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Abstract: Urban planners and academics are influenced by the contemporary notion of smart cities to create modern, secure, and 

sustainable infrastructure that offers a respectable standard of living to its inhabitants. In order to improve citizen safety and well-being, 

video surveillance cameras have been installed to meet this demand. Even with today's scientific advancements in technology, abnormal 

event detection in CCTV footage and surveillance video remains difficult and time-consuming for humans to complete. Surveillance 

videos that contain anomalous events are automatically identified by video anomaly detection. The ability to determine whether a video 

contains anomalous events has improved in previous efforts. Since the development of deep learning methods, researchers have become 

interested in automatic video surveillance. The task of video anomaly detection, can be approached as a semi-supervised learning 

problem because to the strong bias in the datasets towards normal samples. The widely used reconstruction techniques solely use regular 

images to train the network. Assuming that the network cannot precisely recreate anomalous regions, these approaches identify 

anomalous occurrences by comparing the input with the reconstructed image. These approaches, however, have a significant drawback in 

that the anomaly zones are not sufficiently generic. This issue narrows the difference between the reconstructed and anomalous input 

images, which decreases the capacity to detect anomalies. In this paper the semi supervised Generative Adversarial Networks (SSGAN) 

is combined with Deep belief network (DBN) in detecting the abnormal events in surveillance video which greatly improves the quality 

of reconstruction and classifies the anomaly effectively. The outcomes are compared with the most advanced deep learning methods 

using two well-known surveillance data sets.  
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Introduction 

Globally, both public and private security systems use 

video surveillance as a common technology. The volume 

of data generated by video monitoring systems these 

days necessitates an automatic analysis that could be 

handled by intelligent surveillance systems. In addition 

to enhancing public safety, video surveillance is essential 

for deterring crime and safeguarding a particular area 

[1]. In criminal proceedings, the recorded surveillance 

footage is frequently utilized as evidence. Anomalies are 

peculiar, context-dependent circumstances. Surveillance 

camera abnormalities occasionally represent innocuous 

situations, such as someone walking in the wrong way or 

running into someone else. A violent crime or a serious 

accident, for example, could put lives in danger, which is 

where anomalies may occur. 

It is essential to identify and discover abnormalities like 

violence as soon as possible in order to deter crime and 

lower the crime rate. For people to manually search 

through this video data looking for violent incidents 

would be inefficient and time-consuming. A manual, 

labor-intensive method's efficiency may also be lowered 

by human error. Consequently, there is a great demand 

for effective and automatic techniques to identify violent 

or unusual activity, particularly in surveillance footage. 

Deep learning has had an impact on intelligent video 

surveillance anomaly detection (AD) in recent years [2]. 

Because autoencoder models can perform semi-

supervised training, they have been a stalwart in this 

discipline [3]. The performance of AD system has been 

greatly increased by autoencoders (AE), Convolutional 

Neural Networks (CNNs) and other deep learning 

architectures [4-6]. However, for systems with 

constrained computational resources, the majority of 

suggested architectures have astronomical, unaffordable, 

or insufficient reaction times. The demand for more 

effective models that may produce acceptable outcomes 

for the AD assignment in video surveillance is what 

inspired this paper. 

In order to automate the anomaly detection process, 

current research in the subject focuses on applying deep 

learning approaches, primarily in three categories: end-

to-end anomaly score learning, learning regular 

representations of normal data, and generic feature 

extraction. The superior dimensionality reduction 
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capabilities of deep neural networks in comparison to 

well-known linear techniques like random projections [7] 

and principal component analysis (PCA) [8] and iii) their 

simplicity in end-to-end feedforward implementation. On 

the other hand, splitting apart anomaly detection and 

feature extraction typically results in less than ideal 

performance. In order to reduce dimensionality, these 

methods typically combine AE/convolutional AE 

(AEs/CAEs) [9] and generative adversarial networks 

(GANs) with well-proven classification techniques. 

Keeping in this mind and to reduce the computation time 

the GAN and Deep Belief Network is combined in this 

work for automatic anomaly detection which perform 

both feature extraction and classification in a single 

hybrid model. 

This work uses GAN and DBN deep learning techniques 

to handle the problem of violence detection. The work 

makes the following specific contributions: 

Suggest a deep learning-based method (GAN and DBN) 

for classifying videos as having normal or violent 

content. Because of its computing efficiency, our 

approach is useful in practical applications. 

Present a fully functional system that implements the 

proposed methods for automated violence detection with 

two benchmark dataset. 

Outperforms a number of cutting-edge techniques for 

violence detection on widely used video classification 

criteria. Furthermore, excellent classification accuracy 

can retain with our method. 

