

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |287

The Evolution of JavaScript Frameworks: Performance,

Scalability, and Developers Experience

 Sarath Krishna Mandava

Submitted: 10/05/2022 Revised: 22/06/2022 Accepted: 02/07/2022

Abstract: This research paper examines the evolution of JavaScript frameworks, with a particular focus on React, Vue, Svelte,

and Angular. The study analyzes how these frameworks have progressed in terms of performance optimization, scalability, and

overall developer experience. By investigating the trade-offs between different frameworks and predicting future trends, this

paper aims to provide valuable insights for developers and organizations navigating the complex landscape of modern web

development. The research encompasses historical context, technical advancements, comparative analysis, and future

projections, offering a comprehensive overview of the state of JavaScript frameworks as of March 2022.

Keywords: JavaScript frameworks, React, Vue, Svelte, Angular, performance optimization, scalability, developer experience,

single-page applications, virtual DOM, code splitting, server-side rendering, state management, component-based

architecture, WebAssembly

1.

Introduction

1.1 Background and Significance

JavaScript has become the cornerstone of modern

web development, powering interactive and

dynamic user interfaces across the internet. As web

applications have grown in complexity, JavaScript

frameworks have emerged as essential tools for

managing this complexity and improving developer

productivity. These frameworks provide structure,

reusable components, and powerful features that

enable developers to build sophisticated

applications more efficiently.

The JavaScript framework landscape has been

evolving rapidly, with new frameworks and libraries

constantly emerging to fulfill the dynamic needs of

web development. This evolution is based on better

performance, improved scalability, and enhanced

developer experience. Understanding trends and

trade-offs between these frameworks becomes

crucial for every developer and organization at the

helm of technology decisions in an always-evolving

ecosystem.

1.2 Research Objectives

The main aims of this research are:

1. To analyze the historical context and key milestones

in the development of JavaScript frameworks.

2. To examine the performance optimization

techniques employed by modern frameworks.

3. To evaluate the scalability considerations and

solutions offered by different frameworks.

4. To assess the impact of various frameworks on

developer experience and productivity.

5. To conduct a comparative analysis of major

frameworks, including React, Vue, Svelte, and

Angular.

6. To identify and discuss the trade-offs between

different framework approaches.

7. To predict future trends and developments in the

JavaScript framework ecosystem.

1.3 Scope and Limitations

This research restricts itself to the most currently

popular JavaScript frameworks, as of March 2022.

Special attention is given to the following: React,

Vue, Svelte, and Angular, for these represent some

of the most significant approaches toward web

application development but other frameworks and

libraries are out of scope for this study.

The research is limited to the availability of

information and data as of March 2022. As

innovation in web development sectors evolves at a

pretty fast pace, some of the findings and predictions

would be vulnerable to change once new

technologies and approaches are discovered. Front End Developer

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |288

2. Background of JavaScript Frameworks

2.1 Single-Page Applications (SPAs)

The concept of SPAs brought a completely new

paradigm to web development: load a single HTML

page and dynamically update content based on user

interactions to offer a much smoother and almost

fully desktop-like experience. This was taken very

big, especially in the early 2010s, with the growing

capabilities of the browsers and the demand for

more interactive web applications.

Then SPAs' history can be traced to somewhere in

the middle of the 2000s, beginning with such

techniques as Ajax (Asynchronous JavaScript and

XML). In his 2005 article "Ajax: A New Approach

to Web Applications," Jesse James Garrett laid down

the foundation for a much more dynamic web

experience (Garrett, 2005). But it was only

sometime during the late 2000s and early 2010s that

SPAs really began taking hold in some significant

ways.

Several factors converged to bring about the wide

usage of SPAs.

1. Browsing work was much improved because the

speed at which these browsers executed JavaScript

had picked up significantly; the V8 engine in Google

during the year 2008 set another bar for performance

benchmarking (Eich, 2008).

2. Standardized web technologies: HTML5 was

released as a W3C recommendation back in 2014

where standardized APIs on how to string together

complex web applications were established (W3C,

2014).

3. Mobile proliferation: Following the uptrend of the

smartphone and tablet, it introduced responsive

designs and an app-like experience on the web

(Wroblewski, 2011).

4. Users Expectations: The growth of mobile native

applications boosted the level of interactivity and

responsiveness the users expected from web-based

applications as well (Nielsen, 2012).

5. Client-side storage advancement: The emerging of

Web Storage and IndexedDB allows SPAs to save

data locally, which in turn enhances offline

capabilities along with speed (Archibald, 2012).

The transition to SPAs wasn't without problems; the

early SPAs were encountering SEO, deep linking,

and browser history management problems.

However, these problems ensured further

development in frameworks and techniques of

server-side rendering.

2.2 Important Milestones in Framework

Development

The next step of the development of the JavaScript

frameworks leads back to several important

milestones, and at each step the existing problems in

the development of a web application were resolved

with new paradigms:

1. 2010: AngularJS Google publicly released

AngularJS, which brought the two-way data binding

and dependency injection to frontend development.

AngularJS also brought the Model-View-Controller

architecture for web applications and introduced

directives for extending the HTML syntax. It mainly

includes having a directory of available components

of the UI, allowing developers to extend the HTML's

syntax in certain areas of the application to include

custom attributes (Green & Seshadri, 2013).

2. 2013: React Facebook open-sourced React with a

completely new approach to development as regards

UI, with the use of a component-based architecture

and the concept of virtual DOM. Especially, the way

React suggests constructing user interfaces as a

composition of small (and reusable) components has

influenced the designs of subsequent frameworks

(Occhino, 2013).

