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Abstract:  The availability of clean water, a vital natural resource that supports diverse ecosystems, is increasingly threatened by 

sediment accumulation which impacts rivers, oceans, and coastal life, which is in line with sustainable development number goal 6 clean 

water and sanitation. Rapid industrialization and urbanization have intensified these challenges, leading to the degradation of natural 

water ecosystems and placing an undue strain on water resources. Pollution from sediments and human activities carries harmful 

contaminants, reduces visibility, disrupts aquatic life, and impairs ecosystem function. Maintaining the health of rivers and other water 

bodies requires the timely detection of changing conditions and deterioration, which is crucial for implementing effective 

countermeasures. However, current water quality monitoring methods primarily rely on laboratory tests, which require specialized staff, 

chemicals, and expertise. These traditional methods are often insufficient for addressing the complex and dynamic issues of water 

quality. Fortunately, the advent of the Internet of Things (IoT) technology has enabled real-time collection of water quality data. In 

addition, the application of soft computing technology for water quality assessment offers a more efficient, faster, and environmentally 

friendly alternative to conventional laboratory-based techniques. In this dissertation, we propose the use of an IoT device to monitor the 

performance of a water treatment system and collect data on key water quality indicators. Machine learning (ML) tools will be employed 

to analyze and simulate these data, enabling the prediction of future water quality parameters. The water quality dataset was collected in 

two stages. During the first iteration, data were gathered using sensors that measured four parameters: pH, turbidity, temperature, and 

total dissolved solids (TDS). In the subsequent iteration, the dataset was expanded to include a dissolved oxygen sensor in addition to the 

initial four sensors. The data collection process for turbidity and other water quality parameters involved more than just 879 data points, 

the data collection process was comprehensive, and the dataset was validated and analyzed with seasonal changes in mind, systematic 

approach ensured that the water quality parameters data collected were reliable, accurate, and actionable for monitoring water quality in 

the river. The dataset encompasses samples from three distinct potability classes: potable water sources, free-flowing river water from the 

Pusu River, and stagnant water from the puddles, and potholes. Nine proven classification algorithms were applied to the datasets, 

successfully classifying the water quality conditions with up to 98% accuracy. The best-performing model was then deployed and 

integrated into a graphical user interface (GUI) for rapid water condition testing, thereby facilitating the instantaneous assessment of 

water quality. 
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Highlights 

i. IoT and ML enable real-time water quality monitoring and 

prediction. 

ii. The dataset was collected using sensors that measured pH, 

turbidity, temperature, TDS, and dissolved oxygen. 

iii. Samples from potable water, the Pusu River, and stagnant 

water sources were analyzed. 

iv. Nine classification algorithms were applied, achieving an 

accuracy of up to 98 %. 

v. The best-performing model was integrated into the GUI for 

rapid water condition testing. 

vi. Traditional water quality monitoring methods are inadequate 

for addressing these complex challenges. 

vii. Innovative approaches that leverage ML and the IoT are 

required for robust monitoring systems. 

Abbreviations 

BOD Biochemical oxygen demand 

COD Chemical oxygen demand 

GUI Graphical user interface 

IoT Internet of Things 

KNN K-Nearest Neighbors 

ML Machine-learning 
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Summary (for editorial board) 

This study proposes the use of the IoT and ML techniques to 

monitor water quality in the Pusu River, Malaysia. Water quality 

data were collected using sensors measuring pH, turbidity, 

temperature, TDS, and dissolved oxygen from potable, river, and 

stagnant water sources. Nine classification algorithms were 

applied to the datasets, achieving up to 98% accuracy in 

classifying the water quality conditions. The best-performing 

model was integrated into a GUI for rapid water condition 

testing. This study highlights the limitations of traditional water 

quality monitoring methods and emphasizes the need for 

innovative approaches that leverage IoT and ML for robust, real-

time monitoring systems to address the complex challenges posed 

by water pollution. 

1. Introduction 

Water pollution remains a pervasive issue, with both organic and 

inorganic contaminants from agricultural, industrial, and 

domestic sewage compromising water sources worldwide. This 

contamination poses serious threats to human health and 

agriculture, leading to the bioaccumulation of toxic metals within 

the food chain. Pollution, in general, is a significant problem for 

modern society, with many water sources being tainted by 

harmful substances from various human activities. In 2015, water 

and soil pollution accounted for 16% of global deaths, with 

around 92% of these fatalities occurring in developing economies 

(Landrigan et al., 2018). Moreover, river pollution not only harms 

ecosystems but also diminishes the utility of rivers for 

agriculture, urban and industrial water supply, and irrigation. 

