duplicates 

currently on the same rack, relocate the third replica to a different 

rack. While reading, the NameNode initially verifies the location 

of the client's machine within the cluster. Upon the closure of a 

DataNode, the client is provided with the block positions. This 

policy aims to minimize the expense associated with data writing 

while simultaneously improving the speed at which data may be 

read. This guarantees that data can be accessed in case of a network 

switch failure or partition occurring within the cluster. 

4. HDFS Write Operation 

An HDFS cluster is comprised of a NameNode and one or more 

DataNodes. In this section, we have given a comprehensive 

analysis about how a client communicates with the NameNode and 

DataNodes when uploading data to HDFS[7-11]. 

4.1 File creation into the file system’s namespace: 

The client first makes a create() HDFS call, which results in a 

ClientProtocol RPC being invoked to create a new file on the 

NameNode . Before the creation of the file in the namespace, the 

NameNode conducts several checks, e.g., whether the file already 

exists, whether the user has the right to create the file, and whether 

safe mode is disabled. If all these checks pass, the NameNode 

would create the corresponding file in the file system’s namespace; 

otherwise it would throw an exception. 

4.2 Packets forming from data and inserting into a data 

queue: 

When writing data to HDFS, client applications interpret the data 

in the file as a conventional output stream. Each block in the data 

stream has a standard size of 64 MB. We then automatically divide 

each block into 64KB packets before sending it across the network. 

Upon the creation of a new block by the client, the DataStreamer 

thread initiates an addBlock() request to the NameNode, seeking a 

new block ID and the DataNode IDs for block storage. Once the 

packets are generated, the client transmits them to a first-in, first-

first-out (FIFO) queue, which subsequently forwards them to the 

DataNodes. 

4.3 Packets to DataNodes: 

Using the DataNode IDs, DataStreamer builds a pipeline between 

the client and these DataNodes. It then streams the packets, one at 

a time, to the first DataNode in the pipeline and saves them in an 

additional queue called the ACK queue in case some DataNodes 

need to retransmit because of packet loss. When a packet is 

received, the initial DataNode validates the packet's checksum, 

stores it, and then passes it on to the next DataNode in the pipeline. 

Until the packet reaches the last DataNode at the end of the 

pipeline, this process will be repeated. 
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4.4 Sending acknowledgement (ACK) to the client: 

Once the final DataNode receives the packet, it will transmit an 

acknowledgment (ACK) along the pipeline in a reverse sequence. 

The client's PacketResponder thread receives acknowledgment 

(ACK) responses. When the PacketResponder thread receives an 

acknowledgment (ACK) packet from all DataNodes, it removes it 

from the ACK queue. 

4.5 Close the output stream: 

The client runs close() on the stream and waits for all packet 

ACKs after flushing all data into the output stream. 

4.6 Completing file write: 

The PacketResponder thread wakes up the client when it receives 

all of the packets' ACKs. The client would provide a 

comprehensive signal to the NameNode in order to finalize this 

file-write operation. Consult using: Figure 3 illustrates the HDFS 

write operation. 

 

Figure 3: HDFS Write Operation 

As per the namespace DN1,DN2,DN3 and DN4 are connected in 

a pipeline fashion. Once the packet has been written to DN2 by 

FSDataOutputStream, then it will be transferred to DN3 by DN2 , 

DN3 to DN4 and DN4 to DN1. Acknowledgement will be 

transferred back from DN1 to DN4, DN4 to DN3, DN3 to 

DN2.The solid lines from DN2 ->DN3->DN4->DN1 in the figure 

is showing data packet transfer and dotted lines from DN1->DN4 

->DN3->DN2 is showing acknowledgement. Using the 

configuration (hdfs-site.xml) we can set the replication factor of a 

file. By defaultthe replication factor is three. Here we are taking 

the replication factor as four. DN1 is in rack1, DN2 and DN3 are 

in rack2 and DN4 is in rack3. As discussed assume that one 

millisecond is for inter rack DataNode packet transfer and 0.75 

millisecond is for intra rack DataNode packet transfer, then 

(replication factor is 4, DataNode2 and DataNode3 are in second 

rack, whereas DataNode1 and DataNode4 are in rack1 and rack4 

respectively) 1 millisecond to reach to second DataNode , 0.75 to 

reach from DataNode2 to DataNode3 and 1 millisecond from 

DataNode3 to DataNode4. So the total time is 1+0.75+1 = 2.75 

milliseconds. The same is applicable for acknowledgement 

transfer as well. So total 5.50 milliseconds required to complete 

one packet copy operation with replication factor 4. We can reduce 

this time using fully connected network topology among the 

DataNodes. 