3. 2014: Vue.js By Evan You, Vue.js appeared and

provided a progressive framework, enabling

incremental adoption. Vue was thought of as a

hybrid of Angular's template syntax with the

component-based approach of React, focusing on

being simple and easy to integrate (You, 2014).

4. 2016: Angular 2 Google released Angular 2, which

is a full rewrite of AngularJS. It began to make use

of TypeScript, a statically-typed superset of

JavaScript, and really became comparable to React

using a component-based architecture.

5. 2016: Svelte Rich Harris released Svelte, bringing

compilation to build-time, thereby reducing

overhead at runtime. This requires that in order to

take a swing at the virtual DOM paradigm, Svelte

was fitted for highly optimized vanilla JavaScript

(Harris, 2016).

6. 2019: React Hooks React released Hooks, which

enables state and lifecycle features in functional

components. This meant that this update simplifies

state management and reduces the use of class

components (Abramov, 2018).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |289

Table 1: Timeline of Significant Framework Versions

Year Framework Version Key Features

2010 AngularJS 1 Two-way data binding,

Dependency injection

2013 React 0.3.0 Virtual DOM, JSX

2014 Vue.js 0.11 Reactive data binding,

Component system

2016 Angular 2 TypeScript, Component-

based architecture

2016 Svelte 1 Compile-time framework,

No virtual DOM

2019 React 16.8 Hooks API

Usually, developing such frameworks arises from

particular needs or philosophies. For instance, React

was developed to address the need of creating

complex interfaces in more efficient ways within

Facebook (Occhino, 2013). Vue was developed as a

lightweight version of AngularJS in order to make it

more accessible and easier to include in applications

(You, 2014).

Each framework brought a distinct set of concepts to

bear on the larger JavaScript world. React's virtual

DOM and unidirectional data flow motivated other

frameworks to establish such patterns. Vue's

template syntax and reactivity system offered a

middle ground between Angular's full-powered

approach and React's flexibility. Svelte's compile-

time disrupted assumptions about having to have a

virtual DOM at all for efficient updates.

To get a better graphical sense of how component

creation evolved between the frameworks, here are

some code examples for the following:

1. AngularJS (2010):

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |290

2. React (2013):

3. Vue (2014):

4. Angular (2016):

5. Svelte (2016):

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |291

In above all examples, frameworks design has

increased the more declarative and component-

based strategies over time.

JavaScript frameworks have both been a blessing

and a curse on the web development community. It

has led to rapid innovation and improved developer

productivity but also bred what others describe as

"framework fatigue": the overwhelming sense of

trying to keep up with the constant stream of new

tools and technologies (Neuhaus, 2018).

As these approaches matured, so did the emergence

of a convergence of best practices-for example,

component-based architectures and virtual DOM

implementations. Still, each one differed in its own

right due to its special features and performance

optimization as well as developer experience

improvement. From such continuous development

came the cutting-edge landscape for JavaScript that

we cover in the rest of the book: what motivates

optimizations to be made for performance,

scalability, and better developer experience.

3. Performance Optimization in Modern

Frameworks

This complexity within web application

development makes growing performance

optimization important to developers and

framework creators. Modern JavaScript frameworks

have made great strides in the area of improvement

on performance, mainly about rendering speed,

resource management, and overall application

responsiveness. This section discusses four major

areas for the optimization of performance: Virtual

DOM and reconciliation algorithms, code splitting

and lazy loading, server-side rendering (SSR) and

static site generation (SSG), and the use of web

workers and multithreading.

3.1 Virtual DOM and Reconciliation Algorithms

Virtual DOM is a programming concept that holds

an ideal or virtual representation of a UI in memory

and syncs it with the "real" DOM by a library such

as ReactDOM. In other words, reconciliation is the

process. The concept was popularized by React but

the performance benefits caused most other

frameworks to adopt or adapt from it (Facebook,

2021).

The main advantage of the Virtual DOM is that it

lets the framework reduce direct DOM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |292

manipulation, since DOM manipulation itself is

often the primary bottleneck in any web application.

Rather than updating the DOM on each change to

the application state, it creates virtual versions of

each update to the application's state and then

determines what elements are different from earlier

virtual states and up-only those.

For instance, React reconciliation algorithm rests its

design on two assumptions which enable a

component update in O(n) time where n is the

number of elements in the tree

1. It is going to always return two distinct trees for any

two elements of distinct types.

2. A developer can hint about which child elements

might be stable between different renders by passing

them a key prop.

Vue.js also uses Virtual DOM but with some

optimization. Some of the optimizations provided to

Vue 3 come with an enhanced diff algorithm, which

can sense static trees and sub-trees in templates and

hoist them out of a render function, thus lowering

what needs to be done at update time (You, 2020).

In this, Svelte is different because it usually pushes

much of the work of compilation time. In place of

Virtual DOM, Svelte generates code that

manipulates the DOM directly when the state

changes. This can lead to smaller bundle sizes and

probably improved runtime performance for less

complex applications (Harris, 2019).

3.2 Code Splitting and Lazy Loading

Code splitting is the method by which your

application code is split into smaller pieces that are

downloaded on demand or in parallel. This approach

really minimizes the application's initial load time

because, although the application can take

advantage of the pieces that become available, it

doesn't download, parse, and execute as much code

upfront.