According to the Department of Environment Malaysia (DoE) 

(2017), the number of rivers in Malaysia decreased from 579 in 

2008 to 477 in 2019. Alongside this decline, the quality of river 

water has worsened, making it increasingly challenging to utilize 

for various purposes. Malaysian rivers are threatened by both 

point and non-point sources of pollution, including sewage 

treatment plants, agro-industrial activities, manufacturing, 

commercial and residential wastewater, and pig farms (Che 

Mahmud, 2021). As a result, river water management in Malaysia 

remains a critical issue, especially with high turbidity and 

sediment contributing significantly to pollution. Suspended solids 

(SS), originating from sources such as soil erosion, runoff, and 

algal blooms, further exacerbate these challenges. Excess 

sediment in rivers not only affects biodiversity and coastal 

aquatic life but also leads to increased concentrations of 

suspended matter, particularly laterite clay particles, during the 

rainy season. These particles can absorb pollutants and give the 

water a brownish hue, further compromising water quality. 

Traditional methods of analyzing water quality in treatment 

facilities typically involve sample collection, laboratory testing, 

and examination—processes that are labor-intensive, costly, and 

ultimately fall short in providing real-time feedback on water 

conditions (Das and Jain, 2017). However, the advancement and 

widespread availability of Internet of Things (IoT) technology 

now enables the real-time collection of water quality data. By 

incorporating soft computing technology, water quality 

assessment becomes more efficient, faster, and environmentally 

friendly compared to traditional laboratory-based methods. 

Additionally, the integration of machine learning (ML) 

algorithms allows for the analysis and classification of the 

acquired datasets, providing valuable insights into water quality 

conditions. 

The Pusu River, situated on the campus of the International 

Islamic University Malaysia, has been significantly impacted by 

pollution and waste disposal issues stemming from the rapid 

population and industrial growth in the surrounding area. 

Urbanization has led to the river's water becoming increasingly 

cloudy, while waste dumping near its tributaries raises concerns 

about leachate seeping into the river. The river's location within a 

densely populated university environment further exacerbates its 

vulnerability to daily pollution (Hamid, 2020). 

The widespread impacts of industrialization, combined with the 

accumulation of excess sediment in bodies of water such as rivers 

and oceans, pose significant risks to ecosystems, reduce the 

usability of water resources, and increase treatment costs. 

Traditional water quality monitoring methods, like laboratory 

tests, are often inadequate for effectively addressing these 

challenges due to their limited spatial and temporal coverage, 

high costs, lack of scalability, and delayed detection of water 

quality issues. To overcome these limitations, there is an urgent 

need to develop innovative approaches that leverage machine 

learning and IoT technologies to create more robust monitoring 

systems capable of continuously assessing water quality 

parameters in real-time. Research into the implementation of 

advanced, data-driven solutions offers actionable insights for 

maintaining and improving water quality, ultimately safeguarding 

ecosystems and enhancing water usability. By optimizing proven 

classification algorithms with IoT-based connectivity and 

infrastructure, we can address pressing environmental concerns 

and establish a more resilient water management framework (Zhu 

et al., 2022). 

2. Water Management and IoT 

Water quality encompasses the chemical, physical, and biological 

characteristics of water, determining its suitability for specific 

purposes, such as recreation, drinking, fisheries, agriculture, or 

industry (Rishika, 2019). Water can be broadly classified into two 

categories based on its origin: groundwater and surface water. 

Both types are vulnerable to contamination from various sources, 

including agriculture, industry, and domestic activities. Pollutants 

such as heavy metals, pesticides, fertilizers, hazardous chemicals, 

and oils can compromise the quality of both groundwater and 

surface water (Omer, 2019). Physical water quality parameters 

include turbidity, temperature, color, and odor, among others. 