5. Problem Statement 

Based on blocks from the Namespace, a pipeline joins DataNodes. 

In the event of a network failure in the DataNode, the pipeline will 

eliminate the non-functioning DataNode. Drawing from the 

available DataNodes inside the cluster, the pipeline will 

incorporate a new DataNode. Because it is unable to identify new 

DataNodes to replace the lost ones, customers may encounter an 

abnormally high rate of pipeline failures if the cluster has relatively 

few spare nodes. The pipeline connection keeps the data packet 

from getting to the intended DataNode in the event of a network 

failure. Because the copy operation must go via each connected 

DataNode in the pipeline until it reaches the last DataNode, it takes 

longer when pipeline connectivity is present. Users may encounter 

an uncharacteristically high rate of pipeline failures, and the copy 

process takes longer since pipeline connectivity makes it 

impossible to identify new DataNodes to replace the ones in the 

current architecture. 

5.1. Proposal 

We can connect the DataNodes using fully connected digraph 

network topology[4] , where each DataNode is connected to every 

other DataNode as per the list from the NameNode. We can have 

number of alternative paths in case of network failure in the current 

part and we can improvethe write operation performance by 

decreasing the operation time using the new architecture. 

DFSClient will request for data blocks from the NameNode . Once 

the client gets the list of data blocks , client will open the Out 

stream for write operation. Data will be written to nearest 

DataNode (block) , and this DataNode will be connected to other 

DataNodes (number of DataNodes based on the replication factor) 

in pipeline fashion. If there is a network failure in the write 

pipeline, the operation cannot be completed . To avoid this 

connectivity issues , we can use the DataNodes using fully 

connected digraph network topology[4] , where each DataNode is 

connected to every other DataNode as per the list from the 

NameNode . Total number of edges are n(n-1) if there are n 

DataNodes in the pipeline. Each DataNode is having n-1 outgoing 

edges to connect to n-1 DataNodes.The existing architecture each 

DataNode is having 2(n-1) edges where as n-1 edges for datapacket 

copy operation and the other n-1 for acknowledgement. Solid lines 

are datapacket transfer operation and dotted lines for 

acknowledgement operation. Here the dotted lines mentioned with 

double direction. 

Refer with: Fig 4. for proposed architecture. Replication factor is 

the number of copies the data block will be copied in cluster. The 

replication factor 4 has been used here, so the data is available in 

four DataNodes. The cluster is having three racks Rack1, Rack2 

and Rack3 and each rack is having 6 DataNodes. DN1, DN2, DN3, 
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DN4, DN5 and DN6 are represented as 1, 2, 3, 4, 5 and 6 

respectively. The representation is same for each rack. As shown 

in the figure the data packet (using distinct colors to distinguish 

datapackets) is stored into DN4 in Rack1 , DN1 and DN2 in Rack2 

followed by DN4 in Rack3(Replicationfactor is 4). Here single 

direction lines are for datapacket transfer operation and 

bidirectional dotted lines for acknowledgement operation. 