React made it easy to implement lazy loaded

components with the introduction of "lazy"

components and the usage of the React.lazy()

function with the Suspense component. This allows

developers to import component code at runtime

when it is needed as opposed to simply including it

in the main bundle (Facebook, 2021).

Vue.js can also be used similarly through the usage

of its async components feature which can be

combined with webpack's code splitting

capabilities: Vue.js, 2021.

For instance, Angular natively provides lazy loading

of modules. During the definition of routes,

developers can indicate that a module should be

loaded only when its route is activated (Google,

2021):

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |293

These code splitting techniques enable developers to

build better performing applications by only loading

the code required for the current view or interaction,

reducing initial load times and improving the

perceived performance of the application.

3.3 Server-Side Rendering (SSR) and Static Site

Generation (SSG)

Server-Side Rendering and Static Site Generation

are performance- and SEO-related techniques.

Server-Side Rendering is where the initial HTML

content is rendered on the server, while Static Site

Generation involves pre-rendering of pages at build

time.

The SSR capabilities were an early part of React, but

Next.js advanced this by being a popular React

framework that can deliver out-of-the-box SSR and

SSG capabilities (Vercel, 2021). Developers can use

Next.js to opt for either SSR, SSG, or client-side

rendering on a page-by-page basis, meaning being

flexible in optimization based on the nature of

content and user experience.

Just like Next.js, the Nuxt.js is a Vue.js framework

that achieves SSR capability in its application

(Nuxt.js, 2021). However, Nuxt.js supports both

SSR and SSG. When using Nuxt.js, developers can

create "universal" applications that run on either the

server-side or the client-side.

Angular Universal is the solution that Angular has to

offer for SSR; hence it highly assists with initial

page load times and SEO for Angular applications

(Google, 2021). Using Angular Universal,

developers can run an Angular application on a

server and produce static application pages that

quickly load in the browser.

Svelte has Sapper, and soon to be released will be

SvelteKit, which promises to bring SSR and SSG

functionality to Svelte applications (Svelte, 2021).

SvelteKit is seeking to achieve an equivalent

developer experience, as that offered by Next.js or

Nuxt.js, but with the efficiency of Svelte's compile-

time evaluation.

These SSR and SSG solutions have now become

even more crucial as search engines increasingly

focus on page load time and mobile-friendliness in

ranking algorithms. It allows developers to build

fast, SEO-friendly applications that yet allow for the

power of modern JavaScript frameworks.

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |294

3.4 Web Workers and Multithreading

This is possible using Web Workers as they allow

you to run scripts in separate background threads. So

you are able to have true multithreading in web

applications, which means you are able to offload

heavy computations or data processing tasks from

the main thread; that way, the UI will remain

responsive.

Although Web Workers is a browser feature rather

than a framework-specific technology per se, the

modern JavaScript frameworks have started to help

developers integrate and properly use them. For

instance, there is no form of support for the use of

Web Workers in React. Instead, libraries like react-

webworker have emerged to simplify the usage of

the web workers in the application of React (npm,

2021).

Angular has its very own module, @angular/worker,

to facilitate script execution in Web Workers.

Consequently, what would take many milliseconds,

so-called time-consuming computations, can be

moved off the main thread, making applications

more responsive.

There are no official support frameworks in Vue.js

for Web Workers, but it contains an entire set of

plugins, such as vue-worker, that integrate using it

(npm, 2021). Such plugins very much contribute

towards making developers create and communicate

with Web Workers in a Vue application.

Web Workers are slowly but surely appearing as

relevant parts of modern web applications because

as applications become highly sophisticated, so does

their potential to run more computationally intensive

functions on the client side. With the use of Web

Workers, developers can now build applications that

are more responsive and efficient, particularly for

computationally resource-intensive operations or

operations that require complex algorithms.

4. Scalability Considerations

As web applications are growing in size and

complexity, scalability issues are one of the key

concerns for any developer or organization. Current

web frameworks for JavaScript have addressed

these scalability issues with some architectural

patterns and tools. This chapter focuses on four

particular areas where scalability is concerned:

component-based architecture, paradigms of state

management, build tools and bundling strategies,

and the concepts of microservices and micro-

frontends.

4.1 Component-Based Architecture

Following the conceptual idea of component-based

architecture, modern web development enables

developers to shift the aspects of maintainability,

reusability, and scaling toward a level that couldn't

be conceived of before. In this architecture, the user

interface has been broken into more manageable,

self-contained pieces, which are easier to develop,

test, and maintain independently. Nearly all major

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |295

JavaScript frameworks have adopted this paradigm

in varying implementations.

This makes React popular for using the concept of

components as building blocks in an application that

has user interfaces. A React component is defined as

a JavaScript class or function that returns JSX,

which is an extension to JavaScript that resembles

most XML notation (Facebook, 2021). With this

approach, developers can construct an entirely

complex UI from simple reusable pieces.

Vue.js also uses component-based architecture,

which describes a component as a combination of

template, script, and style (Vue.js, 2021). Single-file

components in Vue generate good separation of

concerns while keeping related code in a single file.

Many developers find these quite intuitive and easy

to maintain.

Angular is even more opinionated concerning

components, where each component typically

consists of a TypeScript class, an HTML template,

and some styles in CSS (Google, 2021). There exists

the rather comprehensive dependency injection

system, along with the utilization of the so-called

decorators, to impose even more structure and

capabilities to the components.

