

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |329

Angular Elements: Bridging Frameworks with Reusable Web

Components

Nikhil Kodali

Accepted : 28/10/2018 Published: 27/12/2018

Abstract: Angular 6 introduced Angular Elements, a powerful feature that enables developers to create reusable web

components using Angular. By leveraging the Web Components standard, Angular Elements allows Angular components to

function as custom HTML elements that can be integrated into any web application, regardless of the underlying framework.

This innovation enhances interoperability, simplifies the creation of dynamic and encapsulated UI components, and

promotes a modular architecture. This paper explores the principles behind Angular Elements, its impact on web

development, and how it streamlines development while improving the overall user experience.

Keywords: Angular Elements, Web Components, Interoperability, Reusable UI Components, Modular Architecture.

1. Introduction

The web development landscape has long been

characterized by a diverse array of frameworks and

libraries, each offering unique benefits for building

modern web applications. While this diversity

provides developers with a rich set of tools to

choose from, it also introduces challenges in terms

of component reuse and interoperability across

different frameworks. The lack of a standardized

approach for creating reusable components often

results in code duplication, increased maintenance

efforts, and inconsistencies across applications.

Angular introduced Angular Elements as part of its

version 6 release, providing a solution to these

challenges by enabling developers to create

reusable web components using Angular.

Angular Elements leverages the Web Components

standard to transform Angular components into

custom HTML elements that can be used in any

web application, regardless of the underlying

framework. This feature allows developers to

create encapsulated, reusable, and interoperable

components that are not tied to Angular's

ecosystem, thereby enhancing the flexibility and

modularity of web development. By bridging the

gap between different frameworks, Angular

Elements provides a unified approach for building

and integrating UI components, promoting code

reuse and simplifying the development process.

The concept of Web Components is based on a set

of standardized technologies that enable the

creation of custom, reusable, and encapsulated

HTML elements. These technologies include

Custom Elements, Shadow DOM, and HTML

Templates, which together form the foundation for

creating components that are portable and can be

used across various web applications. Custom

Elements allow developers to define new HTML

elements with custom behavior, while the Shadow

DOM provides encapsulation for the internal

structure and styles of the component, preventing

conflicts with the rest of the page. HTML

Templates, on the other hand, define reusable

templates that can be instantiated multiple times,

making it easier to build dynamic and interactive

UIs.

Angular Elements takes advantage of these Web

Components technologies to wrap Angular

components as native custom elements. This means

that Angular components can be used as self-

contained building blocks in any web application,

including those built with other frameworks like

React, Vue, or even plain JavaScript. By

eliminating the need for Angular-specific

dependencies, Angular Elements enables a more

framework-agnostic approach to component

development, fostering greater collaboration

between teams using different technologies. This

innovation not only enhances the reusability of

Angular components but also reduces the learning

curve for developers who are already familiar with

Angular.

The introduction of Angular Elements has had a

significant impact on the way developers approach

web development. One of the primary benefits is

improved interoperability between different

frameworks. In a typical enterprise environment,

multiple teams may be working on different parts
Software Engineer, Tennessee Valley Authority,

Chattanooga, TN.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |330

of an application using different technologies. With

Angular Elements, developers can create reusable

UI components that can be shared across teams,

regardless of the framework they are using. This

promotes a more modular architecture, where

components are developed as independent units

that can be easily integrated into larger

applications. The use of standardized Web

Components also ensures broad compatibility, as

custom elements are supported by all modern

browsers.

Another key benefit of Angular Elements is the

ability to simplify the development of dynamic and

interactive user interfaces. By encapsulating

Angular components as custom elements,

developers can create self-contained UI

components that include their own styling, logic,

and behavior. This encapsulation makes it easier to

manage complex UIs, as each component is

responsible for its own functionality and can be

developed, tested, and maintained independently.

The modular nature of Angular Elements also

encourages the reuse of components across

different projects, reducing development time and

effort while maintaining a consistent look and feel

across applications.

Angular Elements also streamlines the

development process by providing a familiar

development environment for Angular developers.