DataNode DN4 in Rack1 is connected to three DataNodes 

DN1(Rack2),DN2(Rack2) and DN4(Rack3). Once the client 

writes data packet to DataNode DN4 in Rack1 this will get copied 

to all other DataNodes in the list DN1 in Rack2, DN2 in Rack2 and 

DN4 in Rack3 simultaneously. The acknowledgement packet will 

be transferred back to DN4 in Rack1 from all other DataNodes 

simultaneously. Since this is parallel operation both in forward 

(sending packet) and backward (acknowledgement) direction , the 

time required to complete one packet copy operation is just twice 

the time required for inter rack packet copy operation , and if there 

is intra rack DataNode is available in the replication list then the 

total time will be lesser than the time which we have counted in 

inter rack packet transfer. If there is any network failure while copy 

operation is in progress we can reach the destination DataNode 

using number of alternative paths, i.e,if the replication factor is 3 

we can have one alternate path, if it is 4 we can have 4 alternative 

paths , for 5there will be 15 alternate paths and for replication 

factor 6 we can have 40 alternate paths. The complexity of network 

implementation[9] is high compared to existing architecture but we 

can nullify the network issues and we can decrease the time 

required to write the datapacket. In the existing system we are 

using the parameter dfs.client.block.write.replace-datanode-on-

failure.enable [3] to replace the DataNode in case of DataNode 

network failure. We need to set this parameter to NEVER in case 

of cluster size is very small like having three DataNodes. If the 

number of DataNodes are three then in case of network failure 

there will be any choice to replace , instead of that we need to face 

the consequences of failure. Need to set as true in case of having 

more number of nodes in the cluster so that we can replace with 

new DataNode . In the proposed architecture in case of network 

failure we no need to depend on the replacement of the DataNode 

with new DataNode , instead of that we can reach the target 

DataNode using the shortest path from the remaining paths. We 

can find the shortest path from single source DataNode to all other 

DataNodes using Dijkstras’s shortest path algorithm[9]. In the 

context of the 

research paper focused on HDFS write operations utilizing a fully 

connected digraph data node network topology [10], the current 

approach employs Dijkstra's algorithm. To enhance performance 

further, I propose leveraging the A* algorithm. 

 

 

Figure 4: DataNodes with fully connected digraph 

network topology 

A* algorithm [11], renowned for its efficiency in pathfinding, 

introduces a heuristic component to intelligently navigate the data 

node network, potentially optimizing the overall HDFS write 

operation process. This strategic integration of A* algorithm aims 

to elevate performance to the next level, surpassing the capabilities 

of the existing Dijkstra's algorithm implementation. 

Table2:A* algorithm heuristic values 

Node  Heuristic value  

1  20  

2  8  

3  14  

4  6  

5  11  

 

f(x)=g(n)+h(n), f(x) is final value where as g(n) and h(n) are actual 

distance(value),heuristic value. Please find the A* algorithm 

heuristic values. As shown in figure 5 the distance between nodes 

1 and 2 is 10, but the traveling distance is heuristic value and actual 

distance is 30. The traveling distance between nodes 1 and 4 is sum 
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of actual distance and sum of heuristic values is 10+1+20+8 = 39. 

We have other options to reach node 4 from 1(1-3-4,1-3-5-4,1-2-

3-4) and the final f(x) values for all the mentioned paths are 48 , 

58 and 63. In the above set of minimal values 39 is the least value. 

We can consider path 1-2-4 is the minimal distance path. Similarly 

considering the distance between nodes 1 to 5(1-3-5) is 41. We 

have other options to reach node 5 from 1(1-2-3-5) is 56 . In the 

above set minimal values 41 in least value. So this is the best path 

1-3-5. The traveling distance between nodes 3 and 4 is sum of 

actual distance and sum of heuristic values is 9 + 14 = 23.We have 

other options to reach node 4 from 3(3-5-4) and the final f(x) 

values for all the mentioned paths are 33. In the above set of 

minimal values 23 is the least value. We can consider path 3-4 is 

the minimal distance path. The traveling distance between nodes 2 

and 5 is sum of actual distance and sum of heuristic values is 

2+2+8+14 = 26. In this case we can consider this is the only option 

as per the given graph. Since we are taking fully connected directed 

graph each node is having n-1 edges. The traveling distance 

between nodes 1 and 5 is sum of actual distance and sum of 

heuristic values is 5+2+20+14 = 41. We have other option to reach 

5 from 1 , it is 1-2-3-5. The total value is 10+2+2+20 + 8 +14=56. 

