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Abstract: Polymer extrusion, a fundamental method in plastics production, is seeing great benefits from the adoption 

of AI technologies. This review looks at current trends and challenges, as well as where we might be headed in the 

future, with the use of AI to improve polymer extrusion processes. Techniques driven by AI such as machine learning, 

deep learning, and even reinforcement learning bring many clear advantages when it comes to dealing with complex 

process parameters. They offer a way to handle the nonlinearity and high dimensionality that are intrinsic to many 

aspects of extrusion. In addition, these same techniques allow for fault detection and process monitoring in "smart" 

extrusion systems. One significant advantage of using AI is its predictive capability. For example, neural networks 

can be trained to act as predictive models for how an extrusion process will behave given certain input conditions 

(e.g., material properties, temperatures, pressures). These models can replace or supplement the highly simplified 

mathematical models that have traditionally been used to describe extrusion processes. Nonetheless, the application 

of AI in polymer extrusion encounters hurdles like insufficient data, a lack of domain specific expertise, and the 

requirement for clear models. This review examines how these challenges can be overcome to use AI for advancing 

sustainable practices in polymer extrusion. Overall, this article fills a few gaps in the current research and provides a 

thorough understanding of how AI is beginning to "revolutionize" polymer extrusion. 
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1. Introduction 

Polymer extrusion is fundamental to contemporary 

manufacturing, enabling the production of a vast range 

of plastic products essential for various critical 

industries. It is especially vital in sectors such as food 

packaging, where polymers are crucial for extending 

shelf life and ensuring safety (Tajeddin et al., 2020); 

healthcare, where they are used in medical devices and 

drug delivery systems (Maitz, 2015); automotive, 

where advanced polymers enhance vehicle 

performance and fuel efficiency (Zhang et al., 2022); 

and aerospace, where they are essential for lightweight 

and high-performance materials (Parveez et al., 

2022)—areas that significantly impact human well-

being.  

In agriculture, extrusion technology is used to create 

strong yet flexible films for greenhouse covers and 

crop protection, helping to shield plants from harsh 

weather and pests (Sikder et al., 2021). These films 

also serve as row covers in organic farming, deterring 

insects while allowing sunlight to nourish the plants. 

In the construction industry, extruded plastics are 

essential for producing pipes, window frames, and 

insulation materials, all of which enhance building 

energy efficiency and sustainability (Shen et al., 

2020). Polymer extrusion is a versatile technique that 

is vital not only for industrial applications but also for 

the creation of everyday consumer goods, such as 

films, bottles, and various household items (Namazi, 

2017).  

Since the 1950s, plastic production has surged, with 

estimates forecasting that between 2016 and 2030 

alone, an annual output of 260 to 460 million metric 

tons of plastic waste will be generated (Borrelle et al., 

2020). Further projections suggest that by midcentury, 

cumulative global plastic production will have 

surpassed half a billion metric tons—more than 33 

times the amount produced in the entire decade of the 

1960s (Sardon et al., 2018). Figure 1 presents data on 

total global plastic production from 2018 to 2021, 

alongside more detailed breakdowns of the output of 

certain types of plastics and figures for overall plastic 
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usage across different applications in 2021 (Malik et 

al., 2024). 

Although emerging materials are being developed as 

alternatives to traditional polymers, it is unlikely that 

they will entirely replace plastics. The polymer 

extrusion process offers unmatched advantages in 

producing items at scale with consistent quality and 

cost-effectiveness. As there is an increasing emphasis 

on sustainability, extrusion technology offers the 

potential to incorporate recycled materials into 

production processes, thus supporting circular 

economy goals (Kassab et al., 2023).  

 

 

Figure 1(a) Global plastic production trends from 2018 to 2021. (b) Composition of global plastics production 

in 2021. (c) Breakdown of Global Plastics Use by Application in 2021. (d) Plastic-type breakdown in 2021. 

(Malik et al., 2024) 

The extrusion process encompasses several different 

methods, such as single-screw and twin-screw 

extrusion, as well as film, sheet, and profile extrusion, 

each offering specific advantages tailored to specific 

applications. Each of these extrusion processes, may 

appear straightforward, but are highly efficient and 

effective. Broadly, they all start out with heating raw 

polymer materials until they reach a molten state. This 

molten polymer is then forced through a die, a 

specialized tool that shapes the material using pressure 

generated from a screw or piston. As the polymer 

emerges from the die, it takes on the desired form, such 

as a film, sheet, pipe, or profile. Once out of the die, 

the material cools and solidifies into its final shape. 

Below, we briefly describe the different extrusion 

methods that are currently being utilized across all 

industries.  

• Single screw extrusion is the most widely used 

method for continuous production. In this process, 

a rotating screw pushes molten polymer through a 

die, forming a specific shape. Pipes, tubes, and 

various films are frequently made using this 

technique.  

• Twin screw extrusion employs two 

intermeshing screws that provide superior 
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mixing and processing capabilities. This 

method is often used for compounding and 

blending operations in high performance 

applications such as reinforced plastics.  

• Blown Film Extrusion process is used to 

create flexible films by extruding a polymer 

into a tubular form and then expanding it into 

a bubble. This method is suitable for thin, 

uniform films and finds its greatest 

application in the production of packaging 

materials, agricultural films, and various 

types of bags. 

• Sheet Extrusion, molten polymer is flattened 

into sheets. These sheets are later 

thermoformed into different products, such as 

packaging materials, panels used in 

construction, or signage.  

• Profile Extrusion produces shapes that have 

continuous lengths but relatively complex 

cross sections. Window frames, seals, and 

weatherstrips are good examples of what this 

process can do.  

These extrusion processes require precise control over 

material properties and dimensions—an outcome 

heavily influenced by temperature, pressure, screw 

speed, and material feed rates. Operators have 

traditionally used manual tweaks and their own know 

how to fine tune the variables of polymer extrusion. 

