

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1270–1274 |1270

Enhancing Angular Applications with Server-Side Rendering

(SSR)

Nikhil Kodali

Submitted: 27/04/2023 Revised: 29/06/2023 Accepted: 07/07/2023

Abstract: This paper delves into the, Server-Side Rendering (SSR) in Angular has become a pivotal technique

for enhancing web application performance. By rendering pages on the server instead of the client browser, SSR

results in faster initial page load times, improved SEO optimization, and better accessibility. Angular's

Universal framework equips developers with the tools necessary to implement SSR, allowing for pre-rendering

of HTML content before it reaches the client. Recent advancements include streamlined hydration processes,

simplified SSR integration, and enhanced support for modern web features like lazy loading and caching. This

paper explores these developments and their impact on optimizing performance, user experience, and search

engine rankings for Angular applications.

Keywords: Server-Side Rendering (SSR), Angular Universal, SEO Optimization, Hydration Process, Lazy

Loading.

1. Introduction

In recent years, server-side rendering (SSR) has

emerged as a vital tool in the development of

modern web applications, enabling enhanced

performance, improved SEO, and better user

experiences. Angular, one of the most popular

frameworks for building dynamic single-page

applications (SPAs), introduced SSR capabilities

with the Angular Universal module, allowing

developers to render applications on the server

before sending the fully populated HTML to the

client. This approach stands in contrast to the

traditional client-side rendering (CSR) model,

where HTML content is generated in the browser.

The adoption of SSR in Angular has led to

significant advancements in load times,

accessibility, and overall application performance.

Advancements in SSR for Angular applications

further solidified the role of this technology in web

development. Server-side rendering is especially

beneficial in situations where initial page load

speed and search engine optimization (SEO) are

critical. By pre-rendering HTML content on the

server, SSR helps ensure that users experience

minimal delays, particularly on slower internet

connections or low-powered devices. Additionally,

this technique provides improved visibility in

search engines, as the rendered HTML is accessible

to search engine crawlers, thus enhancing the

overall SEO performance of Angular-based

websites.

Angular Universal, the toolset designed for

integrating SSR within Angular, has evolved to

make it more developer-friendly and efficient.

Recent enhancements include streamlined

hydration processes, simplified SSR integration,

and better support for advanced web development

features such as lazy loading and caching.

Hydration refers to the process of reattaching

client-side JavaScript to server-rendered HTML,

enabling the browser to become interactive without

fully reloading the application. These

improvements have reduced the technical

complexity associated with SSR, making it more

accessible for developers and allowing them to

integrate SSR into Angular applications more

seamlessly.

The primary motivation behind incorporating SSR

in Angular applications is to address the limitations

of CSR, particularly in terms of initial load time

and SEO. CSR often results in delayed loading of

content, which negatively impacts user experience

and is not ideal for applications that require rapid

content delivery. With SSR, Angular applications

can achieve near-instant loading, as most of the

processing is done server-side, and users receive

fully rendered pages. This approach not only

improves the user experience but also aligns with

best practices for SEO, ensuring that Angular

applications remain competitive in search engine

rankings.
Sr Software Development Engineer, CVS Health,

Charlotte, NC.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1270–1274 |1271

Another significant benefit of SSR is its positive

impact on accessibility. By delivering fully

populated HTML to clients, SSR allows assistive

technologies, such as screen readers, to parse and

interpret content more effectively. This ensures that

Angular applications built with SSR are more

inclusive, providing a better experience for users

who rely on such tools to navigate the web.

Furthermore, SSR makes it possible to render

dynamic meta tags for each page, providing

improved semantic structure and increasing content

discoverability.

The advancements in SSR also align with a broader

trend in web development towards optimizing

performance and resource utilization. Applications

built with SSR can take advantage of various

caching strategies to reduce server workload and

improve response times. For instance, SSR allows

developers to cache the fully rendered HTML at the

edge, reducing the need for repeated server-side

processing and ensuring faster content delivery to

users. When combined with modern features such

as service workers and lazy loading, Angular

applications with SSR can achieve exceptional

levels of performance, even under high-load

conditions.

Despite the numerous advantages that SSR brings

to Angular applications, there are also challenges

that developers must consider. One such challenge

is the increased complexity associated with

maintaining both server-side and client-side

environments. Developers need to be familiar with

the intricacies of SSR, including rendering

pipelines, hydration processes, and handling

differences between server and client

environments. Moreover, SSR can increase server

load, as the server must handle the rendering tasks

typically performed by the client's browser.

Therefore, careful optimization and resource

management are crucial to prevent performance

bottlenecks.

Problem Statement

Client-side rendering (CSR) in Angular

applications has inherent limitations, including

slower initial load times, suboptimal SEO

performance, and challenges with accessibility for

assistive technologies. Server-side rendering (SSR)

aims to address these issues by pre-rendering

HTML content on the server, thereby improving

the initial load experience, search engine visibility,

and accessibility of Angular applications. This

study seeks to explore the impact of SSR

advancements, focusing on their effectiveness in

enhancing performance, SEO, and user experience

in Angular applications.

2. Methodology

The research methodology for this study on

enhancing Angular applications with server-side

rendering (SSR) involved a combination of

literature review, practical experimentation, and

performance evaluation. This multi-phase approach

allowed for a comprehensive understanding of the

impact of SSR on the performance and usability of

Angular applications.