In the above set of minimal values 41 is the least value. We can 

consider path 1-3-5 is the minimal distance path. source to this 

node can be reduced while using the selected edge. If this is going 

to happen then the distance is updated and the node is added to the 

nodes which need evaluation. This is how can have number of 

alternative paths so that users will escape from experiencing an 

unusually high rate of pipeline failures. 

 

Figure 5: Input Graph 

Here I am considering the weights as real numbers just to explain 

the A* algorithm instead of taking one millisecond and 0.75 

millisecond. Please Refer with: Fig 5. 

 
Figure 6: Input Graph 

Node being considered: 1 

Nodes Not yet finalized: {2,3,4,5} 

Distances={INF,INF,INF,INF,INF} 

Please Refer with: Fig 6. In this we are considering node 1. The 

remaining we are not considering. So the distances are INFINITE. 

Figure 7: Input Graph 

Node being considered:3 

Nodes Not yet finalized: {2,4,5} 

Distances={0,10,4,INF,INF 

Please Refer with: Fig 7. Here considering node 3 after 1.We 

will we take the minimum i.e, 3 and proceed. 

 
Figure 8: Input Graph 

Please Refer with: Fig 8 for the status of nodes and distances 

while considering node 5. Nodes Not yet finalized: {2,4} 

Distances={0,8,5,14,7} 

Distance[2]=Distance[3]+wt(3,2)=8 

Distance[4]=Distance[3]+wt(3,4)=14 

1   
1   

2   
4   

10   

3   2   
1   9   6   

5   
7   

3   5   
2   
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Distance[5]=Distance[3]+wt(3,5)=7 

We need to add heuristic values as well and finalize the minimum 

distance node. For example we consider minimum node5 and 

proceed. 

 
Figure.9: Input Graph 

Please Refer with: Fig 9 for the status of nodes and distances 

while considering node 2. Nodes Not yet finalized: {2,4} 

Distances={0,8,5,13,7} 

Distnace[4]=Distance[5]+wt(5,4)=13 

We need to add heuristic values as well and finalize the minimum 

distance node. For example we consider minimum node2 and 

proceed. 

 
 

Figure 10: Input Graph 

Please Refer with: Fig 10 for the status of nodes and distances 

while considering nodes 2,4,5 

 

Nodes Not yet finalized: {2} 

Distances={0,8,5,11,7} 

No update is required. hence distance between 1 and all other 

nodes are given in distance. 

For obtaining the shortest paths in a weighted network with 

positive or negative edge weights (but no negative cycles), an 

additional approach is the Floyd-Warshall algorithm [9]. One 

iteration of the algorithm will calculate the total weights of the 

shortest pathways between every pair of vertices. Alternative 

names for this algorithm include the Roy-Warshall algorithm, the 

Roy-Floyd algorithm, and the WFI algorithm. Let's examine a 

graph G that consists of vertices M, which are numbered from 1 to 

N. Think of a function called shortestPath(i,j,k) that finds the 

shortest path between two points, I and j, using only vertices from 

the set {1,2,3,4...k} as intermediate points. The weight of the edge 

between vertices i and j can be defined as w(i,j).The function 

shortestPath(i,j,k+1) is computed using the recursive formula: 

shortestPath(i,j,0) = w(i,j). The equation shortestPath(i,j,K+1) is 

defined as the minimum value between shortestPath(i,j,k) and the 

sum of shortestPath(i,k+1,k) and shortestPath(k+1,j,k). The 

algorithm operates by performing computations. The algorithm 

calculates the shortest path between all pairs of (i,j) by iterating 

from k = 1 to k = N. This process persists until the value of k 

reaches N. 