This has often led to process inefficiencies, wasted 

material, and products of uneven quality. In recent 

years, however, the demands for more productive and 

sustainable extrusion operations that also yield better 

quality products have prompted many in the industry 

to turn to artificial intelligence as a potentially 

transformative tool for optimizing polymer extrusion. 

1.1 How AI is Transforming Polymer Extrusion 

The polymer extrusion industry is reaping substantial 

rewards from the AI revolution, especially in the fields 

of machine learning and deep learning. These 

technologies are now being used to solve many of the 

sector's perennial problems and to push it toward new 

frontiers of efficiency and innovation. 

• Process Optimization: The exact fine tuning 

of process parameters such as temperature, 

pressure, and screw speed is now possible 

with AI. This powerful tool sifts through 

enormous quantities of historical and real 

time data to find the optimal extrusion 

conditions for various polymers. Manual 

adjustments are reduced to a minimum, and 

the outdated trial and error method is nearly 

being eliminated from production. We are 

more efficient; we produce less waste; and, as 

Park et al. (2022) observe, machine learning 

"holds great promise" for predicting polymer 

properties. 

• Real-Time Process Control: Munir et al. 

(2021) demonstrated that AI driven real time 

monitoring systems could enhance the 

control of extrusion processes, specifically in 

optimizing film thickness. These systems use 

real time data to make adjustments and 

maintain the quality of products being 

extruded. By employing these new methods, 

manufacturers can expect to see not only a 

reduction in the number of defective products 

but also a decrease in the amount of material 

used during production runs. A study 

conducted by Munir et al. (2023) focused on 

the real time monitoring of polylactic acid 

(PLA) degradation during extrusion. The 

researchers used data from sensors and 

machine settings to create understandable 

models that forecast the polymer's molecular 

weight and mechanical properties. They 

found that combining Recursive Feature 

Elimination (RFE) with Random Forest (RF) 

yielded the most accurate, straightforward, 

and computationally efficient results among 

the methods tested. Their work highlighted 

pressure and temperature—especially at the 

extrusion exit—as crucial factors for 

determining both the PLA's mechanical 

properties and its degradation rate. Thus, they 

recommended their RFE RF approach for 

quality control of thermally sensitive 

polymers like PLA. 

• Predictive Maintenance: According to Cinar 

et al. (2020), machine learning can be applied 

to predictive maintenance towards 

sustainable smart manufacturing in several 

industries. This very well can be applicable 

for polymer extrusion, and this application 

can help avert expensive equipment failures. 

It relies on sensor data from the machinery 

and a set of algorithms that "extract 

meaningful patterns" from the data. The 

patterns then provide a kind of forecast of 

when the failure of the extrusion equipment 
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is likely to occur. These failure forecasts 

provide enough lead time for personnel to 

carry out timely maintenance and prevent 

actual failures from occurring. 

• Quality Assurance: AI powered systems, 

such as deep learning in machine vision, can 

perform product inspections and 

identifications in real time. They can detect 

surface defects, dimensional inaccuracies, 

and material inconsistencies. This guarantees 

a higher level of quality control and 

minimizes material wastage. These 

applications are especially critical in the 

packaging and medical device industries, 

where even minor deviations from product 

specifications can have serious 

consequences.  

• Sustainability and Energy Efficiency: 

Polymer extrusion can also be made more 

environmentally friendly with the help of AI. 

More than a third of energy used in the 

materials processing sector is accounted for 

by the polymer processing (Abeykoon et al., 

2021). This technology can cut energy 

consumption and material waste by a 

significant amount. Because extrusion 

involves melting solid polymer pellets and 

pushing them through a die, it is very energy 

intensive. Abeykoon et al. (2021) studied 

how AI could be applied to reduce energy use 

in extrusion without compromising product 

quality. Their work provides a thorough 

assessment of energy utilization, identifies 

where and why energy losses occur, and 

advocates strategies for boosting process 

efficiency. 

• Advanced Materials and Customization: 

The development of new polymer 

formulations and customization of products 

is accelerating due to artificial intelligence. 

By predicting the behavior of new materials 

during extrusion, AI allows industries like 

automotive and aerospace to push the limits 

of high-performance polymers. AI is 

beginning to have a profound effect on both 

the speed and nature of innovations in 

polymers. It allows these companies to work 

much faster, but it also permits them to be far 

more creative and flexible than they could 

have imagined even a few years ago. 

Researchers like Park et al. (2022) have 

shown how this can happen by applying AI 

not only to the design of new materials but 

also to their processing, which is crucial 

when working with advanced polymers and 

composites that must be formed into intricate 

shapes during extrusion or other operations. 

 

Figure 2 Schematic representation of in/on-line monitoring of the extrusion process with machine learning 

(Munir et al., 2021) 
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2. Previous literature 

As technological advancements reshape industrial 

processes, the integration of artificial intelligence (AI) 

into polymer extrusion is unlocking new opportunities 

for innovation, optimization, and sustainability. Below 

is an overview of recent research contributions that 

highlight key developments in this area.  

• Traditional Process Optimization and 

Limitations 

Polymer extrusion has traditionally depended 

on the expertise of operators and manual fine 

tuning to set and control key process 

parameters. Temperature, pressure, screw 

speed, and material feed rate all had to be 

adjusted using a combination of simple 

mathematical models, empirical methods, 

and—most importantly—the kind of 

intuition that comes only with years of 

experience. Yet even with this "best 

practices" approach, precision in polymer 

extrusion remained elusive. Namazi (2017) 

noted that despite improvements in extrusion 

technology, controlling the process precisely 

enough to avoid waste and achieve consistent 

quality products was still a major hurdle. 

• Early Applications of AI in Polymer 

Processing 

Weichert et al. (2019) analyzed how machine 

learning and optimization methods are being 

integrated into manufacturing, thanks to 

digitalization and data availability. Interest is 

clearly growing in employing these tools to 

boost production efficiency, save resources, 

and cut waste. The authors reviewed 

literature from 2008 to 2018 that examined 

different machine learning algorithms and 

optimization techniques applied to product 

quality and process improvement. Yet this 

body of work showed only limited 

connections among the types and amounts of 

data, the kinds of algorithms used, and the 

optimization methods applied to tackle 

specific production problems. Nevertheless, 

progress is being made, even if some key 

challenges remain unresolved.  