Turbidity specifically measures the cloudiness of water, reflecting 

how much light can pass through it. High turbidity indicates the 

presence of suspended materials such as clay, silt, organic matter, 

plankton, and other particles (Kothari et al. 2021). Chemical 

parameters of water quality include pH, acidity, alkalinity, and 

the presence of ions such as chloride and sulfate, as well as 

metals and dissolved substances like oxygen, biochemical oxygen 

demand (BOD), chemical oxygen demand (COD), and any toxic 

substances. Pollution can alter the pH of water, potentially 
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causing harm to aquatic life and disrupting ecosystems. 

Regarding biological parameters, the American Public Health 

Association (APHA, 2005) emphasizes that the presence or 

absence of living organisms is a crucial indicator of water quality. 

While most microorganisms in wastewater are benign, the 

presence of harmful microorganisms can signal the presence of 

disease-causing agents, indicating potential health risks. 

The Internet of Things (IoT) enables the connection of devices 

through the internet, offering significant advantages for 

automating water distribution and monitoring for leaks. IoT is 

structured into three main layers: the physical layer, where 

sensors collect environmental data; the network layer, where data 

is converted into digital streams for processing; and the 

application layer, which delivers specific services to users as 

shown in Figure 1. To avoid network congestion, it is crucial to 

process or store data immediately upon collection or in the cloud 

(Yasin et al., 2021). 

 

Fig. 1. Basic architecture of IoT [3] 

In 2016, S. Geetha et al. introduced an innovative IoT-based 

solution for monitoring water quality within pipes. Their model 

tests water samples and analyzes the data online to enhance 

measurement accuracy and detect deviations from predefined 

standards. The system features a controller equipped with a built-

in WiFi module and a cost-effective, intelligent water quality 

monitoring device capable of measuring pH, turbidity, and 

conductivity. It also incorporates a warning system to alert users 

to any fluctuations in water quality parameters. The experimental 

setup included five key parameters: conductivity, pH, turbidity, 

temperature, and water level. This setup was connected to the 

Ubidots network, and the collected data were compared against 

WHO guidelines for drinking water quality. K. Gupta et al. 

(2018) developed a device that can be continuously monitored via 

a mobile app from any location. This device offers full 

automation and intelligent management capabilities. It is 

designed to be stable, easy to install, and compact, making it 

highly efficient and user-friendly. V. Ranjan et al. (2020) 

introduced a smart rainwater harvesting system utilizing IoT 

technology. This model features a segregation mechanism that 

allocates rainwater into two tanks in a 60-40 percent ratio. A 

rainfall detection sensor is positioned at the top of the system to 

accurately monitor and determine rainfall events. Smart water 

management through IoT technology focuses on collecting and 

analyzing data related to a city's water supply, pressure, and 

distribution to enhance the efficiency of water transportation and 

usage. As economic development, climate change, and population 

growth increasingly impact water resource availability, the 

adoption of IoT solutions becomes crucial for optimizing water 

management practices and ensuring sustainable water use. 

Machine learning is a robust technique for analyzing large 

datasets, uncovering patterns, and making predictions. The 

process involves several key steps: data acquisition, algorithm 

selection, model training, and model validation. Choosing the 

right algorithm is critical, and machine learning technologies are 

broadly categorized into supervised and unsupervised learning 

(Sagan, 2020). 

Supervised learning utilizes labeled training datasets to develop 

predictive functions, making it suitable for tasks such as data 

classification and regression. Unsupervised learning, on the other 

hand, deals with unlabeled data and is primarily used for 

discovering hidden patterns and relationships through techniques 

like clustering and association mining. Data collection is a 

fundamental step in developing machine learning models as seen 

in figure 2. Both continuous and intermittent water quality 

monitoring results can serve as essential benchmarks for effective 

water system management. Traditional environmental monitoring 

methods, commonly employed by government agencies, often 

face challenges with in-situ monitoring due to practical 

constraints. In contrast, remote sensing technologies offer real-

time, large-scale water quality monitoring capabilities. They can 

reveal pollutant movement and distribution patterns that are 

difficult to detect using conventional methods (Zhu et al., 2022). 

 

Figure 2: Applications of different machine learning algorithms in 

different water treatment and management systems. (Zhou et al., 2022) 

Pappu et al. (2017) developed an IoT-based water quality 

monitoring system utilizing machine-to-machine (M2M) 

communication. This system integrates pH and TDS sensors to 

collect data, which is processed by an edge processor running a 

machine learning algorithm. The algorithm predicts water quality 

based on a trained dataset, and both predicted and historical data 

are stored in the cloud for easy access via mobile phones. This 

system automates water quality monitoring in residential areas, 

eliminating the need for human intervention. 