Related Works: 

Deep learning methods provide the efficient result in 

anomaly detection. Among traditional methods this 

section shows the hybrid novel deep learning methods 

applied on UCSD and CUHK Avenue datasets with their 

evaluation result.  

Pushpajit Khaire, Praveen Kumar offers a CNN-

BiLSTM [10] autoencoder architecture that is multi-

modal and semi-supervised DL based, with the goal of 

detecting abnormal events in important surveillance 

environments such as bank ATMs. The framework's 

ability to be trained using only incorrectly labeled typical 

video examples makes it noteworthy. We use the power 

of transfer learning by using a compact pretrained CNN 

to extract pertinent video properties, therefore 

significantly reducing the computing cost of training and 

detection. Avenue and UCFCrime2Local, two 

benchmark video anomaly datasets from the real world, 

are used to test the suggested methodology. 

For real-time VAD, Singh et al. [11] suggest a 

Constrained Generative Adversarial Network (CVAD-

GAN). The fine-grained features that CVAD-GAN 

learns from normal video frames are improved when 

white Gaussian noise is added to the input video frame 

with confined latent space. Furthermore, in order to 

comprehend the larger context of intricate video scenes 

in real-time, the skip-connection and dilated convolution 

layers maintain the information across layers. A greater 

Area Under Curve (AUC) score is obtained using our 

suggested method. On the UCSD Peds1, UCSD Peds2, 

and CUHK Avenue datasets, CVAD-GAN obtains an 

AUC score of 98.0%, 97.8%, and 94.0%. 

Ullah proposed a framework to extracts both spatial and 

temporal information from surveillance videos in order 

to identify anomalous events. It works in two stages: 

first, it extracts spatial features using an effective 

backbone CNN model, and then it uses these features to 

pass through to a transformer-based model in order to 

determine the long-term temporal relationships between 

different complex surveillance events. By feeding the 

backbone model's features into a sequential learning 

model, which uses temporal self-attention to create an 

attention map, the suggested framework is able to 

efficiently learn spatiotemporal features and identify 

anomalous occurrences.  

The goal of Ning et al.'s [13] Memory-enhanced 

Appearance-Motion Consistency (MAMC) architecture 

is to comprehend intricate appearance-motion 

consistency patterns in video data in order to identify 

anomalies. Developing an Appearance-Motion Fusion 

(AMF) module is the first step in this approach. Its goal 

is to generate a dependable scene dynamics 

representation that captures appearance-motion 

consistency. Subsequently, the memory module 

processes the consistency data, enhancing the capacity to 

discriminate between normal and anomalous events. The 

AUCs of 96.7%, 87.6%, and 71.5% is achieved using 

three benchmark dataset. 

Proposed Methodology 

This research provides a deep belief network-based 

multi-modal, semi-supervised DL models for detecting 

anomalous occurrences. The system is notable since it 

only needs poorly tagged typical video examples to be 

trained. The power of semi-supervised GAN is used to 

remove crucial video features, hence reducing the 

computing cost of training and detection. A distinct 

dataset of surveillance images is provided since there 

was no publicly available surveillance dataset. Using the 

gathered dataset, the suggested framework is examined. 

The suggested framework may be able to spot 

irregularities in actual surveillance situations, which can 

include both indoor and outdoor settings.This study uses 

a three-phase approach: the input image is first scaled 

using the min max scaler, and then U-Net is used to 

capture local and global temporal data for the purpose of 
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identifying odd areas in the image. In the end, the 

anomaly is successfully classified by the suggested semi-

supervised GAN classifier, which is based on deep belief 

networks. 

 

Fig 1. Architecture of DBNSSGAN Anomaly Detection model 

Dataset 

UCSD Dataset 

In Ped1, there are 16 test and 34 training videos in the 

UCSD dataset [14]. Ped1's picture dimensions are 

238 ×  158 pixels. This dataset contains anomalous 

events related to wheelchairs, cars, skating, and cycling. 

The Chinese University of Hong Kong (CUHK) 

Avenue 

This dataset has 21 testing films and 16 training videos at 

a resolution of 25 frames per second [15]. It is a common 

occurrence for an object's size to decrease with 

increasing distance from the video surveillance system 

recording it. 

Preprocessing 

The first step involved preprocessing the medical data 

using the min-max scalar approach. With the original 

data, Min-Max normalization applies a linear 

transformation. Scale each feature to a specified range in 

order to transform it. In order to place each feature in the 

training set within the specified range [0, 1], this 

estimator scales and translates each feature separately. 