Thus, components are defined in. svelte files that

contain HTML-like syntax for templates, a different

place in CSS for styles, and code for behavior in

JavaScript (Svelte, 2021). In this way, the compiler-

centric approach of Svelte provides developers with

the best optimized components with minimal

runtime overhead.

The component-based architecture is highly scalable

because multiple teams can work on different parts

of an application at the same time and therefore

feasible for the design of design systems and

component libraries. This has been the main

approach for managing the complexity of large-scale

web applications.

4.2 State Management Paradigms

This rapidly leads to unwieldy complexity, because

applications grow in size quickly. Some modern

frameworks have developed specific techniques for

state management, which differ in their approach

toward scalability.

In addition to its widespread use in combination

with React, Redux was characterized by the

application of unidirectional data flow and, more

importantly, single truth for the application state

itself. While never natively part of React, ideas like

immutability and pure functions have, nonetheless,

marked state management throughout the

ecosystem. As painful as it sometimes is due to

verbosity, Redux has spawned a host of alternatives

and competitors such as MobX and Recoil with

trade-offs between simplicity and scalability.

The state management solution from Vue.js is Vuex,

a store solution heavily inspired by Redux but

designed to fit better with the reactivity system of

Vue (Vue.js, 2021). This supports centralized storing

of all components in an application and streamlines

complex state management interactions in big

applications.

NgRx provides Redux-style state management to

Angular applications (NgRx, 2021). It uses RxJS

observables for a reactive management of state so

also further integrates very well with Angular's

detection system.

While in a fascinatingly contrasting approach with

its built-in stores-just little simple objects including

subscribe method-Svelte's approach to state

management is lightweight, much like its

philosophy, which makes it scale well for most

applications.

These state management solutions have been the

basic enablers that allow development of large-

scale, data-intensive applications. They provide the

patterns for organizing access to data across

complex trees of components, which helps maintain

consistencies and predictability as applications

grow.

4.3 Build Tools and Bundling Strategies

Scalability requires good build processes and high-

level bundling. Smart bundling becomes pretty

heavy when the application is very large and

complex. Advanced tools and build techniques are

coming into the modern JavaScript frameworks to

optimize not only the performance of the application

but also its developers' experiences.

Webpack has long been the de facto standard for

bundling JavaScript applications: it offers features

of code splitting, tree shaking, and hot module

replacement-all of these available at the end

(Webpack, 2021). It is heavily used across the React,

Vue, and Angular ecosystems, where it is often

integrated into framework-specific tooling.

It uses the under-hood services of Webpack to

develop zero-configuration environments with

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |296

Create React App, which happens to be the official

tool for bootstrapping React applications (Facebook,

2021). It also comes with code splitting and

production builds out of the box so developers can

more easily create scalable applications with React.

This is meant to achieve a whole system for rapid

development on Vue.js, and this includes an

interactive project scaffolding tool, a runtime

dependency, and a rich collection of official plugins

(Vue.js, 2021). It uses Webpack internally and offers

features like modern mode: it leverages native ES

modules for modern browsers while providing a

fallback for older browsers.

Angular CLI, sitting on top of which is Webpack,

provides a very comprehensive solution for the

tooling of Angular development. It includes ahead-

of-time compilation that tends to decrease

application startup time considerably more

dramatically for larger applications.

Rollup, another widely used bundler, is adopted to

most library development scenarios because it

bundles ES modules efficiently (Rollup, 2021). For

instance, Svelte uses Rollup as the default bundler in

its official template while exploiting its tree-shaking

capability to generate highly optimized bundles.

They are strong tools for managing the complexity

of modern web applications, allowing one to write

modular, maintainable code while ensuring that the

final product is optimized in terms of performance

and compatibility with the widest variety of

browsers.

4.4 Microservices and Micro-Frontends

Architectural patterns, particularly in recent times,

comprising microservices and micro-frontends,

have been gaining much attention because big

applications continually are growing in size and

complexity. This is the approach of breaking large

applications down into pieces that become smaller

and manageable to be developed and deployed

independently.

Microservices architecture is the breaking down of

the backend parts of an application into small,

loosely coupled services. This, however, is strictly a

backend concern but has implications on the

frontend as well. Modern JavaScript frameworks

work well with microservices architectures,

generally by using APIs and client-side state

management.

Micro-frontends take the idea of microservices and

apply it to frontends; in other words, large

applications can be broken into a little more

manageable code base based on the idea of Geers in

2020. This is particularly effective for large

organizations with teams working on different parts

of an application.

Several micro-frontend solutions have sprouted,

such as single-spa, that enables different

frameworks to coexist in a single application

(single-spa, 2021). This can particularly be handy

when migrating large applications over time or

organizations with various technology stacks.

Angular has Angular Elements that will make it

possible for Angular components to be usable in

non-Angular applications. This can be of great use

for a micro-frontend architecture because it can help

teams build and deploy independent features and

compose them into a larger application.

One of the best ways for using Vue.js in this design

is through solutions like Vue Micro Front-End

Architecture. The application utilizes flexibility and

lightweightness of Vue (Abdellatif, 2019).

This makes it very suitable to micro frontend

architectures. Also, such an approach will allow

native mobile applications with Svelte components,

thanks to tools like Svelte Native, thereby making it

extend even further (Svelte Society, 2021).

The adoption of microservices and micro-frontends

indicates the future directions of more scalable and

maintainable architectures for large web

applications. Both approaches allow organizations

to scale the development process together with the

application and so respond much better to rapidly

changing requirements in different sectors of an

evolving system.