Let the dist be |M| * |M| array of minimum distnaces initialized to 

INFINITY. 

for each vertex i 

 dist[i][i] <- 0 

for each edge (a,b) 

 dist[a][b] <- w(a,b) 

for k from 1 to |M| 

for i from 1 to |M| 

 for j from 1 to |M| 

  if dist[i][j] > dist[i][k] + dist[k][j] 

          dist[i][j] <- dist[i][k] + dist[k][j] 

       endif 
Let n represent the number of vertices, which is equivalent to the 

cardinality of set M. It takes n2 operations in total to separate the 

n2 instances of shortestPath(i,j,k) from those of shortestPath(i,j,k-

1). The sequence of n matrices shortestPath(i,j,1), 

shortestPath(i,j,2), and shortestPath(i,j,n) are computed starting 

with shortestPath(i,j,0) = edgeCost(i,j). The total number of 

operations utilized is equal to n multiplied by 2 raised to the power 

of n squared, which can be simplified as 2n cubed. The overall 

complexity is O(n3). When all nodes are run through the A* 

algorithm, the complexity is O(E log V), whereas Floyd's difficulty 

is O(V3). Here, V represents the number of vertices and E the 

number of edges. If the time complexity of algorithm E is O(V2), 

then these two algorithms are mathematically equivalent. 

However, in practice, Floyd's technique is more efficient. E = O(V) 

indicates that it is better, practically and theoretically, to run A* for 

every node. If the graph is complete, Floyd's technique should be 

used; if not, run A* from every node if the number of edges is equal 

to the number of nodes. If you possess sufficient memory and time 
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resources, Floyd's approach is evidently superior due to its 

significantly reduced coding time. Nevertheless, if you have no 

interest in obtaining all potential routes, the Floyd-Warshall 

algorithm may consume unnecessary time by computing numerous 

undesired shortest paths. Given those circumstances, we can 

employ the A* algorithm. A different algorithm is the Bellman-

Ford algorithm, which determines the shortest path between each 

vertex in the graph and the source. The graph has the potential to 

include negative edges. Nevertheless, the negative edge holds little 

significance. The Bellman-Ford algorithm is less complex than the 

A* algorithm and is highly compatible with distributed systems. 

The A* algorithm is not as time-efficient as the Bellman-Ford 

algorithm, with O(VE) time complexity. 

5.2. Implementation 

For an implementation of a fully connected digraph network 

topology [4] among the DataNodes within the Hadoop Distributed 

File System, refer to Fig. 17. The HDFS client sends creation 

requests to the DistributedFileSystem APIs. The 

DistributedFileSystem initiates an RPC (Remote Procedure Call) 

to the NameNode in order to create a new file within the namespace 

of the filesystem. The NameNode performs numerous verifications 

to ensure that the file does not already exist and that the client has 

the necessary rights to create it. If the result of the check is positive, 

the NameNode creates a record of the new file. Otherwise, if the 

check fails, the file creation is unsuccessful, and the client receives 

an IOException. The DistributedFileSystem provides the client 

with an FSDataOutputStream to initiate the process of writing data 

to the DataNode. As the client writes data, DFSOutputStream 

divides it into packets and adds them to an internal queue called 

the data queue. The DataStreamer then processes this queue, 

requesting the NameNode to allocate new blocks. The 

DataStreamer selects a list of appropriate DataNodes to store the 

data replicas. A fully connected digraph network topology 

connects the DataNodes, enabling the simultaneous transfer of data 

packets to all DataNodes.  

Figure.11: Fully Connected Digraph network topology 

implementation in HDFS 

In the existing architecture the data packet needs to traverse 

through all the DataNodes to reach the last DataNode (based on the 

replication factor we need to decide last number). If we consider 

one millisecond is the time required to transfer packet from one 

DataNode to another DataNode between two racks and 0.75 for 

intra rack DataNode transfer, then to reach the 4th DataNode 

(replication factor is 4) is 2.75 milliseconds. The same is applicable 

for acknowledgement transfer as well. So total 5.5 milliseconds 

required to complete one packet copy operation with replication 

factor 4. Whereas in fully connected digraph network topology 

data packet will be transferred in parallel fashion i.e, it will take 

one millisecond to transfer the packet to all DataNodes irrespective 

of replication factor. Acknowledgement as well will be transferred 

to source DataNode in one millisecond. So total 2 milliseconds 

required for successful one packet copy operation irrespective of 

replication factor. If we consider intra rack DataNode transfer less 

than one millisecond then the total time is max 2 milliseconds. DN1 is 

connected to all DataNodes and the same is applicable to all DataNodes. 