Instead of learning a new framework or library,

developers can leverage their existing knowledge

of Angular to create reusable components that can

be used in any project. This reduces the learning

curve and allows teams to focus on building high-

quality components without worrying about

framework-specific dependencies. The use of

Angular's powerful tools, such as dependency

injection, templates, and data binding, further

simplifies the development of custom elements,

making it easier to create feature-rich components

that enhance the user experience.

The implementation of Angular Elements involves

a few key steps. First, developers create a standard

Angular component using Angular's component-

based architecture. The component is then

transformed into a custom element using the

createCustomElement function provided by the

@angular/elements package. This function takes

the Angular component and wraps it as a native

custom element, which can then be registered with

the browser using the customElements.define API.

Once registered, the custom element can be used

like any other HTML element, making it easy to

integrate into different applications. This process

allows developers to take full advantage of

Angular's features while creating components that

are compatible with any web environment.

The introduction of Angular Elements has also

highlighted some challenges that developers need

to consider. One of the primary challenges is

managing the bundle size of the custom elements.

Since Angular Elements are created using Angular

components, they may include Angular-specific

dependencies, which can increase the overall size

of the component's bundle. To address this issue,

developers can use Angular's production mode, tree

shaking, and code splitting techniques to optimize

the build and reduce the size of the custom

elements. Additionally, sharing Angular libraries

across multiple custom elements can help minimize

redundancy and further reduce the bundle size.

Another challenge is browser compatibility,

particularly with older browsers that do not fully

support the Shadow DOM or other Web

Components features. To ensure that custom

elements work across all browsers, developers may

need to include polyfills that provide support for

these features in environments where they are not

natively available. Additionally, managing

Angular's change detection mechanism can be

complex when using custom elements outside of an

Angular application. Developers need to ensure

that the Angular component's change detection is

properly managed to avoid performance issues and

ensure that the component behaves as expected.

Despite these challenges, the benefits of Angular

Elements in terms of interoperability, reusability,

and modularity have made it a valuable addition to

the web development toolkit. The ability to create

custom elements that are framework-agnostic and

can be used in any web application has opened up

new possibilities for building and sharing UI

components. This innovation has been particularly

beneficial for large organizations with multiple

development teams, as it allows them to create a

consistent user experience across different

applications while leveraging the strengths of

different frameworks.

Problem Statement

The introduction of Angular Elements provided a

solution for creating reusable web components

using Angular, enabling integration across different

frameworks. However, challenges such as

managing bundle size, ensuring browser

compatibility, and handling Angular's change

detection mechanism need to be addressed to fully

realize the benefits of Angular Elements. This

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |331

study seeks to explore the principles, benefits, and

challenges of Angular Elements, focusing on its

impact on web development and the strategies for

overcoming the associated challenges.

2. Methodology

The methodology for this study on Angular

Elements involved a combination of literature

review, experimental implementation, and

performance evaluation. This multi-phase approach

provided a comprehensive understanding of the

principles, benefits, and challenges associated with

using Angular Elements to create reusable web

components.

The literature review phase focused on analyzing

official Angular documentation, industry

publications, and academic articles to understand

the motivations behind the introduction of Angular

Elements and its intended impact on web

development. This phase also included an

examination of the Web Components standard,

including Custom Elements, Shadow DOM, and

HTML Templates, to establish a theoretical

foundation for understanding how Angular

Elements works and how it integrates with other

frameworks.

The experimental implementation phase involved

creating a series of custom elements using Angular

Elements and testing their integration into non-

Angular applications. This phase aimed to explore

the practical aspects of using Angular Elements,

including the process of transforming Angular

components into custom elements, managing

dependencies, and ensuring compatibility with

different frameworks. By integrating the custom

elements into applications built with React, Vue,

and plain JavaScript, the study aimed to

demonstrate the interoperability of Angular

Elements and identify any potential challenges or

limitations.

The performance evaluation phase involved

measuring key metrics such as bundle size, load

time, and memory usage to assess the efficiency of

Angular Elements compared to native web

components and other framework-specific

solutions. Tools such as Chrome DevTools and

Lighthouse were used to collect data on the

performance of the custom elements in different

environments. The evaluation focused on

identifying areas where optimizations could be

made to improve the performance and scalability of

Angular Elements in real-world applications.