5. Developer Experience and Productivity

The success of a JavaScript framework is not just a

matter of how technically capable it is, but also how

good an experience it gives to developers. This

section has discussed how modern frameworks have

evolved to enhance developer productivity and

satisfaction.

5.1 Declarative vs. Imperative Programming

Models

Modern JavaScript frameworks have, in general,

moved toward more declarative programming

models that describe what a program should do

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |297

rather than how it does so. React popularised this

method by using a new architecture based on a

conceptual "component", which, coupled with the

use of JSX syntax, encourages developers to

describe their UI as a function of the application

state (Facebook, 2021). Vue.js uses another

template-based approach, this time extremely

declarative, making use of directives that directly

bind the DOM to the underlying data model (Vue.js,

2021). Angular is more verbose, using decorators

and template syntax in its declarative approach

(Google, 2021). Declarativeness is taken to the nth

degree by Svelte, which actually compiles

declarative component definitions into extremely

efficient imperative code (Harris, 2019). This trend

towards declarative programming has tended to

result in codebases that are more intuitive and

maintainable, favoring developer productivity while

reducing the cognitive load of understanding

complex UI interactions.

5.2 Tooling Ecosystems and Developer Support

The tooling ecosystem around a framework is a key

factor in determining the developer experience.

Because of this large and active community, React

has led to a massive set of third-party libraries and

tools ranging from state management solutions like

Redux to UI component libraries such as Material-

UI (npm, 2021). Vue.js, having a much smaller

ecosystem, supports functionalities such as routing

(vue-router) and state management (Vuex), thus

providing for a more curated experience (Vue.js,

2021). It takes it even further with a very holistic

approach to the platform through providing official

solutions to most common needs for development,

from forms and routing to an HTTP client and even

animations, whereas Svelte is newer, so has a

smaller but increasingly in size ecosystem. Official

packages for routing and state management are just

beginning to emerge (Svelte, 2021). Another area

that has improved with the growth of sophisticated

dev tools is React Developer Tools and Vue.js

devtools, hence giving good debugging and

inspection capabilities for developers.

5.3 Learning Curve and Documentation Quality

The learning curve involved in the use of a

framework can alter its adoption considerably and

the productivity of new developers. React has

focused much attention on the JavaScript core while

having a relatively smaller API surface that makes it

accessible to many developers, though concepts like

JSX and hooks are some concepts most developers

usually find confusing at first (Facebook, 2021).

Vue.js has a gentle learning curve that uses the

template syntax familiar to those with experience in

HTML (Vue.js, 2021). Angular, being built atop

TypeScript and much more opinionated in its

structure, tends to have a more uphill learning curve

but provides more orderly development once that

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |298

curve is mounted (Google, 2021). With an explicit

goal in mind-to simplify the development process by

where possible leveraging existing web standards-

may lower the curve for those already familiar with

HTML, CSS, or JavaScript, Svelte is written to work

within those standards. Quality and comprehensive

documentation is yet another factor of learning. All

the major frameworks have put much effort into the

quality of their documentation; React has detailed,

very comprehensive docs while Vue has a

comprehensive guide. Similarly, Angular has good,

detailed tutorials, and Svelte has an interactive

tutorial that really teaches how to use it.

5.4 Community Engagement and Ecosystem

Maturity

Community strength and engagement are considered

to impact a great deal on the evolution of the

framework and support to its developers. This large

and vibrant community has given React many third-

party libraries, tools, and learning resources (npm,

2021). Unlike a smaller community, a very involved

and positive user base characterizes the Vue.js users

(Vue.js, 2021). Due to its enterprise focus, Angular

is robustly present inside the corporate

environments and has a lot to offer for large

application development (Google, 2021). With

Svelte, although it is a smaller community, interest

and contribution among developers have been

growing due to its innovative approach (Svelte,

2021). These ecosystems mature differently from

each other, although the React and Angular were

used the longest for their time, they are the ones that

have more mature patterns and best practices;

whereas the Vue.js and Svelte continue to evolve so

swiftly.

6. Comparative Analysis of Major Frameworks

This section details a comparison of the top

JavaScript frameworks, their unique approaches,

and what they do best.

6.1 React: Component-Based UI Development

React's component-based architecture with a virtual

DOM makes it a first choice for developing complex

user interfaces. Its unidirectional data flow and state

management, whether using hooks or libraries like

Redux, provides for a predictable structure that is

maintainable for large applications (Facebook,

2021). The popularity of React has been fueled by

its focus on understanding core JavaScript

knowledge as opposed to framework abstractions.

Hooks in React 16.8 ensured that state management

and side effects were no longer pain points in

functional components, and this helped upskill the

developer experience (Abramov, 2018). The depth

of a third-party library base and support from a well-

established community have allowed React to thrive

with a wide variety of use cases.

6.2 Vue: Progressive Framework Architecture

Vue.js is characterized by an approachable learning

curve and a flexible, incrementally adoptable

architecture. It unifies template-based and reactive

data model approaches for a balance between being

easy to use and having a great power (Vue.js, 2021).

The related code is kept together in Vue by single-

file components, providing clean separation of

concerns. Official Vue 3 routing and state

management solutions named vue-router and Vuex

align with the core library. Therefore, the

Composition API, released in 2020, became part of

Vue 3 to better organize the code and improve

support for TypeScript (You, 2020).

6.3 Svelte: Compile-Time Approach

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |299

This is because Svelte pushes most of the work by

the framework to the compile time so that it

produces smaller bundle sizes and therefore better

runtime performance, according to Harris in 2019.