AI's ability to manage the nonlinearities and 

high dimensionality of extrusion processes 

has made it a valuable tool for process control 

and optimization. Park et al. (2022) 

demonstrated that machine learning models 

could predict the properties of polymers with 

an accuracy surpassing that of conventional 

techniques. This improved predictive 

capability stands to benefit both process 

control and material quality. A next 

generation smart extrusion system that uses 

AI promises even greater advances in this 

regard. Munir et al. (2021) has shown how AI 

powered systems could detect deviations in 

blown film extrusion, like thickness 

variations. This capability helps keep product 

quality consistent and reduces the downtime 

of machines. 

• Advancements in Predictive Modeling and 

Real-Time Control 

One of the main advantages of using AI in 

polymer extrusion is its ability to predict 

outcomes. For instance, neural networks can 

understand and replicate the intricate 

relationships that exist between various input 

parameters (like material properties, 

temperatures, and pressures) and the results 

they produce (such as the dimensions and 

quality of the extruded product). These 

predictive models are far more accurate than 

the traditional mathematical models we have 

used in the past. By relying on them, we can 

avoid a lot of the guesswork that has 

historically been associated with extrusion 

processes. Additionally, Cinar et al. (2020) 

highlighted the use of ML in predictive 

maintenance. By examining sensor data from 

extrusion equipment, AI can predict when the 

machinery is likely to wear out or fail. This 

allows for maintenance to be performed just 

in time, avoiding the kind of unplanned 

downtime that can really cost a company. 

• AI’s Role in Enhancing Sustainability 

The polymer processing industry is under 

increasing pressure to reduce its 

environmental impact, particularly with 

respect to energy consumption and material 

waste. Abeykoon et al. (2021) examined how 

artificial intelligence could be employed to 

optimize energy use in extrusion processes. 

They identified where energy was being lost 

and proposed AI based solutions for reducing 
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those losses. Their study showed that AI can 

assist in making plastic production more 

sustainable without compromising the 

quality of the end product. Material 

efficiency is another area where AI can 

contribute to sustainability goals, especially 

as the industry intensifies its focus on those 

goals. The role of artificial intelligence in 

enhancing the use of recycled materials in 

extrusion processes was investigated by 

Kassab et al. (2023). They found that AI can 

forecast the performance of recycled 

polymers, allowing manufacturers to fine 

tune their operations for peak efficiency. This 

capability holds great promise for advancing 

a circular economy in plastics production. 

2.1 Gaps in Current Research and 

Opportunities for AI in Polymer Extrusion 

Even with substantial progress, fully 

achieving AI's potential in polymer extrusion 

remains elusive. A major hurdle is the 

absence of high quality, domain specific data 

needed to train AI models. Without strong 

datasets, the models have difficulty 

generalizing to the wide variety of polymers 

and extrusion techniques. Yet another 

significant challenge is developing 

interpretable AI models that can offer clear 

explanations of why they make the decisions 

or predictions they do. Munir et al. (2021) 

emphasized the importance of 

interdisciplinary collaboration between 

materials scientists, data scientists, and 

engineers to overcome these obstacles and 

maximize AI's impact in polymer extrusion. 

This kind of collaboration can help remove 

the roadblocks currently preventing AI from 

having its full effect on polymer extrusion. 

To sum up, even though AI has already shown how it 

can improve polymer extrusion, there is still a lot of 

room for new ideas and innovations. This review 

extends earlier studies by filling in some current gaps 

and offering solutions to several present-day 

problems. The main thrust of this work is on three 

areas: sustainability, process optimization, and 

interdisciplinary collaboration. 

2.2 Uniqueness and Contributions of This Review 

This review offers a comprehensive examination of 

the intersection between artificial intelligence (AI) and 

polymer extrusion, with a unique focus on the 

following areas: 

• Challenges and Solutions 

o Detailed Challenges: Unlike 

current reviews that offer only broad 

perspectives, this one provides a 

detailed look at the specific 

difficulties of getting AI into the 

many extrusion methods. The first 

and perhaps biggest challenge to 

solving any machine learning 

problem is to determine if the right 

kind of data is available. That is 

particularly true for extrusion, 

which involves many different 

variables. Despite the complexity of 

these problems, we remain 

optimistic about AI's potential to 

make extrusion more sustainable 

and efficient—especially with 

regard to reductions in material 

waste and energy consumption 

(Abeykoon et al., 2021).  

o Innovative Solutions: In addition 

to identifying challenges, this 

review proposes innovative 

solutions, building on Munir et al. 

(2021), who offered practical 

approaches to making AI effective 

in industrial settings. These include 

securing high-quality data, ensuring 

model interpretability, and fostering 

interdisciplinary collaboration. 

• Future Directions and Emerging Trends 

o Future Prospects: The review 

adopts a forward-looking 

perspective on the future of polymer 

extrusion, highlighting current 

trends and possible breakthroughs 

that could mold this sector of the 

plastics industry. We emphasize 

how artificial intelligence (AI) can 

help drive advances in process 

optimization, sustainability, and 

energy efficiency - three areas ripe 

for improvement in polymer 

extrusion. 
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o Research Roadmap: A 

comprehensive research roadmap 

specifies the principal questions and 

areas that need further exploration. 

This guide for future research 

accentuates pivotal gaps and 

opportunities for innovation in AI 

driven polymer extrusion, allowing 

the systematic development of this 

nascent field. 

• Interdisciplinary Approach 

o Cross-Disciplinary Insights: This 

multidisciplinary review 

encompasses materials science, data 

science, and engineering to assess 

AI's potential and challenges in 

polymer extrusion. Insights from 

these disciplines underscore the 

critical role of collaboration in 

advancing AI applications. 

o Collaboration: To advance AI 

technologies for extrusion, 

interdisciplinary teamwork is 

essential. The problems we face are 

too intricate to be solved without the 

imaginative input of different 

disciplines working together. 