Sagan et al. (2020) demonstrated that integrating machine 

learning with real-time sensor data and satellite observations 

enables advanced optimization. Their experiments revealed that 

models such as partial least squares regression, support vector 

regression, and deep neural networks achieved higher accuracy 

compared to traditional methods. 

Shen et al. (2020) developed a geo-dataset to estimate and map 

nitrogen and phosphorus concentrations in rivers and streams 

across the contiguous United States. Their approach provided 

detailed spatial resolution, approximately 1 km (30 arc-seconds), 

capturing various chemical forms of these nutrients. 
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Wu et al. (2020) focused on classifying water images into distinct 

categories of clean and polluted water. This approach aims to 

provide immediate feedback for a water pollution monitoring 

system that utilizes IoT technology to capture and analyze water 

images. Overall, machine learning has proven to be a powerful 

tool for addressing water-related challenges, such as predicting 

water quality, optimizing resource allocation, and managing 

water shortages. Despite its effectiveness, several challenges 

remain in fully leveraging machine learning for water quality 

assessment. One significant hurdle is the reliance on large 

volumes of high-quality data, which can be difficult to acquire 

due to cost constraints or technological limitations in water 

treatment and management systems. Another challenge is the 

complexity of real-world water treatment and management 

systems, which often limits the applicability of current algorithms 

to contexts or conditions. 

3. Research Method 

After careful selection of the sensors for water quality 

assessment, the next steps involve establishing and configuring 

an IoT framework. Utilizing technologies like NodeRed and 

Arduino components, the IoT infrastructure will be precisely set 

up. A preliminary data collection trial will be strategically 

conducted across various river profile points at specific intervals. 

Concurrently, an exhaustive search for the most suitable machine 

learning model will be conducted, using the pre-existing 

classified dataset as a benchmark for testing and selection. 

The critical phase focuses on data refinement, ensuring the 

removal of any extraneous or irrelevant information gathered 

during the collection process. This meticulous data cleaning is 

essential to eliminate potential inaccuracies and discrepancies in 

the final analysis. The ultimate objective is to enable precise 

feature extraction, laying the foundation for a robust and reliable 

water quality analysis. 

The foundation of this system was established through the careful 

selection of a microcontroller, with the Arduino UNO 

ATmega328 emerging as the cornerstone. This choice was 

primarily motivated by its cost-effectiveness and, importantly, 

Arduino's inherent versatility in seamlessly integrating a variety 

of sensor systems—a crucial factor in optimizing our data 

collection capabilities. Sensors connect to the Arduino UNO via 

analog or digital pins, where the Arduino processes the data, 

converts it into meaningful readings, and then transmits it through 

serial communication or wireless modules for real-time 

monitoring and analysis. 

Sensors interfacing with the Arduino UNO typically involve 

connecting the sensor's output to the appropriate input pins on the 

Arduino, which acts as a central processing unit. Here’s how the 

process generally works, Sensor Interface: sensors are connected 

to the Arduino UNO via its analog or digital input pins, 

depending on the type of sensor. Analog sensors, such as 

temperature or pH sensors, typically connect to the analog input 

pins (A0-A5), while digital sensors, like flow sensors, connect to 

the digital pins (D2-D13). Power Supply: The Arduino provides 

power to the sensors through its 5V or 3.3V pins. Ground (GND) 

connections are also made to ensure a complete circuit. Data 

Acquisition: the Arduino’s analog-to-digital converter (ADC) 

reads the voltage signal from the analog sensors. This signal is 

then converted into a digital value ranging from 0 to 1023, which 

represents the sensor’s reading within its specific range. Digital 

Sensors: Digital sensors provide a high or low signal (1 or 0), 

which the Arduino reads directly. Some digital sensors may also 

communicate using protocols like I2C or SPI, requiring 

additional code for data interpretation. Data Processing: The 

Arduino is programmed using the Arduino IDE to process the 

sensor data. This could involve calibrating raw sensor data, 

converting it into meaningful units (e.g., converting voltage to 

temperature), and performing initial data analysis or filtering. 