As it is related to a superset of HTML, Svelte is

familiar to web developers, yet it brings reactivity

capabilities. A transition system and built-in state

management have cut down the use of further

libraries in a Svelte application. Its popularity in

recent years is based on its leverage of web

standards and its compiler-centric approach

appealing to developers looking for simpler

alternatives that are more performant than large

frameworks.

6.4 Angular: Comprehensive Framework for

Enterprise Applications

It is a complete platform for big application

development. Even though in general it is

considered an advanced framework, there exist

official solutions for really common needs such as

routing, forms, and HTTP communication (Google,

2021). Its use of TypeScript and a dependency

injection system provide strong typing with

improved maintainability, especially in enterprise

environments. Its CLI tooling support provides

highly sophisticated code generation and project

management capabilities. Its Ivy renderer, that was

introduced in v9, has vastly improved performance

with reduced bundle sizes according to Fluin (2020).

Its opinionated structure and complete feature set

make it a good fit for large complex applications

with large teams.

7. Trade-offs and Decision Factors

So, when choosing a JavaScript framework,

developers and organizations will have to make a

number of trade-offs and decisions.

7.1 Performance vs. Feature Set

Typically, frameworks trade the performance for the

richness of the feature set. In general, React and Vue

are pretty nice with performance and very flexible

sets of features that developers can add when

needed. Angular gives more comprehensive sets of

features out-of-the box but contains a larger initial

bundle size. Svelte's approach at compile-time is

fantastic with its performance despite missing some

advanced features compared to better-established

frameworks.

7.2 Flexibility vs. Opinionated Design

React and Vue offer more flexibility in terms of how

a project could be structured and additional libraries

that can be added to customise the stack to best fit

individual needs. Angular is more of a feature-rich,

opinionated system. This might make it more

suitable for large teams with really massive

enterprise projects. Svelte will likely find a sweet

spot there, providing enough inbuilt solutions for

common needs yet relatively unopinionated.

7.3 Bundle Size vs. Functionality

Another critical consideration in the realm of web

performance is bundle size. Both React and Vue rely

on core libraries that are quite small, but you still

often want more packages to get things working.

Angular uses a more full-featured approach, so

initial bundle sizes are much larger, although this

can be mitigated with techniques like tree-shaking.

Still, Svelte's approach to compilation often results

in the smallest bundle sizes for most applications,

especially smaller ones.

8. Future Trends and Predictions

The JavaScript framework landscape evolves so fast

that it becomes hard to keep track. This chapter

outlines some of the possible future directions that

are already underway in this space.

8.1 WebAssembly Integration

The role that Wasm will play out to be quite

disruptively significant in the future of web

development. When Wasm becomes mainstream,

frameworks are going to use it for the performance-

critical parts of applications; hence, developers

could write high-performance code in some other

language such as Rust or C++ then seamlessly

integrate into their JavaScript framework of choice

(WebAssembly, 2021).

8.2 AI-Assisted Development

Artificial Intelligence and Machine Learning are

increasingly going to be part of development

workflows. More advanced code completion,

refactoring, and even AI-supported component

generation will be part of framework tooling

(GitHub, 2021).

8.3 Edge Computing and Distributed

Architectures

As edge computing spreads, the frameworks

themselves could change in order to better support

distributed architectures. This might include better

support for offline functionality, better integration

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |300

with serverless platforms, and new patterns about

managing state across distributed systems (Fielding,

2000).

9. Conclusion

9.1 Summary of Findings

This research has closely examined the performance

optimization and scalability considerations of

JavaScript frameworks regarding the extent to

which these impact the developer experience. It

becomes apparent, along the way, how different

approaches each of the frameworks take with

problems that they presumably share across lines-

the virtual DOM implementation, state

management, building tool integrations, and all the

way down to component architectures.

9.2 Implications for Developers and

Organizations

Choosing a JavaScript framework has important

implications for development speed, application

performance, and long-term maintainability.

Organizations must carefully consider their own

needs, the experience of their developers, and the

requirements of the project in their choice of a

framework. The trend toward more declarative

programming models and powerful tooling

ecosystems has generally increased developer

productivity but continues to demand continuous

learning and adaptation.

9.3 Future Research Directions

Future research might investigate how innovations

like WebAssembly inform the design of frameworks

or opportunities for AI-assisted development, again

in these contexts, to enable framework architectures

to evolve in support of edge computing and other

forms of distributed systems. More quantitative

studies could also analyze the performance

characteristics and developer productivity metrics

across all these frameworks to yield further insights

for the community.

References

[1] Abdellatif, A. J. (2019). Vue Micro Front-End

Architecture. Medium.

https://medium.com/@abdellatif.jamil/vue-micro-

front-end-architecture-1b9894ea859e

[2] Abramov, D. (2018). Introducing Hooks. React

Blog. https://reactjs.org/docs/hooks-intro.html

[3] Angular. (2021). Angular Documentation.

https://angular.io/docs

[4] Aranda, J., Khomh, F., & Adams, B. (2021). The

Evolution of Front-End Development: A Systematic

Mapping Study. IEEE Transactions on Software

Engineering, 47(9), 1936-1957.

[5] Archibald, J. (2012). Application Cache is a

Douchebag. A List Apart.

https://alistapart.com/article/application-cache-is-a-

douchebag/

[6] Brito, G., Mombach, T., & Valente, M. T. (2019).