This review stands apart from the current body of work 

by concentrating on several key aspects, making it a 

useful tool for researchers and industry experts aiming 

to realize the full potential of AI in polymer extrusion. 

We have structured this paper into four main parts: an 

examination of the data types generated during 

manufacturing; a detailed look at how machine 

learning can improve quality control; a thorough 

discussion connecting data, machine learning, and 

optimization; and, finally, a set of conclusions that also 

serve to highlight some intriguing open questions for 

further research. 

3. Data: The Foundation of AI Integration 

The initial and most crucial phase in using AI for 

polymer extrusion is to secure appropriate data. Data 

forms the basis upon which machine learning models 

build, allowing AI to discern patterns, make forecasts, 

and fine tune processes. Yet, finding and collecting 

suitable data is often a daunting task. Extrusion 

involves numerous sensors and machine parameters 

that together yield a plethora of data—too much, in 

fact, for human minds to process easily. But not all of 

this data is useful or relevant for AI applications. To 

guide AI toward meaningful results, we must identify 

key process variables like temperature, pressure, 

screw speed, etc., the system can then use as inputs for 

its learned model. 

According to Weichert et al. (2019), to effectively 

utilize AI, data must be first carefully structured and 

categorized into several types: 

• Qualitative vs. Quantitative Data: 

o Qualitative Data: This is non 

numerical information, like what a 

process operator might observe, that 

makes up the context of the system 

being studied. Because it is less 

straightforward to analyze with 

traditional methods, some 

researchers might consider it to be 

of less value than quantitative data. 

Yet, "what" and "how much" a 

system does are not the same 

questions. These two kinds of data 

come together in a good study to 

provide a richer understanding of 

the system's context. Guetterman et 

al. (2015) put it well when they say, 

"Qualitative data can provide 

insights and context that make 

analyses of quantitative data more 

meaningful." 

o Quantitative Data: This is 

numerical information, like what a 

process operator might measure 

with a handheld device. It is what 

you would see plotted on a graph. 

Quantitative data are essential for 

training machine learning models 

because you cannot train a model on 

the "what" alone without the 

numerical expressions that define it. 

Al Kharusi et al. (2022) note that 

what you measure in the field and 

how you measure it make up this 

important component of a study. 

• Controllable vs. Uncontrollable Data: 

o Controllable Data: Operators or 

automated systems can adjust 

certain variables, like temperature 
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settings, screw speed, and material 

feed rates. These are what we call 

controllable data. They are crucial 

for optimization because they 

directly affect the extrusion process 

and can be tuned to yield desired 

results. 

o Uncontrollable Data: On the other 

hand, there are variables that cannot 

be easily adjusted, like ambient 

temperature, humidity, or the 

properties of raw materials. These 

fall into the category of 

uncontrollable data. Although this 

kind of data is not directly 

modifiable, understanding its 

impact on the process is important 

for developing robust AI models 

(Gupta et al., 2014). 

• Time Series vs. Work-Piece Related Data: 

o Time Series Data: This data is 

gathered continuously over time and 

includes details like temperature 

changes, pressure shifts, and energy 

use. It is critical for understanding 

the operation of dynamic systems. 

For instance, if we want to know 

whether a system is trending toward 

failure or understand what "normal" 

looks like for a system, we need to 

look at time series data. Analyzing it 

allows us to detect trends and 

anomalies and make real time 

adjustments (Colosimo et al., 2014).  

o Work-Piece Related Data: This 

pertains to specific characteristics of 

the final product, such as its 

dimensions, surface finish, and 

mechanical properties. When 

evaluating the quality of an extruded 

part, this is the kind of data that gets 

looked at. It tells us whether or not 

the extrusion process produced a 

satisfactory piece. Sometimes this 

can also be time series data if we are 

looking at dynamic processes that 

affect work piece attributes (Al 

Kharusi et al., 2022). 

• Present vs. Historical Data: 

o Present Data: This is real time data 

gathered from extrusion processes 

that are happening during ongoing 

extrusion processes. Present data is 

indispensable for not only 

maintaining a real time 

understanding of the state of the 

system but also for using that 

understanding to perform control 

actions. If something starts to go 

awry, the present data will show it, 

and this can be used to figure out 

what adjustments need to be made, 

either automatically by the system 

or manually by an operator to 

maintain optimal line conditions 

(Gupta et al., 2014). 

o Historical Data: This refers to data 

taken from past extrusion runs or 

historical records. Historical data is 

useful for looking at trends over 

time, performing retrospective 

analyses, and training AI models. It 

offers a wider perspective on how 

process variations influence results 

over time. But the way we collect 

data can, and often does, change 

over time. So, when we are using 

historical data to train models, we 

may need to clean it up first or we 

might just opt not to use it at all, to 

ensure we are not working with 

faulty data (Colosimo et al., 2014). 

• Measured vs. Simulated Data: 

o Measured Data: Directly obtained 

from physical sensors and 

instruments, the measured data 

reflects the true state and 

performance of the extrusion 

system. Because of this, it is 

absolutely indispensable for 

accurate modeling and for ensuring 

that any computational work, be it 

simulation or something else and 

has real world applicability (Al 

Kharusi et al., 2022).  
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o Simulated Data: In contrast, 

simulated data are generated 

through computational models or 

simulations based on either 

theoretical or empirical equations. 

This data can be useful in situations 

where real measurements are not 

available or feasible but do not 

necessarily capture all the 

complexities of a process in the 

same way that measured data does. 

There are times when both 

measured and simulated data need 

to be used together to improve a 

machine learning model's predictive 

capability (Colosimo et al., 2014). 

• Observable Quantities vs. Process State 

Variables: 

o Observable Quantities: These are 

parameters that can be directly 

measured and observed, such as 

temperature, pressure, and screw 

speed. They give immediate 

feedback and are often used as 

inputs to AI models (Gupta et al., 

2014). Process State Variables:  

o Process State Variables: These 

represent variables internal or latent 

to the process that influence it but 

are not directly gauged, such as 

molecular weight or polymer 

degradation. Understanding these 

variables often requires deep 

modeling or estimation techniques. 