Thresholds and Alarms: The Arduino can be programmed to 

trigger alerts if sensor readings exceed certain thresholds, 

providing immediate feedback or action. Data Transmission: the 

processed data can be sent to a computer or another device via the 

Arduino’s USB port using serial communication. This allows 

real-time monitoring and data logging on a connected computer. 

Wireless Transmission: If the system includes wireless modules 

(like Wi-Fi, Bluetooth, or Zigbee), the Arduino can transmit data 

wirelessly to a remote server or cloud platform for further 

analysis, storage, and real-time monitoring. Storage and Display: 

data can also be displayed on an LCD screen connected to the 

Arduino or stored on an SD card for later retrieval. This setup 

allows for real-time data collection, processing, and transmission, 

enabling efficient monitoring and management of water quality or 

any other environmental parameters the sensors are designed to 

measure. The Smart Water Quality Monitoring System 

(SWQMS) enhances pool management by providing real-time 

monitoring of water parameters such as pH, chlorine levels, and 

temperature. This allows for immediate adjustments, ensuring 

optimal water quality and safety. The system also automates 

routine checks, reducing the need for manual testing, and can 

predict maintenance needs, thereby improving efficiency and 

reducing operational costs. By maintaining consistent water 

quality, the SWQMS helps prevent health issues and prolongs the 

life of pool infrastructure. 

Our initial data collection and experimentation phase utilized four 

key water parameter sensors, each playing a critical role in 

capturing specific aspects of water quality: 

Temperature Sensor: This sensor provides crucial insights into 

water temperature variations, a key factor influencing aquatic life 

and biochemical processes. 

pH Sensor: Essential for measuring the acidity or alkalinity of the 

water, the pH sensor offered valuable data for assessing water 

suitability for various applications. 

Turbidity Sensor: Focused on water clarity, the turbidity sensor 

served as a vital indicator of particulate matter and sediment 

levels, which are critical for ecosystem health. 

TDS (Total Dissolved Solids) Sensor: This sensor was 

instrumental in measuring the concentration of dissolved 

substances in the water, helping to determine its overall purity 

and suitability for various uses. 

In the second phase of data collection and testing, we 

incorporated an additional sensor: 

Dissolved Oxygen Sensor: A crucial component for evaluating 

water quality, this sensor provided insights into the amount of 

oxygen available in the water, which is vital for sustaining 

aquatic life. 

The error rate for each sensor varies depending on several factors, 

including the sensor's quality, environmental conditions, and how 

well the sensor is maintained. Common sources of errors include 

pH Sensor: Errors might arise due to electrode fouling, 

temperature fluctuations, or improper calibration. Typical error 

rates could be around 2-5%, with higher rates in extreme 
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environments. Turbidity Sensor: Errors might occur due to 

sediment build-up on the sensor lens or interference from large 

particulate matter. Error rates might range from 3-7%. Dissolved 

Oxygen Sensor: Errors could be due to membrane fouling or 

temperature effects. Error rates might be in the range of 4-6%. 

These error rates are identified through calibration tests, 

comparison with known standards, and during the initial setup 

phase. Ongoing monitoring and regular calibration are essential 

to minimize errors and maintain data integrity. 

IoT SET-UP 

Node-RED stands out as an exceptional tool for building a server 

dedicated to water quality monitoring within IoT systems, thanks 

to its versatile and user-friendly visual programming interface. Its 

node-based architecture streamlines the integration of various 

sensors, IoT devices, and data streams, enabling seamless 

communication and data collection from multiple sources critical 

to water quality analysis. The extensive library of pre-built nodes 

in Node-RED accelerates the development of data collection 

workflows, allowing users to easily configure tasks for data 

processing, aggregation, and analysis. 

Its flexibility and compatibility with numerous protocols make 

Node-RED adaptable to a wide range of sensor technologies used 

in water quality monitoring, ensuring smooth integration and 

interoperability as shown in Figure 3. Additionally, Node-RED's 

web-based dashboard creation tools empower users to visualize 

data in real-time, facilitating efficient monitoring and informed 

decision-making in water quality management systems. 

 

Figure 3: Basic Node-RED node structure for the 5-feature data 

collection 

Firebase was utilized as the data server host, offering a robust 

platform for managing data due to its comprehensive features and 

user-friendly interface as seen in Figure 4. One of its standout 

capabilities is its real-time database, which enables instant 

updates and synchronization across multiple devices—an 

essential feature for IoT-based water quality monitoring systems 

that rely on live data feeds. This real-time functionality ensures 

that any changes detected by sensors or devices are immediately 

reflected throughout the system, providing up-to-the-minute 

information for analysis and decision-making. 