The attributes D's minimal and maximal values are 

indicated by the symbols 𝐵𝑚𝑖𝑛 and 𝐵𝑚𝑎𝑥 . A Min-Max 

Scalar (S) has the following definition. 

𝑆 =
𝐵 − 𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛

                                                    (1) 

This can be applied to the anomalous dataset using the 

Python MinMaxScaler function.   Rather of decreasing 

the significance of anomalies, MinMaxScaler reduces 

them linearly within a specified range, where the largest 

value corresponds to the maximum and the smallest 

value to the minimum. 

U Net segmentation 

 The two paths that make up U-Net are in charge 

of localizing and classifying every object in a frame [16]. 

The first pathway, called the encoder, uses max-pooling 

layers, rectified linear units (ReLU), and repeated 

convolution to down sample data in order to extract 

features. The recovered feature maps are re-sampled 

using convolution, concatenation, and ReLU layers to 

obtain localization information in the second pathway, 

known as the decoder. The U-Net design efficiently 

extracts location and segmentation data through the 

encoder and decoder pathways, allowing extremely 

accurate anomaly segmentation models to be trained at a 

minimal cost. 

Encoder: 

It is also known as the contracting network, or encoder 

network. The first question this network attempts to 

answer is "what" is in the image by learning a feature 
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map of the input image. A U-Net does not contain 

completely connected layers at the end since the output 

we need is a mask the same size as our input image 

rather than the class label. Other than that, it is similar to 

any classification task we carry out with convolutional 

neural networks. 

There are four encoder blocks in this encoder network. 

Every block has a Relu activation function after two 

convolutional layers with a 3*3 kernel size and 

appropriate padding. A max pooling layer with a 2*2 

kernel size receives this as input. The bottleneck layer is 

located between the encoder and decoder networks. The 

layer at the bottom is this one. It is composed of two 

convolutional layers, then Relu. 

Decoder: 

Decoding resample feature maps to match the 

dimensions of the original image. Using skip 

connections, this network takes the feature map from the 

bottleneck layer and creates a segmentation mask. The 

object's location within the image is the second question 

the decoder network attempts to answer. There are four 

decoder blocks in it. Each block begins with a transpose 

convolution with a kernel size of 2*2, denoted in the 

diagram as up-conv. The matching skip layer connection 

from the encoder block is concatenated with this output. 

Next, a Relu activation function is applied after the use 

of two convolutional layers with a kernel size of 3*3. 

Deep belief network_ Semi supervised GAN 

(DBN_SSGAN) 

The most widely used deep learning technique is the 

deep belief network (DBN), which Hinton originally 

proposed. Compared to previous algorithms, this one 

discovers the optimal settings faster and picks up new 

information quicker. The core elements of a conventional 

DBN are a logistic regression layer and an unsupervised 

learning module based on restricted Boltzmann machines 

(RBMs).  

A DBN is produced via layer-wise training of the RBM, 

a popular stochastic neural network. Two layers make up 

the RBM: a layer of binary-valued neurons and a hidden 

layer of Boolean neurons. Despite being between layers, 

the connections between the neurons within a layer are 

not symmetrical or bidirectional. 

The probability distribution between the two levels in 

layer-wise setups is found using the energy function of 

the configuration, which is provided in (2). The 

probability distribution can then be expressed using the 

following equation.  

𝐸𝑓(𝑎, 𝑏) = − ∑ 𝑥𝑚𝑎𝑚

𝑧𝑎

𝑚=1

− ∑ 𝑦𝑛𝑏𝑛

𝑧𝑏

𝑛=1

− ∑ ∑ 𝑏𝑛𝑊𝑛,𝑚𝑏𝑚                                 (2)

𝑧𝑏

𝑛=1

𝑧𝑎

𝑚=1

 

pd =
e−Ef(a,b)

∑ ∑ e−Ef(a,b)
ba

                                                        (3) 

Wn,m neurons make up the visible layer, while 

bnBoolean hidden neurons make up the hidden layer. 

The two layers are separated by the weight matrices 

bm and bn. xm and ynare the biases for the two layers. 

The activation probability functions are then expressed 

using an equation.   

 𝑝𝑑(𝑎𝑚 = 1|𝑏) = 𝑠𝑖𝑔(𝛼𝑚 +

∑ 𝑊𝑛,𝑚𝑏𝑚
𝑖𝑏
𝑛=1 )                                (4) 

𝑝𝑑(𝑏𝑚 = 1|𝑎) = 𝑠𝑖𝑔 (𝑦𝑚

+ ∑ 𝑊𝑛,𝑚𝑎𝑛

𝑖𝑎

𝑚=1

)                          (5) 

sig() is another way to represent the logistic sigmoid 

function. This is supported by the pre-training principles 

since the layer biases and weight matrices can be learned 

without supervision. The data's peculiarities are too 

intricate for a single concealed RBM. A DBN, which is 

constructed by stacking layers of RMBs in a hierarchical 

fashion and concluding with a logistic regression layer, 

can progressively extract deep features from the input 

dataset. The training data are used as inputs to pre-train 

the DBN's initial RBM so that it can operate 

independently. 