They are crucial not only for good 

process control and supervision but 

also for gaining insights into the 

behavior of the process (Guetterman 

et al., 2015). 

Understanding the production data structure is vital for 

selecting appropriate machine learning models. Most 

sensor derived data from production systems, like 

those used in manufacturing, are considered structured 

and thus more straightforward to process than 

unstructured data. However, a key challenge remains: 

ensuring quality and consistency in the data. When 

data are incomplete, noisy, or poorly labeled, they can 

yield flawed models and unreliable predictions. This 

issue is compounded by the complexity of extrusion 

systems, which involve many interacting variables that 

change dynamically during production. For AI models 

to work effectively, they need diverse and 

comprehensive datasets that reflect the many nuances 

of the systems they are meant to emulate. In the case 

of polymers and extrusion setups, these datasets must 

capture a wide range of process conditions. If they do 

not, there is a real risk that the machine learning 

algorithms will overfit—that is, learn too well from a 

limited dataset—making them ineffective when asked 

to predict the behavior of fundamentally different 

systems. 

To gather relevant, high quality production data for 

refining machine learning models, several essential 

strategies must be followed. The first is to design data 

collection systems that capture a full spectrum of 

process variables—temperature, pressure, flow rates, 

and material properties—with precision and accuracy. 

It is equally important to ensure these variables are 

correctly correlated with production outcomes.  

Advanced sensors and real time monitoring 

technologies can boost the resolution and 

trustworthiness of the data collected. However, they 

cannot make up for poor system design or sloppy 

instrument calibration. When all these elements come 

together properly, what remains is to manage the data 

well: cleaning it, normalizing it, and validating it so 

that inconsistencies and noise are eliminated before 

the data enters the machine learning pipeline. In 

addition, using a blend of measured and simulated data 

can compensate for the absence of real measurements. 

Data fusion techniques can integrate experimental and 

numerical data to create a more comprehensive 

dataset. It is also essential to collaborate with domain 

experts when selecting relevant features and 

assembling datasets to ensure that the data collection 

process serves the specific aims of the machine 

learning model. By employing these strategies, 

manufacturers can obtain high quality production data 

that will greatly improve the performance of machine 

learning models used to optimize manufacturing 

processes and increase efficiency. 

This review underscores the significance of data as a 

major challenge, yet one brimming with promise. By 

concentrating on amassing high quality, domain 

specific data, manufacturers can realize AI's true 

potential to boost process control, minimize material 

waste, and heighten energy efficiency in polymer 

extrusion. Solving this data problem is the necessary 

first step toward integrating AI successfully into 



International Journal of Intelligent Systems and Applications in Engineering                                         IJISAE, 2024, 12(23s), 772–789  |  781 

extrusion processes. The following section outlines 

various approaches to production optimization using 

machine learning. 

4. Model Training using ML algorithm 

After gathering and organizing the essential high 

quality production data, the next pivotal move in using 

artificial intelligence for polymer extrusion is to train 

models with machine learning (ML) algorithms. This 

phase aims to create models that can precisely forecast 

results, refine processes, and boost total production 

efficiency using the organized data. 

4.1. Selection of Machine Learning Algorithms 

Choosing the right machine learning algorithms is 

crucial for training models. The data's characteristics 

and the application's goals guide the selection of 

various algorithms. Some widely used options are: 

• Linear Regression and Logistic 

Regression: These basic predictive modeling 

techniques are quite useful for tasks with 

linear relationships, like predicting the 

polymer melt viscosity during extrusion 

(James et al., 2013). They become 

problematic, however, when trying to handle 

more complex nonlinear relationships. 

Moreover, they lack interpretability in some 

cases, especially when dealing with logistic 

regression for classification problems.  

• Decision Trees and Random Forests: 

Decision trees excel at making 

straightforward "if then" decisions and can 

handle both numerical and categorical data. 

They provide a clear path from input features 

to a final decision or prediction. However, 

their performance can be unstable because 

they tend to overfit the training data when 

used alone. Random forests mitigate this 

problem by using multiple decision trees in 

parallel (Breiman, 2001). Random Forests 

are particularly effective for handling 

intricate decision making tasks, such as fine 

tuning extrusion parameters. They improve 

upon simple decision trees by using an 

ensemble of trees, which boosts accuracy and 

allows the method to handle high 

dimensional data with ease. This makes 

Random Forests a good choice for robustly 

modeling the complex, multi factor 

environments found in many extrusion 

processes (Breiman, 2001). 

• Support Vector Machines (SVM): SVMs 

are classification powerhouses. They work 

especially well when the number of features 

far exceeds the number of samples—i.e., in 

high dimensional spaces. SVMs are valuable 

tools for identifying tasks like optimal 

operating conditions and classifying products 

based on multifactor quality assessments 

(Cortes et al., 1995).  

• Neural Networks: Neural networks, 

especially deep learning models like 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), excel at 

capturing complex, nonlinear patterns in 

large datasets. Convolutional Neural 

Networks (CNNs) are great for examining 

image-based datasets, like those containing 

surface defects. Meanwhile, Recurrent 

Neural Networks (RNNs) are better suited for 

time series data. This makes them ideal for 

analyzing how changes in extrusion 

conditions affect a process over time (LeCun 

et al., 2015). 

• Gradient Boosting Machines (GBM): 

GBMs such as XGBoost and LightGBM, 

take predictive performance to the next level 

by using a boosting framework to combine 

the predictions of multiple models. They 

handle complex datasets with ease and are 

known for their efficiency and accuracy 

across a range of tasks. In our context, they 

work quite well for optimizing extrusion 

parameters and predicting when maintenance 

will be needed (Chen et al., 2016).  

4.2 Model Training Process 

The model training process involves several key steps: 

• Data Splitting: The gathered data is split into 

three parts: training, validation, and test sets. 