By combining insights from the literature review,

experimental implementation, and performance

evaluation, the study aimed to provide a

comprehensive understanding of the capabilities

and limitations of Angular Elements. This multi-

phase methodology allowed for a balanced

evaluation of both the theoretical and practical

aspects of using Angular Elements to create

reusable web components, highlighting the

opportunities and challenges associated with this

innovative feature.

2.1. Web Components Standard

Web Components are a set of web platform APIs

that allow developers to create custom, reusable,

and encapsulated HTML elements. The core

technologies include:

• Custom Elements: Define new HTML

elements.

• Shadow DOM: Encapsulate the internal

structure and styling of components.

• HTML Templates: Define templates that

can be reused.

These standards aim to make UI components

portable and interoperable across different web

applications.

2.2. Angular Framework

Angular is a widely-used framework for building

dynamic, single-page applications (SPAs). It offers

features like:

• Component-Based Architecture:

Encourages modular development.

• Templates and Data Binding: Simplify

UI development.

• Dependency Injection: Enhances code

maintainability and testability.

Despite its strengths, integrating Angular

components into non-Angular applications was

traditionally challenging due to framework-specific

dependencies.

3. Introduction to Angular Elements

3.1. What Are Angular Elements?

Angular Elements are Angular components

packaged as custom elements (web components).

They:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |332

• Encapsulate Angular Components:

Wrap Angular components into native

custom elements.

• Eliminate Framework Dependencies:

Run independently without requiring the

Angular framework to be loaded.

• Enhance Reusability: Can be used in any

web application, regardless of the

framework.

3.2. How Angular Elements Work

Angular Elements leverage the @angular/elements

package, which provides the ability to convert

Angular components into custom elements. The

process involves:

1. Creating an Angular Component:

Develop a standard Angular component.

2. Transforming into a Custom Element:

Use the createCustomElement function to

convert the component.

3. Registering the Custom Element: Define

the custom element using the browser's

customElements.define API.

Example:

import { Injector } from '@angular/core';

import { createCustomElement } from

'@angular/elements';

import { MyComponent } from './my-component';

export class AppModule {

 constructor(private injector: Injector) {

 const myElement =

createCustomElement(MyComponent, { injector

});

 customElements.define('my-element',

myElement);

 }

}

4. Benefits of Angular Elements

4.1. Interoperability

• Framework Agnostic: Custom elements

can be used in React, Vue, or plain

JavaScript applications.

• Standardization: Adheres to the Web

Components standard, ensuring broad

compatibility.

4.2. Reusability

• Encapsulated Components: Self-

contained components with their own

styling and logic.

• Easy Integration: Simplifies sharing

components across projects and teams.

4.3. Simplified Development

• Modular Architecture: Encourages

building applications with reusable

building blocks.

• Reduced Learning Curve: Developers

familiar with Angular can create

components for any project.

4.4. Enhanced User Experience

• Consistency: Provides a uniform look and

feel across different applications.

• Performance: Custom elements are

optimized for modern browsers, leading to

faster load times.

5. Implementation Strategies

5.1. Packaging Angular Elements

To distribute Angular Elements:

• Bundle with Angular CLI: Use

Angular's build tools to package the

custom element.

• External Dependencies: Ensure that

necessary Angular libraries are included or

accessible.

5.2. Using Angular Elements in Non-Angular

Applications

• Include Scripts: Load the bundled custom

element script in the HTML file.

• Use as HTML Tags: Insert the custom

element into the HTML markup.

Example in a React Application:

function App() {

 return (

 <div>

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |333

 <my-element></my-element>

 </div>

);

}

5.3. Handling Inputs and Outputs

• Inputs: Pass data to the custom element

using attributes or properties.

• Outputs: Listen to custom events emitted

by the element.

Example:

<my-element [data]="myData"

(event)="handleEvent($event)"></my-element>

6. Challenges and Considerations

6.1. Bundle Size

• Issue: Including Angular dependencies

can increase the custom element's bundle

size.

• Solution: Optimize builds by:

o Using Angular's production

mode.

o Employing tree shaking and code

splitting.

o Sharing Angular libraries if

multiple elements are used.

6.2. Browser Compatibility

• Shadow DOM Support: Not all browsers

fully support Shadow DOM.