So the total number of connections are n(n-1) excluding acknowledgement 

edges. If there is any network failure while writing datapacket to 

DataNodes which were connected using fully connected network topology, 

no need look for the new DataNode for replacement , instead of that there 

will be number of alternative paths to reach the target DataNode . As shown 

in the Fig.11 DN2 will receive the write request (datapacket) from the 

IOstream. DN2 will send the packet to DN1,DN4 and DN3 simultaneously. 

So the total time is max one millisecond (considering DN1 in Rack1, 

DN2,DN3 are in Rack2 and DN4 in Rack3) for writing datapacket and the 

acknowledgement time is max one millisecond. While writing datapacket 

to DN4 from DN2 if there is network failure issue , using the parameter no 

need to replace the new DataNode , instead of that,datapacket can reach 

DN4 using DN2->DN1->DN4, DN2->DN3->DN4, DN2->DN3->DN1-

>DN4, DN2->DN1->DN3->DN4. Like this depends on the replication 

factor we can have multiple number of paths i.e, if the replication factor is 

3 we can have one alternate path, if it is 4 we can have 4 alternative paths 

(as shown above) , for 5 there will be 15 alternate paths and for replication 

factor 6 we can have 40 alternate paths from DN2 to DN4. Since we have 

alternative paths we no need to think about replacement .This is how we 

can avoid replacement of new node in case of network failure. 

5.3. Evaluation 

The simulation results are here with the assumption that inter rack 

datanodepacket transfer will take one millisecond and intra rack 

DataNode packet transfer will take 0.75 millisecond. There is best 

case scenario, medium and worst case scenariosbased on the path 

which we consider toreach to target node. Suppose DN2 to DN4 

datapacket needs to be copied and considering DN1 in Rack1, 

DN2,DN3 are in Rack2 and DN4 in Rack3 Direct path from DN2 

to DN4 is the best case scenario where it will take max one 

millisecond to copy the data and one millisecond for 

acknowledgement. So total 2 milliseconds required for data packet 

copy operation including acknowledgement. Whereas in medium 

case scenario, DN2->DN1->DN4, DN2->DN3-DN4 it will take 

one millisecond for DN2->DN1 different rack, DN1->DN4 one 

millisecond for different rack . So total 2 milliseconds required for 

copy and 2 milliseconds for acknowledgement. So total 4 

milliseconds in medium case scenario. In the worst case scenario 

DN2->DN1->DN3->DN4(3+3), DN2->DN3->DN1-DN4 

(2.75+2.75) total time is max 6 milliseconds and min 5.5 

milliseconds including acknowledgement. Refer with: Table 3 for 

the Access Time Analysis using Fully Connected DataNode 

Topology. In the linear pipeline connectivity time required for 
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datapacket copy operation including acknowledgement is 5.5 

milliseconds, which is almost two times to worst case scenario of 

fully connected digraph network topology. Refer to: Table 4 for 

the results of linear fashion DataNode pipeline connectivity and a 

fully connected digraph network topology with different level 

replication factors using the best casescenario of fully connected 

digraph network topology. That means no network failure and 

using the direct path from source DataNode to destination  

DataNode . In this proposed architecture the time required to 

complete one packet copy operation is 2milliseconds if there are 

no intra rack DataNodes , and max 2milliseconds in case of the 

DataNodes list includes intra rack DataNodes. Based on the results 

mentioned here for replication factor 4 FullyConnectedDataNode 

Digraph topology is better than Liner Pipeline data packet transfer 

time. 

Table 3: Access Time Analysis using Fully 

ConectedDataNode Topology. 