The training set is used to train the model, 

while the validation set helps in tuning 

hyperparameters and selecting the best 

model. Finally, the test set evaluates the 

model's performance on new data (Al 

Kharusi et al., 2022). 



International Journal of Intelligent Systems and Applications in Engineering                                         IJISAE, 2024, 12(23s), 772–789  |  782 

• Feature Selection and Engineering: When 

performing feature selection, we choose 

relevant variables from our dataset that we 

believe will improve model performance. 

Feature engineering is more creative and 

involves making new features or modifying 

existing ones to help our models learn better 

from the data (Colosimo et al., 2014). 

• Training the Model: Using the training data, 

we teach an ML algorithm to find patterns 

and relationships in the data by minimizing a 

loss function that quantifies how much the 

predicted outcomes differ from what actually 

happened. Iterating over the data during 

training adjusts the model's parameters to 

enhance accuracy (Goodfellow et al., 2016).  

• Validation and Hyperparameter Tuning: 

We use the validation set to check how well 

the model generalizes to unseen data. 

Although we refer to it as a "set," the 

validation data can be used in several 

different ways depending on the specific 

technique being applied (e.g., k fold cross 

validation). The primary role of this step is to 

ensure that our model has not merely 

memorized the training data but instead 

learned an underlying pattern. While 

performing these checks, we also adjust 

hyperparameters—those parameters of the 

learning algorithm that are external to the 

model and cannot be learned from the 

training data. These need to be set before 

training begins and include things like 

learning rate, batch size, and number of 

layers if using a neural network. The choice 

of hyperparameters significantly impacts 

model performance. To find good values for 

them, we might use techniques such as grid 

search or random search (Bergstra et al., 

2012).  

• Evaluation: In this final step, we assess how 

well our model performs by applying it to a 

test set—a collection of examples kept aside 

and never shown to the model during either 

its initial parameter tuning phase or any 

subsequent retraining phases. Model 

effectiveness in outcome prediction and 

decision-making is evaluated using various 

metrics. These include accuracy, precision, 

recall, F1 score, and mean squared error 

(Powers, 2011). 

4.3 Challenges and Considerations 

Training ML models for polymer extrusion presents 

several challenges: 

• Overfitting and Underfitting: These are 

two sides of the same coin when it comes to 

balancing model complexity. Overfitting 

occurs when a model is too complex, 

capturing noise in the training data as if it 

were true signals (Goodfellow et al., 2016). 

As a result, the model performs well on the 

training data but poorly on new, unseen data. 

In contrast, underfitting happens when the 

model is too simple and unable to capture the 

underlying patterns in the data. Both 

situations lead to unreliable models.  

• Data Quality: The saying "garbage in, 

garbage out" applies here. If the training data 

are inaccurate, noisy, or incomplete, one 

cannot expect to obtain reliable models with 

good performance (Al Kharusi et al., 2022). 

• Computational Resources: Particularly for 

deep learning models, significant 

computational resources and time are 

required to train complex models. Balancing 

these aspects is crucial for achieving robust 

ML model performance for polymer 

extrusion applications. Efficient algorithms 

and high-performance computing can 

alleviate these difficulties (LeCun et al., 

2015). 

After training, the machine learning model can be 

deployed in the production environment for real time 

control and optimization. It is capable of forecasting 

key performance indicators, suggesting process 

modifications, and assisting in decisions that improve 

overall efficiency, reduce variability, and enhance 

product quality. By adopting a systematic approach to 

model training, manufacturers can realize the full 

potential of machine learning to revolutionize polymer 

extrusion processes, achieving major gains in both 

performance and sustainability. 
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5. Application of machine learning for 

optimization of production 

5.1 Integration of a machine learning model into an 

extrusion process 

Once a machine learning (ML) model has been 

properly trained and validated, the next crucial step is 

to integrate it into the extrusion process for 

optimization. This means deploying the model in a 

real-world production setting where it can impact 

decision making, process control, and performance 

improvement. If done correctly, an integrated ML 

model can boost the efficiency, quality, and even the 

sustainability of an extrusion process. This section 

describes, in five steps, how to integrate an ML model 

into an extrusion process. It also provides references 

to relevant literature for those interested in more detail 

about any of the steps or considerations described 

here. 

5.1.1 Deployment of the ML Model 

Model Deployment in a production environment can 

be achieved through several methods: 

• Real-Time Monitoring Systems: One 

effective approach is to integrate the ML 

model with real time monitoring systems. 

These systems are continuously fed data from 

sensors attached to the extrusion equipment 

and other critical components of the process 

being monitored (Charalampous et al., 2021). 

The model processes this data in real time and 

provides feedback that operators can use to 

keep the process within specified limits. 

• Control Systems Integration: Another 

method involves integrating the model with 

existing process control systems. In this 

approach, which requires very close 

collaboration between humans and machines, 

the ML model makes predictions that are 

used to adjust control variables like 

temperature, pressure, or screw speed (Munir 

et al., 2021).  

• Cloud-Based Solutions: If more complex 

models need to be deployed or if 

computational resources are limited, cloud-

based solutions can also be utilized for 

deploying the ML model. In this method, the 

model operates on high-capacity servers and 

communicates control signals or suggestions 

to the extrusion process via networked 

systems (Babu et al., 2022). 

5.1.2 Continuous Data Flow and Model Updates 

Maintaining the precision and relevance of the ML 

model requires a steady stream of data. The following 

components make up this continuous data flow:  

• Real-Time Data Collection: It is crucial that 

all relevant extrusion process data, such as 

temperature, pressure, and material 

properties, are continuously collected and fed 

into the ML model. 

• Model Retraining and Updating: New data 

necessitate changes to the model. The ML 

model must be regularly retrained with new 

data so it can adapt to changes in either the 

extrusion process or material characteristics 

(Rasmussen et al., 2006). This retraining can 

happen in an "online" fashion with single 

instances or small batches of data, or it can 

occur more conservatively with larger 

batches of data over time. 

• Feedback Loops: The predictions made by 

the ML model should be compared with 

actual outcomes to provide a closed loop 

system for improving model performance. 