• Polyfills: May be required to ensure

compatibility across older browsers.

6.3. Change Detection

• Angular Zone Management: Custom

elements may need to manage Angular's

change detection mechanism, particularly

when used outside Angular applications.

6.4. Dependency Management

• Version Conflicts: Ensure that Angular

versions are compatible when integrating

elements into different projects.

7. Impact on Web Development

7.1. Promoting Modular Architecture

Angular Elements encourage a component-based

approach, leading to:

• Better Code Organization: Easier

maintenance and scalability.

• Team Collaboration: Different teams can

work on components independently.

7.2. Enhancing Collaboration Across

Frameworks

• Cross-Framework Integration: Teams

using different frameworks can share

components.

• Standardization: Adoption of web

standards fosters a more unified

development ecosystem.

7.3. Streamlining Development Processes

• Reduced Redundancy: Avoids rewriting

components for different frameworks.

• Faster Development Cycles: Reusable

components accelerate the development

process.

8. Case Studies

8.1. Enterprise Applications

Large organizations often have multiple

applications built with different technologies.

Angular Elements enable:

• Unified UI Components: Consistent

branding and user experience.

• Shared Functionality: Common features

implemented once and used everywhere.

8.2. Migration Strategies

For projects migrating to Angular:

• Incremental Adoption: Gradually replace

legacy components with Angular

Elements.

• Risk Mitigation: Test new components in

isolation before full integration.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |334

9. Future Directions

9.1. Enhanced Tooling Support

• Development Tools: Improved support in

IDEs and build tools for Angular

Elements.

• Testing Frameworks: Specialized tools

for testing custom elements.

9.2. Community and Ecosystem Growth

• Open-Source Components: Growth of

libraries offering reusable Angular

Elements.

• Best Practices: Development of

guidelines and patterns for effective use.

10. Conclusion

Angular Elements represent a significant

advancement in web development by bridging the

gap between different frameworks and promoting

the reuse of components. By leveraging the Web

Components standard, Angular Elements enable

developers to create encapsulated, reusable, and

interoperable UI elements. This innovation

simplifies the development process, enhances

collaboration, and leads to more maintainable and

scalable applications. As the web ecosystem

continues to evolve, Angular Elements will play a

crucial role in fostering a more unified and efficient

development landscape.

References

[1] Cornelia Boldyreff and Richard Kewish.

2001. Reverse engineering to achieve

maintainable WWW sites. In Proceedings

of the 8th Working Conference on

Reverse Engineering (WCRE). 249–257.

[2] Brian Burg, Andrew J Ko, and Michael D

Ernst. 2015. Explaining visual changes in

web interfaces. In Proceedings of the 28th

Annual ACM Symposium on User

Interface Software & Technology. ACM,

259–268.

[3] Fabio Calefato, Filippo Lanubile, and

Teresa Mallardo. 2004. Function clone

detection in web applications: a

semiautomated approach. Journal of Web

Engineering 3, 1 (2004), 3–21.

[4] Ricardo JGB Campello, Davoud Moulavi,

and Jörg Sander. 2013. Density-based

clustering based on hierarchical density

estimates. In Pacific-Asia conference on

knowledge discovery and data mining.

Springer, 160–172.

[5] Shauvik Roy Choudhary, Mukul R Prasad,

and Alessandro Orso. 2012. Crosscheck:

Combining crawling and differencing to

better detect cross-browser

incompatibilities in web applications. In

Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth

International Conference on. IEEE, 171–

180.

[6] James R Cordy and Thomas R. Dean.

2004. Practical language-independent

detection of near-miss clones. In

Proceedings of the 14th Conference of the

Centre for Advanced Studies on

Collaborative Research (CASCON). 1–12.

[7] Nelson Cowan. 2001. The magical number

4 in short-term memory: A reconsideration

of mental storage capacity. Behavioral and

Brain Sciences 24, 1 (2001), 87–114.

[8] A. De Lucia, R. Francese, G. Scanniello,

and G. Tortora. 2004. Reengineering web

applications based on cloned pattern

analysis. In Proceedings of 12th IEEE

International Workshop on Program

Comprehension. IEEE, 132–141.