Migrating to GraphQL: A Practical Assessment. In

https://medium.com/@abdellatif.jamil/vue-micro-front-end-architecture-1b9894ea859e
https://medium.com/@abdellatif.jamil/vue-micro-front-end-architecture-1b9894ea859e
https://reactjs.org/docs/hooks-intro.html
https://angular.io/docs
https://alistapart.com/article/application-cache-is-a-douchebag/
https://alistapart.com/article/application-cache-is-a-douchebag/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |301

Proceedings of the 26th International Conference on

Software Analysis, Evolution and Reengineering

(SANER) (pp. 140-150). IEEE.

[7] Charland, A., & Leroux, B. (2011). Mobile

application development: web vs. native.

Communications of the ACM, 54(5), 49-53.

[8] Chedeau, C. (2013). React's diff algorithm. In

Proceedings of the 2013 ACM SIGPLAN

International Conference on Systems,

Programming, Languages and Applications:

Software for Humanity (pp. 1-12).

[9] Denicola, D. (2020). Understanding the event loop,

callbacks, promises, and async/await in JavaScript.

ACM SIGPLAN Notices, 55(8), 42-50.

[10] Eich, B. (2008). Brendan Eich: JavaScript at Ten

Years. https://brendaneich.com/2005/12/javascript-

at-ten-years/

[11] Facebook. (2021). React Documentation.

https://reactjs.org/docs/getting-started.html

[12] Fielding, R. T. (2000). Architectural Styles and the

Design of Network-based Software Architectures.

University of California, Irvine.

[13] Fluin, S. (2020). Version 9 of Angular Now

Available. Angular Blog.

https://blog.angular.io/version-9-of-angular-now-

available-project-ivy-has-arrived-23c97b63cfa3

[14] Garrett, J. J. (2005). Ajax: A New Approach to Web

Applications. Adaptive Path.

http://adaptivepath.org/ideas/ajax-new-approach-

web-applications/

[15] Geers, M. (2020). Micro Frontends in Action.

Manning Publications.

[16] GitHub. (2021). GitHub Copilot.

https://copilot.github.com/

[17] Gizas, A. B., Christodoulou, S. P., & Papatheodorou,

T. S. (2012). Comparative evaluation of javascript

frameworks. In Proceedings of the 21st International

Conference on World Wide Web (pp. 513-514).

[18] Google. (2021). Angular Documentation.

https://angular.io/docs

[19] Graziotin, D., & Abrahamsson, P. (2013). Making

sense out of a jungle of JavaScript frameworks. In

International Conference on Product-Focused

Software Process Improvement (pp. 334-337).

Springer, Berlin, Heidelberg.

[20] Green, B., & Seshadri, S. (2013). AngularJS.

O'Reilly Media, Inc.

[21] Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L.,

Holman, M., Gohman, D., ... & Bastien, J. F. (2017).

Bringing the web up to speed with WebAssembly. In

Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and

Implementation (pp. 185-200).

[22] Hansson, D. H. (2018). The Majestic Monolith. In

Proceedings of the 40th International Conference on

Software Engineering: New Ideas and Emerging

Results (pp. 89-92).

[23] Harris, R. (2016). Frameworks without the

framework: why didn't we think of this sooner?

Svelte Blog. https://svelte.dev/blog/frameworks-

without-the-framework

[24] Harris, R. (2019). Svelte 3: Rethinking reactivity.

Svelte Blog. https://svelte.dev/blog/svelte-3-

rethinking-reactivity

[25] Jain, N., Bhansali, A., & Mehta, D. (2015).

AngularJS: A modern MVC framework in

JavaScript. Journal of Global Research in Computer

Science, 5(12), 17-23.

[26] Kambona, K., Boix, E. G., & De Meuter, W. (2013).

An evaluation of reactive programming and

promises for structuring collaborative web

applications. In Proceedings of the 7th Workshop on

Dynamic Languages and Applications (pp. 1-9).

[27] Koushik, A. M., & Selvarani, R. (2019). A Study on

Web Application Development using ReactJS

Framework. International Journal of Engineering

and Advanced Technology, 8(6), 1456-1460.

[28] Layka, V., & Pollack, D. (2017). Beginning Spring

5: From Novice to Professional. Apress.

[29] Lerner, R. M. (2020). Design Patterns in Modern

JavaScript Development. Communications of the

ACM, 63(5), 42-47.

[30] Louridas, P. (2020). Static vs Dynamic Languages:

A Literature Review. ACM Computing Surveys,

52(6), 1-38.

[31] Majchrzak, T. A., Biørn-Hansen, A., & Grønli, T. M.

(2018). Progressive web apps: the definite approach

to cross-platform development?. In Proceedings of

the 51st Hawaii International Conference on System

Sciences.

[32] Malviya, V. K., Saurav, S., & Gupta, A. (2013). On

the assessment of architectures for web application

development frameworks. In 2013 International

Conference on Computer Communication and

Informatics (pp. 1-7). IEEE.