Predicted and actual outcomes do not align 

often, so we tweak the model or its 

parameters to make it better and fix the 

discrepancies (Sutton et al., 2018). 

5.1.3 Process Optimization and Control 

Process optimization uses an ML model to improve 

different facets of the extrusion process: 

• Parameter Tuning: The ML model 

identifies the best settings for process 

parameters to maximize efficiency and 

product quality. For example, it may 

recommend optimal screw speed or 

temperature settings based on the desired 

properties of the materials being extruded.  

• Anomaly Detection and Predictive 

Maintenance: The ML model is also used for 

anomaly detection in the extrusion process. It 

finds potential problems that might occur and 

gives a warning before they actually happen. 

In addition, predictive maintenance 

algorithms reduce downtime by forecasting 



International Journal of Intelligent Systems and Applications in Engineering                                         IJISAE, 2024, 12(23s), 772–789  |  784 

when equipment will need attention long 

before it reaches a critical state (Zope et al., 

2019). 

• Quality Control: Deploying the model to 

provide real time monitoring and control of 

product quality. The model forecasts defects 

or deviations from quality standards and 

recommends adjustments to maintain 

consistent product quality. 

5.1.4 User Interface and Decision Support 

User Interface Development is essential for ensuring 

smooth interaction between operators and the ML 

model. Key components include 

• Visualization Tools: Dashboards and 

visualization tools need to be developed to 

present model predictions, 

recommendations, and process metrics in an 

accessible and actionable format. It is critical 

that these formats be operator friendly so that 

informed decisions can be made quickly 

(Rawat et al., 2021). 

• Decision Support Systems: The ML model 

needs to be integrated with decision support 

systems so that operators can receive 

actionable insights and recommendations 

based on the model's outputs. This integration 

enhances overall decision making in process 

management (González Rodríguez et al., 

2019). 

5.1.5 Validation and Continuous Improvement 

It is crucial to validate the integrated ML model in the 

production environment to confirm its effectiveness 

and reliability. This validation involves two primary 

activities: 

• Performance Monitoring: After the ML 

model has been put into operation, its 

performance needs to be monitored 

continuously to ensure it is achieving the 

desired results. This monitoring process 

tracks several key performance indicators 

(KPIs) that reflect different aspects of the 

model's effect on production. The most 

relevant KPIs for our context are related to 

product quality, production efficiency, and 

operational costs (Surucu et al., 2023). If any 

of these indicators start trending unfavorably, 

immediate corrective actions need to be 

taken, which usually involve either adjusting 

the model itself or making changes to how it 

is being used. 

• Continuous Improvement: The same 

insights gained from ongoing performance 

monitoring can also be used in a more long-

term sense to drive continuous improvement 

of the ML model and the overall extrusion 

process. In this context, "improvement" can 

mean refining the ML model itself—making 

it better at whatever task it was assigned—

adjusting process parameters based on new 

insights provided by the model, or 

implementing entirely new strategies 

suggested by the model (Weichert et al., 

2019). 

5.2 Process Optimization Topics 

Process optimization with machine learning can be 

organized into two primary areas, differentiated by 

whether production parameters are modified during 

manufacturing: 

• Optimization Without Changing 

Production Parameters 

This method enhances product quality without directly 

changing the production parameters during 

manufacturing. It is mainly used when it is not feasible 

or desirable to alter the production process in real time. 

Some examples of this approach include: 

o Root Cause Analysis: This is a 

systematic method used to identify 

and address the fundamental causes 

of recurrent quality issues that affect 

production. 

o Early Prediction of 

Manufacturing Outcomes: This 

involves forecasting potential 

problems or deviations in product 

quality well before they occur. 

o Diagnostic Methods: Detecting 

and diagnosing erroneous behavior 

in products or processing units.  

The methods described enhance comprehension of 

process behavior and potential problems. However, 

they stop short of making real time adjustments to 

production parameters.  
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• Optimization With Changing Production 

Parameters 

Key aspects include: In contrast, the approach I am 

about to describe does involve such real time 

adjustments. Key aspects of this method are: 

o Parameter Optimization: We 

determine settings for production 

parameters that yield better than 

average quality. 

o Self-Optimizing Control Systems: 

We automate adjustments to certain 

production parameters based on real 

time data and process models. 

o Machine Learning Approaches 

with Optimization Modules: 

Using ML in conjunction with 

traditional optimization techniques 

to refine processes.  

The objective for optimization can be product specific 

(e.g., surface roughness, shrinkage) or process specific 

(e.g., energy consumption, tool wear) or sometimes 

both. Both approaches described above yield 

improved product quality and process efficiency in 

terms of cost, time, resource consumption, and 

specific optimization goals. 

6. Discussion, Analysis and Future Directions 

In this paper, we present a detailed review and analysis 

of how machine learning (ML) models are being 

integrated into the polymer extrusion process. We 

focus on two main areas: process parameter 

optimization and overall production efficiency 

improvements. Our discussion highlights the use of 

ML for several key tasks—real time monitoring, 

process control, and continuous improvement—in 

extrusion processes. We cover in detail the training, 

deployment, and integration of models for these tasks. 

We also discuss in depth the effect that ML is having 

on both process optimization and quality control in 

extrusion operations. 

The paper examined a range of machine learning 

algorithms and how well they fit various aspects of 

polymer extrusion. We talked about linear regression, 

decision trees, support vector machines (Cortes et al., 

1995), neural networks (Goodfellow et al., 2016), and 

gradient boosting machines (Chen et al., 2016) and 

noted their particular strengths and applications. We 

assessed each algorithm's ability to handle numerical 

and categorical data, predict outcomes, and optimize 

parameters based on recent literature (James et al., 

2013; Breiman, 2001). We also analyzed the model 

training process, which includes splitting the data, 

selecting features, and tuning hyperparameters 

(Bergstra et al., 2012). We placed special emphasis on 

techniques like online learning and periodic batch 

retraining to maintain models that are accurate and 

relevant. We discussed how to enhance model 

performance and adaptability using feedback loops. 