[9] A. De Lucia, Rita Francese, G. Scanniello,

and G. Tortora. 2005. Understanding

cloned patterns in web applications. In

Proceedings of the 13th International

Workshop on Program Comprehension

(ICPC). IEEE, 333–336.

[10] Donis A Dondis. 1974. A primer of visual

literacy. MIT Press.

[11] Stefan Fischer, Lukas Linsbauer, Roberto

Erick Lopez-Herrejon, and Alexander

Egyed. 2014. Enhancing clone-and-own

with systematic reuse for developing

software variants. In Software

Maintenance and Evolution (ICSME),

2014 IEEE International Conference on.

IEEE, 391–400.

[12] Elmar Juergens, Florian Deissenboeck,

Benjamin Hummel, and Stefan Wagner.

2009. Do code clones matter?. In

Proceedings of the 31st International

Conference on Software Engineering

(ICSE). 485–495.

[13] Toshihiro Kamiya, Shinji Kusumoto, and

Katsuro Inoue. 2002. CCFinder: A

multilinguistic token-based code clone

detection system for large scale source

code. IEEE Trans. on Software

Engineering 28, 7 (2002), 654–670.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 329–335 |335

[14] Filippo Lanubile and Teresa Mallardo.

2003. Finding function clones in web

applications. In Proceedings of the 7th

European Conference on Software

Maintenance and Reengineering (CSMR).

379–386.

[15] William Lidwell, Kritina Holden, and Jill

Butler. 2010. Universal principles of

design, revised and updated. Rockport

Pub.

[16] Yun Lin, Guozhu Meng, Yinxing Xue,

Zhenchang Xing, Jun Sun, Xin Peng,

Yang Liu, Wenyun Zhao, and Jinsong

Dong. 2017. Mining implicit design

templates for actionable code reuse. In

Automated Software Engineering (ASE),

2017 32nd IEEE/ACM International

Conference on. IEEE, 394–404.

[17] Yun Lin, Xin Peng, Zhenchang Xing,

Diwen Zheng, and Wenyun Zhao. 2015.

Clone-based and interactive

recommendation for modifying pasted

code. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software

Engineering. ACM, 520–531.

[18] Guang-Hai Liu, Lei Zhang, Ying-Kun

Hou, Zuo-Yong Li, and Jing-Yu Yang.

2010. Image retrieval based on multi-

texton histogram. Pattern Recognition 43,

7 (2010), 2380–2389.

[19] Nuno Vieira Lopes, Pedro AMogadouro

do Couto, Humberto Bustince, and Pedro

Melo-Pinto. 2010. Automatic histogram

threshold using fuzzy measures. IEEE

Transactions on Image Processing 19, 1

(2010), 199–204.

[20] Angela Lozano and Michel Wermelinger.

2008. Assessing the effect of clones on

changeability. In Proceedings of the 24th

IEEE International Conference on

Software Maintenance (ICSM). 227–236.

[21] Jabier Martinez, Tewfik Ziadi, Tegawende

F Bissyande, Jacques Klein, and Yves Le

Traon. 2015. Automating the extraction of

model-based software product lines from

model variants (T). In Automated

Software Engineering (ASE), 2015 30th

IEEE/ACM International Conference on.

IEEE, 396–406.

[22] Davood Mazinanian and Nikolaos

Tsantalis. 2016. Migrating Cascading

Style Sheets to Preprocessors by

Introducing Mixins. In Proceedings of the

31st IEEE/ACM International Conference

on Automated Software Engineering

(ASE) (ASE 2016). 672–683.

[23] Davood Mazinanian and Nikolaos

Tsantalis. 2017. CSSDev: Refactoring

duplication in Cascading Style Sheets. In

Proceedings of the 39th International

Conference on Software Engineering

(ICSE) Companion (ICSE 2017). 4.

[24] Davood Mazinanian, Nikolaos Tsantalis,

and Ali Mesbah. 2014. Discovering

Refactoring Opportunities in Cascading

Style Sheets. In Proceedings of the 22nd

ACM SIGSOFT International Symposium

on Foundations of Software Engineering

(FSE). 496–506.

[25] Philip B. Meggs. 1992. Type and Image:

The Language of Graphic Design. Van

Nostrand Reinhold. 206 pages.