 

Figure 4: Set-up with the Machine Learning deployment and 

classification added for the 4-feature data collection 

To enhance data handling, we integrated an app script that 

facilitates the transfer of data to Google Sheets. This integration 

(Figure 5) allows for easier data extraction and processing, 

particularly for machine learning applications, streamlining the 

workflow from data collection to analysis. 

 

Figure 5: Firebase Server 

In our initial experimental attempt, we focused on collecting data 

for four key parameters: temperature, pH, total dissolved solids 

(TDS), and turbidity. The collected data was categorized into 

three distinct classifications (Figure 6). The first category, 

"potable water," included filtered water, bottled drinking water, 

and tap water. The second category, "flowing river water," 

consisted of samples taken from bodies of water in constant 

motion, primarily centered around the Pusu River and its streams. 

The third and final category, "still puddle water," encompassed 

water samples collected from stationary sources, such as puddles 

and potholes. 

 
(a)  (b)  (c) 

Figure 6: Data collection from: (a) a point from Pusu River lower stream 

(b) a puddle (c) a point from Pusu River upper stream 
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4. Machine Learning 

The selected algorithms underwent thorough testing and 

evaluation to determine their effectiveness in addressing this 

specific classification task. The algorithms included: 

Random Forest Classifier: Known for its ensemble learning 

technique, this algorithm combines the output of multiple 

decision trees to enhance predictive accuracy. Its robustness and 

ability to handle complex classification tasks make it a strong 

contender in data analysis. 

K-Nearest Neighbors (KNN): Utilizing a proximity-based 

approach, KNN classifies data points based on their similarity to 

neighboring data points. Its simplicity and effectiveness often 

make it a reliable baseline for classification tasks. 

Naïve Bayes Classifier: This algorithm operates on the principles 

of Bayes' theorem and assumes independence among features. It 

is efficient in processing large datasets while maintaining 

reasonable accuracy levels, making it a practical choice for many 

classification problems. 

Gradient Boosting Classifier: This algorithm excels in 

sequentially training weak learners, gradually improving 

predictive performance with each iteration. It is particularly well-

suited for capturing complex relationships within the data, 

making it a powerful tool for nuanced classification tasks. 

Logistic Regression: Despite its name, Logistic Regression is a 

robust classification algorithm. It is particularly effective for 

binary classification tasks but is also adaptable for handling 

multinomial classifications. 

Support Vector Machine (Polynomial): Utilizing a kernel-based 

approach, the Support Vector Machine with a polynomial kernel 

excels at identifying optimal decision boundaries, making it 

effective in capturing complex relationships among features. 

Decision Tree: With its intuitive, tree-like structure, Decision 

Trees are adept at interpreting and representing data relationships, 

offering clear decision paths based on feature attributes. 

Multi-Layer Perceptron Classifier: As a type of artificial neural 

network, the Multi-Layer Perceptron is well-suited for learning 

complex patterns in data, providing adaptability and versatility in 

managing intricate classification tasks. 

Each of these algorithms was rigorously tested, compared, and 

evaluated to assess their effectiveness in classifying the collected 

water quality data into the specified categories. The aim was to 

identify the algorithm or combination of algorithms best suited to 

address the specific complexities and nuances of this water 

quality monitoring application. 

5. Results and Discussion 

Training Dataset 1 was collected using four sensors as outlined in 

the previous chapter. The dataset included over 879 entries and 

upon initial data cleaning and processing which included removal 

of duplicates, null values and faulty data set moved the final 

dataset to 526 entries from the 3 dataset classes (Figure 7). The 

"faulty data" removed during the data cleaning process typically 

included sensor readings that were inconsistent, out-of-range, or 

clearly erroneous due to sensor malfunctions, environmental 

interference, or transmission errors. This data could also include 

incomplete records or anomalies caused by temporary system 

glitches. Removing this faulty data was crucial to ensure the 

accuracy and reliability of the final analysis. 