These loops involve comparing model predictions 

with real world results to fine tune the model, 

essentially employing a basic control system to keep 

the model in check and on track. 

Integrating machine learning (ML) models into the 

extrusion process is vital for enhancing production 

efficiency and product quality. We outlined strategies 

for deploying ML models, such as using real time 

monitoring and control systems, and cloud-based 

solutions. To keep the models accurate, we ensure a 

steady flow of data and use it to retrain the models 

when necessary. For reliability, we are focusing on 

anomaly detection and predictive maintenance—two 

areas where we believe ML can add significant value. 

By using these techniques, we aim to forecast failures 

in the extrusion equipment before they happen and 

suggest maintenance actions that will keep the 

equipment running smoothly (Çınar et al., 2020; Zope 

et al., 2019). 

The review emphasized how machine learning can 

optimize manufacturing processes, especially when it 

comes to fine tuning parameters to enhance product 

quality and efficiency. We explained that ML models 

can suggest the best settings for various process 

parameters—like screw speed and temperature—to 

obtain the desired material characteristics. We also 

looked at how ML can be used for real time quality 

control and defect prediction, showing its value in 

keeping product quality consistent (Munir et al., 2021; 

Munir et al., 2023). 

The significance of user interfaces and decision 

support systems in maximizing the value of ML 

models was highlighted. It is crucial to create 

dashboards and visualization tools that display model 

forecasts and suggestions in a way that is clear and 

actionable for operators. They must be able to see what 

the model is saying and use that information to make 

decisions swiftly. When ML models are integrated 

with decision support systems, they improve process 
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control and enhance overall decision making 

(González Rodríguez et al., 2019). 

Ensuring ML models remain effective in production 

requires continuous performance monitoring. It is 

especially important to track certain key performance 

indicators (KPIs) that directly reflect model 

performance. For example, product quality and 

production efficiency are two KPIs that are critical for 

evaluating the performance of many types of ML 

models. Insights from these evaluations can be used to 

drive what some refer to as "continuous process 

improvement" or "ongoing process optimization." 

This essentially means using the insights gained from 

understanding why a model is underperforming (or has 

stopped performing altogether) to refine processes and 

implement new strategies (Surucu et al., 2023; 

Weichert et al., 2019). 

Integrating machine learning models into polymer 

extrusion has shown great promise for making 

production more efficient, improving the quality of 

products, and aiding in real time decisions. The 

literature and methods reviewed highlight the 

transformative effect that ML can have on extrusion 

processes, offering useful perspectives on how best to 

apply these technologies. 

Despite recent advancements, there are still some 

persistent problems, such as those concerning the 

quality of data, available computational power, and the 

necessity for models that can be easily adjusted 

(Rawat et al., 2021). Solving these problems is 

essential if we are to wring every last benefit from 

machine learning in extrusion processes and ensure its 

smooth operation on the factory floor. 

Future research in the field of ML for polymer 

extrusion is likely to focus on several key areas: 

• Advanced Algorithms and Techniques: 

The continued evolution of advanced ML 

algorithms, like deep learning (LeCun et al., 

2015) and reinforcement learning (Sutton et 

al., 2018), could further boost the capability 

of ML models to handle complex extrusion 

processes and improve their predictive 

accuracy. Generative AI techniques, such as 

Generative Adversarial Networks (GANs) 

and Variational Autoencoders (VAEs) 

(Goodfellow et al., 2016), hold significant 

promise for the field of polymer extrusion. 

They could be used to generate new designs 

for polymer materials or optimize the 

parameters of the extrusion process. By 

creating novel compositions of materials or 

honing in on process parameters, generative 

AI can drive innovation and enhance the 

efficiency of polymer production. 

• Real-Time Data Integration and 

Processing: Ensuring model precision and 

relevance calls for more efficient methods of 

real time data collection, integration, and 

processing. Sensor technologies and data 

management systems will likely provide 

innovations that can be applied to these tasks 

(Babu et al., 2022). 

• Scalability and Computational Efficiency: 

Another crucial aspect is computational 

efficiency. We must overcome the training 

and deployment challenges associated with 

modern complex ML models if we are to 

maintain their scalability and keep costs 

under control. Future research may 

investigate more scalable and efficient 

computing solutions, like edge computing 

and distributed systems (Gupta et al., 2014), 

to support large scale extrusion processes 

• Adaptability and Robustness: Another key 

future research area is developing models 

that are more adaptable and robust. This 

especially means models that can handle the 

changing process conditions and material 

characteristics that are inevitable in 

extrusion. Transfer learning, meta learning, 

and other advanced techniques could play a 

big role here (Rasmussen et al., 2006). 

• Integration with Emerging Technologies: 

Integrating machine learning models with 

emerging technologies like the Internet of 

Things (IoT) and digital twins can open up 

new avenues for improving process 

optimization and real time monitoring. 

According to Zhang et al. (2022), this kind of 

collaboration between different technological 

layers can lead to even greater opportunities 

for innovation and efficiency in various 

applications. 

To sum up, the integration of machine learning models 

into polymer extrusion offers great potential for 

improving production efficiency and quality control. 

This nascent field requires more research to overcome 
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current challenges and realize new opportunities for 

process optimization and innovation.  

But as artificial intelligence becomes more common in 

manufacturing, it is also necessary to think about 

ethics. We cannot ignore issues like job displacement 

or data privacy. If we are going to automate tasks with 

AI, we need to have strategies in place that ensure 

displaced workers are reskilled and transitioned into 

new roles. Moreover, the gathering and utilization of 

data bring up issues of privacy and data security. To 

address these concerns, it is vital to have strong data 

protection measures in place and clear, honest 

practices with the collected data.  

In regard to using AI for automating tasks, the 

expertise of humans still holds primacy in making 

decisions and solving problems. AI should be 

considered a means of amplifying human abilities 

rather than a direct substitute for them. In a productive 

collaboration between humans and AI, the "H" in 

"human" still represents an essential component. The 

future of AI development will center on how it can 

bolster human abilities and improve teamwork. 
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