BestCase 

Scenario  

DataNode 

Connectivity  

Transfer Time  

Rack1 DN1  

Rack2 DN2,DN3 

Rack3 DN4  

  

DN2->DN4 :  

1 ms, different rack  

  

1 +1 : 2ms  

(copy+ack)  

MediumCase 

Scenario  

DataNode 

Connectivity  

Transfer Time  

  

  

Rack1 DN1 ,  

Rack2 DN2,DN3 

Rack3 DN4  

DN2->DN1->DN4,  

DN2->DN3->DN4  

DN2->DN1 : 1 ms  

DN1->DN4 :1 ms  

DN2->DN3: 0.75ms 

same rack  

  

1+1 : 2  

2+2:4 (copy+ack)  

0.75+1:1.75  

1.75+1.75:3.50  

(copy+ack)  

0.75+0.75:1.5  

1.5+1.5=3ms  

(copy+ack)  

WorstCase 

Scenario  

DataNode 

Connectivity  

Transfer Time  

Rack1 DN1  

Rack2 DN2,DN3 

Rack3 DN4  

DN2->DN1->DN3-

>DN4  

DN2->DN3->DN1-

>DN4  

1+1+1:3  

3+3 : 6 ms  

(copy+ack)  

0.75+1+1:2.75  

2.75 + 2.75 : 5.50  

ms  

(copy+ack)  

 

Table 4: LinearPipeline vs FullyConnectedPipelinePacket 

Best Case Transfer time 

 

Replication 

Factor  

Linear 

Pipeline(ms)  

Fully  

Connected  

Pipeline(ms)  

3  3.5  2  

4  5.5  2  

5  7.5  2  

6  9.5  2  

7  11.5  2  

 

Refer to: Graph 2 for the time required to complete copy operation 

in Linear Pipeline DataNode connectivity is increasing once we 

increase the replication factor.Whereas in Fully Connected digraph 

DataNode network topology the time is constant irrespective of the 

replication factor. 

 

Graph 2:.PacketTransferTime for Linear Pipeline 

vsFullyConnectedDatanode Pipeline. 

Possible paths from DN2 to DN4 using replication factor 4 incase 

of network failure is there from DN2->DN4 is DN2->DN1->DN4, 

DN2->DN3->DN4. Refer with: Table 5 for the results of linear 

fashion DataNode pipeline connectivity and the fully connected 

digraph network topology with different level of replication factors 

especially with medium case scenario of fully connected digraph 

network topology for replication factor 4. In this proposed 

  

Linear   Pipeline   vs   Fully   

Connected   Pipeline   

Transfer 
  

Time(ms) 
  

11.5   
9.5   

10   
7.5   

5.5   
5   3.5   

2   2   2   2   2   

0   
3   4   5   6   7   
  
Replication   Factor   

Linear   Pipeline(ms)   
  
Fully   Connected   Pipeline(ms)   



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 720–731  |730 

architecture the time required to complete one packet copy 

operation from DN2->DN1 is 1 millisecond and DN1->DN4 is 1 

millisecond. So total is is 2 milliseconds and including 

acknowledgement is 4 milliseconds. In case of DN2->DN3->DN4 

the total time including acknowledgement is 3 milliseconds. Based 

on the results mentioned here for replication factor 4 Fully 

Connected DataNode Digraph topology is better than Liner 

Pipeline data packet transfer time. 

Table 5: LinearPipeline vs FullyConnectedPipelinePacket 

medium case Transfer time 

Replication Factor  Linear 

Pipeline(ms)  
Fully Connected 

Pipeline(ms)  

3  3.5  2  

4  5.5  3  

5  7.5  2  

6  9.5  2  

7  11.5  2  

 

 

 

Graph 3: PacketTransferTime for Linear Pipeline 

vsFullyConnectedDatanode Pipeline. 

Refer to: Graph 3 for the time required to complete copy operation 

in Linear Pipeline DataNode connectivity is increasing once we 

increase the replication factor. Whereas in Fully Connected 

digraph DataNode network topology the time is constant 

irrespective of the replication factor. If we consider the network 

failure from DN2-DN4 in two combinations DN1->DN4 or DN3-

>DN4, then the possible paths from DN2->DN4 are DN2->DN1-

>DN3-DN4 and DN2->DN3->DN1->DN4.  