 

Figure 7: The distribution of the dataset 

Figure 7 illustrates the distribution of the dataset across the 

potability classes, highlighting a degree of class imbalance. River 

water accounts for over 45% of the data, while potable water 

represents 33.8%, indicating a mild imbalance. Muddy water, at 

16.3%, shows a moderate imbalance. These class imbalances 

present challenges, particularly due to the overrepresentation of 

the river water class, which could potentially bias the predictive 

models. 

Figure 8 presents the correlation matrix, providing insights into 

the impact of each parameter on water quality. A key observation 

is the weak correlation between temperature sensor readings and 

the other features, as well as water potability. This lack of 

correlation can be attributed to the multifactorial nature of 

temperature, which varies significantly based on factors such as 

the collection point and time of day, independent of water 

potability. As a result, the temperature feature was excluded from 

model training and testing due to its limited predictive value. 

 

Figure 8: Correlation Matrix for dataset 3 

In this project, six sensors were installed along different strategic 

points of the river to monitor various water quality parameters. 

These sensors were deployed at locations identified as critical for 

understanding the overall health of the river, such as upstream, 

midstream, and downstream areas, as well as near potential 

pollution sources. The sensors were configured to collect data at 

regular intervals, typically every 15 minutes. This frequency 
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allowed for continuous monitoring and capturing of real-time 

changes in water quality. The sensors were connected to an IoT 

framework, which allowed for real-time data transmission to a 

central server. This setup enabled continuous, remote monitoring 

of the water quality, with data being accessible in real-time via a 

web-based dashboard or mobile application. In addition to 

continuous data collection, the system was programmed to send 

real-time alerts if any of the measured parameters exceeded 

predefined thresholds, enabling prompt intervention if necessary. 

Both turbidity and pH demonstrate a robust correlation of 

approximately 50% with water potability, underscoring their 

importance in classification tasks. In contrast, total dissolved 

solids (TDS) exhibit a lower correlation of 23% with potability. 

Additionally, the correlation between individual features and 

other features in the dataset is minimal. These results highlight 

the distinct role of each parameter in evaluating water quality and 

emphasize the critical importance of feature selection in model 

development, as illustrated in Figure 9. 

 

Figure 9: Scatter Plot of each feature against another 

Figure 9 illustrates the scatter plot distribution of the classes 

across each feature, aiming to reveal class overlaps and improve 

model differentiation. The plots show distinct clusters for each 

class, though some regions exhibit overlap. Muddy water (0) 

displays the most dispersed distribution, with noticeable 

clustering primarily in the turbidity vs. pH plot. River water (1) 

forms a more compact cluster, which may be influenced by its 

higher representation in the dataset. Clear distinctions are evident, 

such as potable water (0), which consistently falls within the pH 

range of 6.5 to 7.5 and shows the highest turbidity values, 

reflecting its clarity. 

6. Model Performance 

To evaluate the performance of the selected algorithms, the 

following metrics are utilized: 

Classification Accuracy: This metric measures the proportion of 

correctly predicted instances among all input samples, offering a 

straightforward assessment of model effectiveness. A higher 

accuracy score indicates better overall performance of the model. 

Confusion Matrix: The confusion matrix provides a detailed 

breakdown of the model’s performance by categorizing 

predictions into true positives, true negatives, false positives, and 

false negatives. This detailed view allows for the derivation of 

accuracy and offers deeper insights into the model’s predictive 

capabilities. 

Precision, Recall, and F1 Score: 

Precision quantifies the ratio of true positives to all instances 

predicted as positive, reflecting the accuracy of positive 

identifications. It is computed by dividing true positives by the 

sum of true positives and false positives. 

Recall measures the proportion of correctly identified positive 

instances out of all actual positive instances, indicating the 

model’s ability to capture true positives. It is calculated by 

dividing true positives by the sum of true positives and false 

negatives. 

F1 Score combines precision and recall into a single metric, 

providing a balance between the two. It is the harmonic mean of 

precision and recall, particularly useful in scenarios with class 

imbalance, offering a comprehensive evaluation of model 

performance. 

Decision Boundary: The decision boundary represents the line or 

surface that separates different classes in a classification problem. 

It provides insights into the model’s classification accuracy and 

helps in assessing the model’s robustness. A clear, well-defined 

boundary suggests good model performance, while a fuzzy or 

overly complex boundary may indicate issues such as suboptimal 

modeling or overfitting. 