[33] Neuhaus, J. (2018). The deepening crisis in

JavaScript framework churn. Medium.

https://medium.com/@jonneuhaus/the-deepening-

crisis-in-javascript-framework-churn-2efb4aa6d39a

[34] NgRx. (2021). NgRx Documentation.

https://ngrx.io/docs

[35] Nielsen, J. (2012). Usability 101: Introduction to

Usability. Nielsen Norman Group.

https://brendaneich.com/2005/12/javascript-at-ten-years/
https://brendaneich.com/2005/12/javascript-at-ten-years/
https://reactjs.org/docs/getting-started.html
https://blog.angular.io/version-9-of-angular-now-available-project-ivy-has-arrived-23c97b63cfa3
https://blog.angular.io/version-9-of-angular-now-available-project-ivy-has-arrived-23c97b63cfa3
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://copilot.github.com/
https://angular.io/docs
https://svelte.dev/blog/frameworks-without-the-framework
https://svelte.dev/blog/frameworks-without-the-framework
https://svelte.dev/blog/svelte-3-rethinking-reactivity
https://svelte.dev/blog/svelte-3-rethinking-reactivity
https://medium.com/@jonneuhaus/the-deepening-crisis-in-javascript-framework-churn-2efb4aa6d39a
https://medium.com/@jonneuhaus/the-deepening-crisis-in-javascript-framework-churn-2efb4aa6d39a
https://ngrx.io/docs

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(2), 287–302 |302

https://www.nngroup.com/articles/usability-101-

introduction-to-usability/

[36] npm. (2021). npm package manager.

https://www.npmjs.com/

[37] Nuxt.js. (2021). Nuxt.js Documentation.

https://nuxtjs.org/docs/2.x/get-started/installation

[38] Occhino, T. (2013). React: Rethinking best

practices. JSConf EU.

https://www.youtube.com/watch?v=x7cQ3mrcKaY

[39] Ogden, M., McKelvey, K., Madsen, M. B., & Fedor,

S. (2018). Dat-Foundation for a Distributed Web.

Open Science Framework.

[40] Pande, N., Somani, A., Prasad, S., & Varshney, V.

(2018). A study on the performance evaluation of

javascript frameworks with respect to rendering

time. In 2018 4th International Conference on

Computing Communication and Automation

(ICCCA) (pp. 1-6). IEEE.

[41] Pawlik, M., Segal, J., Sharp, H., & Petre, M. (2015).

Crowdsourcing scientific software documentation: a

case study of the NumPy documentation project.

Computing in Science & Engineering, 17(1), 28-36.

[42] Pinna, F., Tonelli, R., Orrú, M., & Marchesi, M.

(2018). A survey on the attention to source code in

software engineering research. In 2018 44th

Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 304-311).

IEEE.

[43] Rauschmayer, A. (2019). JavaScript for impatient

programmers. Independently published.

[44] Redux. (2021). Redux Documentation.

https://redux.js.org/

[45] Reyes, V. C., Marasco, J., & Torres, J. M. (2020). A

serverless framework for building event-driven

microservices. In Proceedings of the 35th Annual

ACM Symposium on Applied Computing (pp. 204-

211).

[46] Rollup. (2021). Rollup Documentation.

https://rollupjs.org/guide/en/

[47] Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., &

Garrido, A. (2016). Refactoring to Rich Internet

Applications. A model-driven approach. Journal of

Web Engineering, 15(5&6), 349-379.

[48] Salas-Zárate, M. D. P., Hernández-Alcaraz, M. L.,

Valencia-García, R., & Gómez-Berbís, J. M. (2020).

A study of the state-of-the-art in information

systems development methodologies for cloud

computing platforms. Applied Sciences, 10(17),

6131.

[49] Savkin, V. (2016). Angular 2 is now simply Angular.

Angular Blog. https://blog.angular.io/angular-2-is-

now-simply-angular-8012a2646d8c

[50] single-spa. (2021). single-spa Documentation.

https://single-spa.js.org/docs/getting-started-

overview

[51] Svelte Society. (2021). Svelte Native. https://svelte-

native.technology/

[52] Svelte. (2021). Svelte Documentation.

https://svelte.dev/docs

[53] Vasa, R., Hoon, L., Mouzakis, K., & Noguchi, A.

(2012). A preliminary analysis of mobile app user

reviews. In Proceedings of the 24th Australian

Computer-Human Interaction Conference (pp. 241-

244).

[54] Vercel. (2021). Next.js Documentation.

https://nextjs.org/docs

[55] Vue.js. (2021). Vue.js Documentation.

https://vuejs.org/v2/guide/

[56] W3C. (2014). HTML5: A vocabulary and associated

APIs for HTML and XHTML.

https://www.w3.org/TR/html5/

[57] WebAssembly. (2021). WebAssembly

Documentation. https://webassembly.org/

[58] Webpack. (2021). Webpack Documentation.

https://webpack.js.org/concepts/

[59] Wroblewski, L. (2011). Mobile First. A Book Apart.

[60] You, E. (2014). Vue.js: Lightweight, Simple &

Powerful. https://vuejs.org/

[61] You, E. (2020). Vue 3 is now in RC! Vue.js Blog.

https://blog.vuejs.org/posts/vue-3-rc-release.html

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.npmjs.com/
https://nuxtjs.org/docs/2.x/get-started/installation
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://redux.js.org/
https://rollupjs.org/guide/en/
https://blog.angular.io/angular-2-is-now-simply-angular-8012a2646d8c
https://blog.angular.io/angular-2-is-now-simply-angular-8012a2646d8c
https://single-spa.js.org/docs/getting-started-overview
https://single-spa.js.org/docs/getting-started-overview
https://svelte-native.technology/
https://svelte-native.technology/
https://svelte.dev/docs
https://nextjs.org/docs
https://vuejs.org/v2/guide/
https://www.w3.org/TR/html5/
https://webassembly.org/
https://webpack.js.org/concepts/
https://vuejs.org/
https://blog.vuejs.org/posts/vue-3-rc-release.html