Once the weight matrix and bias parameters are 

established, the output of the first RBM is selected to be 

the input for the second RBM. The unseen layers of the 

first two RBMs are then repeatedly trained to produce a 

new RBM using the same procedure. The next step is to 

carefully monitor the network's training while 

superimposing a thorough predictor (such a logistic 

regression layer) on top of it. After implementing the 

aforementioned steps, the back-propagation (BP) 

approach is used to fine-tune the parameters of the 

trained network. 

In recent years, GANs have been widely used in both 

image processing [15–16] and natural language 

processing [14–16]. The cornerstone of Generative 

Adversarial Networks (GAN) was laid by game theory. 
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The GAN framework consists of the discriminator and 

generating models. The generator model transforms a 

latent vector from a known distribution into a data space 

that it receives as input. The discriminator model makes 

an effort to differentiate between a fake sample from the 

generator and a real sample from the data space. 

Let q be the samples of the 𝐷𝑑 data distribution and 𝑙 be 

the latent vector in 𝑆𝑑 sampled from the noise 

distribution 𝑁(𝑥), and. Let 𝐴(𝑙; 𝜃𝐴) be the generator 

model; A is a differentiable function with parameters 𝜃𝐴 

that is represented by a deep belief network.  

Likewise, suppose that the discriminator model is 

represented by a deep belief network 𝐵(𝑞; 𝜃𝐵), and that 

the scalar output of this network indicates the likelihood 

that q originates from 𝐷𝑑  instead of 𝐴(𝑙). 𝑙𝑜𝑔[𝐵(𝑞)] and 

𝑙𝑜𝑔 (1 −  𝐵(𝐴(𝑙)))are thus maximized by B during 

training. B is trained to trick the discriminator by 

simultaneously minimizing𝑙𝑜𝑔(1 − 𝐵(𝐴(𝑙))). By 

optimizing the following objective function, the two 

models act as opponents in a two-player min-max game: 

Let 𝐵(𝑞; 𝜃𝐵)), be the deep belief network that represents 

the discriminator model in a similar way. The scalar 

output of this network indicates the probability that p 

comes from 𝐷𝑑  rather than 𝐴(𝑙). In order to maximize 

𝑙𝑜𝑔[𝐵(𝑞)] and 𝑙𝑜𝑔 (1 −  𝐵(𝐴(𝑙))), B is so trained. 

Moreover, B is simultaneously trained to minimize 

minimize 𝑙𝑜𝑔 (1 − 𝐵(𝐴(𝑙)))in order to fool the 

discriminator. Stated otherwise, this is a two-player min-

max game in which two models fight to maximize the 

previously given goal function: 

min
𝐴

𝑚𝑎𝑥
𝐵

𝐸(𝐴, 𝐵) =
V

𝑞~𝐷𝑑
[log(𝐵(𝑖))]

+
V

𝑙~𝑁(𝑥)
[log (1

− 𝐵(𝐴(𝑙)))]                        (6) 

As long as A and B have sufficient capacity, the training 

criterion allows the data generating distribution to 

converge to a genuine data distribution 𝐷𝑑, according to 

Goodfellow et al. [17]. The min-max objective function, 

however, necessitates the identification of a Nash 

equilibrium, which can include a non-convex function 

with high dimensional and continuous parameters. Given 

that gradient descent methods are employed in GAN 

training, it usually fails to converge when attempting to 

find the Nash equilibrium. 

Now let's look at a typical K class classifier model, 

where a given data point (p) is mapped to one of the M 

possible outputs. One such model, 𝑝𝑚(𝑦|𝑞, 1 ≤  y ≤ K)., 

yields the class probability corresponding to each class. 

In supervised learning, the model is trained by reducing 

the cross-entropy between the true label and the 

prediction distribution 𝑉𝑞,𝑦~𝐷𝑑
[𝑙𝑜𝑔𝑃𝑚𝑜𝑑𝑒𝑙(𝑦|𝑞)]. 