Refer with: Table 6 for the results of linear fashion DataNode 

pipeline connectivity and the fully connected digraph network 

topology with different level of replication factors especially with 

worst case scenario of fully connected digraph network topology 

for replication factor 4. In this proposed architecture the time 

required to complete one packet copy operation from DN2->DN1 

is 1 millisecond , DN1->DN3 is 1 millisecond and DN3->DN4 is 

1 millisecond. . So total is 3 milliseconds and including 

acknowledgement is 6 milliseconds. In case of DN2->DN3->DN1-

>DN4 ,DN2->DN3 is 0.75 millisecond , DN3->DN1 is 1 

millisecond and DN1->DN4 is 1 millisecond. The total time is 2.75 

millisecond and including acknowledgement is 5.50milliseconds . 

Only in the worst casescenari Linear pipeline connectivity id equal 

to FullyConnectedDataNode Digraph topology. Two network 

failures I have taken to create the worst case scenario. But this very 

rare case. So we can conculde that FullyConnectedDataNode 

Digraph topology is giving always better results than liner fashion 

DataNode pipeline connectivity. 

Table 6:.LinearPipeline vs FullyConnectedPipelinePacket 

worst caseTransfer time 

Replication 
Factor  

Linear 
Pipeline(ms)  

Fully Connected 
Pipeline(ms)  

3  3.5  2  

4  5.5  5.5  

5  7.5  2  

6  9.5  2  

7  11.5  2  

 

Graph 4: .PacketTransferTime for Linear Pipeline 

vsFullyConnectedDatanode Pipeline. 
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Refer with: Graph 4 for the time required to complete copy 

operation in Linear Pipeline DataNode connectivity is increasing 

once we increase the replication factor. Whereas in Fully 

Connected digraph DataNode network topology the time is 

constant irrespective of the replication factor. 

6. Conclusion and Future Work 

Based on the analysis of the values using different replication 

factors we can say that the time required to copy data packet to all 

DataNodes as per the list available from the metadata from the 

NameNode is constant. Whereas in linear Pipeline DataNode 

connectivity the time increases while increasing the replication 

factor. In Linear Pipeline DataNode connectivity we need to 

support network failure by using the 

parameterdfs.client.block.write.replace-datanode-on failure. 

enable using true or NEVER options based on the available 

DataNodes in the cluster (cluster size), whereas in fully connected 

digraph DataNode network topology if there is any chance of 

network failure in one edge we can have multiple paths to reach to 

destination node, i.e, if the replication factor is 3 we can have one 

alternate path, if it is 4 we can have 4 alternative paths , for 5 there 

will be 15 alternate paths and for replication factor 6 we can have 

40 alternate paths. So we can nullify the network failure issues. 

In this architecture the time required to copy the datapacket to 

DataNodes in the network is max one millisecond and 

acknowledgement is max one millisecond. With the replication 

factor 4 max 2 milliseconds required to complete the datapacket 

write operation in the best casescenario, that means there is no 

network failure , whereas 3 milliseconds for the same operation in 

medium case scenario , that is where there is one network failure 

issue and 5.50 milliseconds requiredin worst case scenario where 

there are two network failure issues. Here we have verified that no 

need of replacement of DataNode in case of network failure issues. 

So the usage of dfs.client.block.write.replace,datanode-on-

failure.enable,dfs.client.block.write.replace-datanode-on-failure 

parameters is not required. This is how we can reduce or nullify 

the network failure issues among DataNodes. Since we have 

number of alternative paths among the DataNodes, users can 

escape from experiencing an unusually high rate ofnetwork 

failures. Using this shortest paths we can reduce the copy operation 

time as well as we have proved using the Access Time Analysis 

using Fully Connected DataNode Topology. As we change the 

architecture to fully connected digraph DataNode network 

topology the complexity and the cost to implement the architecture 

will also increase. We can ignore this cost and complexity since 

there is an improvement in data packet write operation 

performance and nullifying the network failure issues among the 

DataNodes. The future work includes reducing the cost of the 

network by using network cost optimization techniques. 
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