Overall, as shown in Table 1, all datasets achieved accuracy rates 

above 85% across various models. This high performance can be 

attributed to the large size of the datasets and the well-defined 

clusters among the classes. Gradient Boosting emerged as the 

most effective model, achieving an impressive accuracy of 

99.3%. Similarly, other ensemble methods, such as Random 

Forests, as well as non-linear models like Decision Trees and K-

Nearest Neighbors (KNN), demonstrated exceptional 

performance in classifying water potability across multiple 

classes. In contrast, linear models, such as Logistic Regression 

and Support Vector Machines, faced challenges with the non-

linear relationships present in the data, which likely affected their 

classification accuracy in this multi-class scenario. 

Table 1: Accuracy Scores Across Models for dataset 1 

Model Accuracy score Score 

6 Gradient Boosting 0.993671 

0 Random Forest 0.981013 

3 Decision Tree 0.974684 

1 KNN 0.962025 

5 Multilayer Perceptron 0.962025 

2 Logistic Regression 0.898734 

4 Support Vector Machines 0.860759 

7 Naive Bayes 0.841772 

As illustrated in Table 2, all models demonstrate high precision, 

recall, and F1 scores, showcasing their effectiveness in accurately 

classifying instances across multiple classes. Gradient Boosting 

achieves the highest scores, with Decision Tree, K-Nearest 

Neighbors (KNN), and Multi-Layer Perceptron (MLP) following 

closely behind. Although Random Forest exhibits slightly lower 

performance, it still shows strong results. These metrics offer 
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valuable insights into each model’s classification capabilities, 

helping to identify the most suitable model for the specific 

classification task. 

Table 2: Confusion Matrix for Top 5 models in Dataset 1 

 Precision Recall F1 Score 

Gradient 

Boosting 
0.9866666667 0.9933333333 0.99 

Random 

Forest 
0.9666666667 0.9766666667 0.97 

Decision 

Tree 
0.9766666667 0.985 0.98 

KNN 0.9766666667 0.985 0.98 

MLP 0.9733333333 0.9822222222 0.9766666667 

Dataset 1, despite exhibiting some class imbalance, served as the 

initial benchmark for evaluating model performance. The results 

across various metrics highlighted crucial areas for improvement 

in the experimentation process. Correlation analysis underscored 

the significance of turbidity and pH in determining water 

potability, while the temperature sensor showed negligible 

correlation and was subsequently excluded from further analysis. 

The scatter plots revealed substantial overlap among the three 

classes, particularly between puddle and river water, and 

occasionally between river water and potable water. 

During model training and testing, ensemble methods such as 

Gradient Boosting and Random Forest, along with non-linear 

models like K-Nearest Neighbors (KNN) and Multi-Layer 

Perceptron (MLP), exhibited exceptional performance, achieving 

accuracies exceeding 95%. Among these, Random Forest 

emerged as the most effective model for deployment, owing to its 

robust performance across multiple evaluation metrics and its 

adept handling of non-linear relationships in the data. The 

evaluation of both datasets and machine learning models 

highlights the effectiveness of integrating IoT-enabled water 

quality monitoring systems with machine learning for analysis 

and classification. The results validate the proposed framework's 

ability to accurately assess and classify water quality. They 

emphasize the crucial role of feature selection, model evaluation, 

and iterative refinement in achieving precise and dependable 

assessments. Additionally, the choice of Random Forest for 

Dataset 1 and K-Nearest Neighbors (KNN) for Dataset 2 

underscores the importance of tailoring model selection to the 

specific characteristics of each dataset and classification task. 

Integrating IoT devices into water treatment systems enables real-

time monitoring, automated control, and predictive maintenance, 

leading to improved efficiency, cost savings, and proactive water 

quality management. 

The long-term benefits of using IoT and machine learning for 

water quality monitoring include significant cost savings and 

efficiency improvements. These technologies enable real-time 

monitoring and analysis, reducing the need for manual sampling 

and laboratory testing, which lowers labor and operational costs. 

Early detection and automated intervention help prevent costly 

repairs and environmental damage by addressing issues before 

they escalate. Additionally, IoT systems reduce the need for 

extensive physical infrastructure, minimizing infrastructure costs. 

The scalability and adaptability of these systems allow for 

efficient resource allocation and continuous optimization, further 

enhancing the overall effectiveness and sustainability of water 

quality management. 
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