Semi-supervised learning can be used to improve any 

such traditional classifier by only adding fresh unlabeled 

data generated by the GAN generator. This unlabeled 

data can be utilized as a new class (y = K + 1) for 

unsupervised learning. In supervised scenarios, the 

discriminator can be compared to the B standard 

classifier 𝐵𝑠𝑠(𝑞) = 𝑃𝑚𝑜𝑑𝑒𝑙 (𝑦|𝑞, 1 ≤  y ≤ K).. While q in 

the original GAN function reflects the likelihood that q is 

real, 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝐾 + 1|𝑞) in unsupervised learning is 

equivalent to the likelihood that q is a fake. The 

objective of semi-supervised learning is therefore 

min
𝐴

𝑚𝑎𝑥
𝐵

V
𝑞~𝐷𝑑

[log(𝐵(𝑖))]

+
V

𝑙~𝑁(𝑥)
log (1 − 𝐵(𝐴(𝑙)))

+ 𝛼𝑠 
V

𝑞, 𝑦~𝐷𝑑
log(𝐵𝑠𝑠(𝑝))                  (7) 

The hyperparameter αs is incorporated to maintain 

equilibrium between the supervised and unsupervised 

losses.  

Result and discussion 

In this section, the proposed DBNSSGAN model 

performance is assessed on two anomaly benchmarks 

and compares it with the state-of-the-art techniques 

Python serves as the foundation for our suggested model. 

Sklearn and Tensorflow libraries are used to implement 

the testing and training procedures. Accuracy, precision, 

recall, and F1 score are taken into account while 

assessing the DBNSSGAN's quantitative performance. 

 The anomaly detection system will be implemented 

using Python 3.7.5 and will adhere to the following 

specifications: Windows 10 PC with an Intel i3-core and 

2 GB of RAM. Table 2 provides the performance metrics 

values for the current model, and Table 3 displays a 

comparison with the existing model. 
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Fig 1 python simulation workout   

   

   

Fig 2. Sample images of CUHK Avenue dataset 

   

   

Fig 3 Sample images of UCSD dataset 
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Performance metrics calculation for USCD dataset 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1458

1458 + 27
= 98.84 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1458

1458 + 161
= 98.51 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1458

1458 +
1
2

(22 + 17)
= 98.68 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1458 + 1503

1458 + 1503 + 22 + 17
= 98.70 

Performance metrics calculation for CUHK dataset 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1024

1024 + 5
= 97.24 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1024

1024 + 29
= 99.15 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1024

1024 +
1
2

(5 + 29)
= 98.36 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1024 + 942

1024 + 942 + 5 + 29
= 98.30 

Table 2: performance of DBNSSGAN 

Method Dataset Precision Recall F1score Accuracy 

DBNSSGAN USCD 98.84 98.51 98.68 98.70 

DBNSSGAN CUHK 97.24 99.15 98.36 98.30 

 

Table 3: DBNSSGAN comparison with existing model 

Methods USCD CUHK 

DBN 96.98 96.54 

CNN 97.05 97.00 

GAN 94.94 94.03 

SSGAN 97.45 97.72 

DBNSSGAN 98.70 98.30 

 

Figure 4. Loss Report of DBNSSGAN on USCD dataset 
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Fig 5. Accuracy Report of DBNSSGAN on USCD dataset 

 

Fig 6 Loss Report of DBNSSGAN on CHUK dataset 

 

Fig 7 Accuracy of DBNSSGAN on CHUK dataset 

It has been observed that our framework infers 

anomalous frames, particularly in frames with a high 

anomaly score, when an individual is throwing objects, 

sprinting, or walking in the incorrect direction. The loss 
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and accuracy of the proposed model is computed and 

shown in above figures. From the figure 3 and 4, the 

accuracy of the semi supervised classification is 98.80% 

and 98.73% on USCD and CHUK dataset. Following 

these experimental results, it is clear that applying 

DBNSSGAN with the Anomaly data benefits anomaly 

detection in real time application. 

Conclusion 

The uncommon and unpredictable character of 

anomalous events in real-world circumstances makes 

them difficult to detect in recordings. A video anomaly 

detection method using Unet segmentation and Min-Max 

scaler is presented in this paper under the name 

DBNSSGAN. Both the USCD and CUHK benchmark 

datasets are widely used for evaluation purposes. For 

anomalous events with anomalous behaviors and objects, 

the suggested framework is appropriate. On the USCD 

and CHUK datasets, the semi-supervised classification 

accuracy is 98.80% and 98.73%, respectively. These 

experimental findings demonstrate that using 

DBNSSGAN in conjunction with anomaly data enhances 

anomaly detection for real-time applications. In order to 

confirm whether these events are genuinely aberrant or 

merely infrequent normal occurrences, our future work 

will concentrate on continual learning of unknown 

events. 
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