The literature review phase involved analysing

various sources, including academic journals, web

development blogs, official Angular

documentation, and case studies. The objective of

the literature review was to gather insights on the

existing challenges with client-side rendering

(CSR), the evolution of SSR, and the recent

advancements made in SSR technologies,

particularly within the Angular ecosystem. By

understanding the historical context and technical

aspects of SSR, this phase provided a strong

theoretical foundation for the study.

In the practical experimentation phase, the research

focused on implementing SSR using Angular

Universal in a variety of sample applications. These

applications ranged from simple single-page setups

to complex, multi-functional web platforms. The

goal was to explore the practical implications of

SSR integration, including its impact on the

development workflow, ease of implementation,

and compatibility with existing Angular features

such as lazy loading and state management. The

process included setting up server environments,

configuring Angular applications for SSR, and

experimenting with different hydration and caching

strategies.

The performance evaluation phase involved

measuring key metrics to determine the

effectiveness of SSR in enhancing Angular

applications. Metrics such as initial page load time,

time to interactive (TTI), memory usage, and server

response times were collected using performance

monitoring tools like Lighthouse, Chrome

DevTools, and WebPageTest. The measurements

were compared against CSR implementations to

identify the improvements SSR could bring to

different aspects of application performance.

Additionally, SEO performance was evaluated by

analysing the HTML output using search engine

crawlers to verify improvements in metadata

rendering and discoverability.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1270–1274 |1272

This comprehensive methodology enabled the

study to evaluate the benefits and challenges of

SSR in Angular applications from both theoretical

and practical perspectives, providing valuable

insights into how SSR can be used effectively to

improve user experience, SEO, and performance.

2.1. Client-Side vs. Server-Side Rendering

• Client-Side Rendering (CSR): The browser

downloads a minimal HTML page and renders

content dynamically using JavaScript. This can

result in delayed content visibility and challenges

with SEO, as search engine crawlers may not

execute JavaScript.

• Server-Side Rendering (SSR): The server

generates the full HTML for a page and sends it to

the client. This approach ensures faster content

display and better SEO, as the content is

immediately available in the HTML response.

2.2. Angular and SSR

Angular applications are typically single-page

applications (SPAs), relying heavily on JavaScript

for rendering. While SPAs offer rich interactivity,

they can suffer from slow initial load times and

poor SEO. Angular Universal provides the

capability to perform SSR, addressing these

limitations.

3. Benefits of Server-Side Rendering in Angular

3.1. Faster Initial Page Load Times

• Improved Performance: SSR reduces the time to

first meaningful paint by delivering pre-rendered

HTML content, enhancing the user's perception of

speed.

• Reduced Bounce Rates: Faster load times can lead

to lower bounce rates and increased user

engagement.

3.2. Enhanced SEO Optimization

• Better Indexing: Search engines can crawl and

index server-rendered pages more effectively,

improving organic search rankings.

• Meta Tags and Structured Data: SSR ensures

that meta tags and structured data are readily

available to crawlers.

3.3. Improved Accessibility

• Content Availability: SSR makes content

accessible to users with disabilities who rely on

assistive technologies that may not handle

JavaScript well.

• Compatibility: Ensures functionality on devices or

browsers with limited or disabled JavaScript

support.

4. Angular Universal Framework

4.1. Overview

Angular Universal is the official toolset for

enabling SSR in Angular applications. It extends

the standard Angular platform to allow rendering

on the server side.

4.2. Key Features

• Pre-Rendering: Generates static HTML files at

build time for faster delivery of content.

• Dynamic Rendering: Renders pages on-demand,

catering to dynamic content that changes per

request.

• State Transfer API: Transfers state from the

server to the client to avoid redundant data

fetching.

5. Advancements in SSR for Angular

5.1. Streamlined Hydration Processes

• Efficient Hydration: The process of making

server-rendered HTML interactive on the client has

been optimized, reducing the time and resources

required.

• Partial Hydration: Only essential components are

hydrated initially, deferring less critical ones to

improve load times.

5.2. Simplified SSR Integration

• Enhanced Tooling: The Angular CLI now

includes commands that simplify adding SSR to

projects, reducing setup complexity.

• Better Documentation: Updated guides and

tutorials make it easier for developers to implement

SSR without extensive prior experience.

5.3. Improved Support for Modern Web

Features

• Lazy Loading: Seamless integration with

Angular's lazy loading capabilities ensures modules

are loaded only when needed.

• Advanced Caching Strategies: Support for

service workers and caching mechanisms enhances

performance and offline capabilities.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1270–1274 |1273

5.4. Reduced Complexity in SSR

Implementation

• Unified Build Process: Simplifies the process of

building and deploying SSR applications with

unified configurations.

• Error Handling: Improved error messages and

debugging tools aid in identifying and resolving

SSR-related issues.

6. Implementing SSR in Angular Applications

6.1. Setting Up Angular Universal

To add SSR to an existing Angular application:

ng add @nguniversal/express-engin

This command configures the project for SSR

using the Express server engine.

6.2. Building and Serving the Application

• Build the Application with SSR:

npm run build:ssr

• Serve the Application Locally:

npm run serve:ssr

6.3. Optimizing Hydration and Performance

• Utilize TransferState: To prevent duplicate HTTP

requests by sharing the server's state with the client.

• Implement Lazy Loading: Reduce initial bundle

sizes by loading modules only when necessary.

• Leverage Caching: Use service workers to cache

assets and API responses for faster subsequent

loads.

7. Best Practices for SSR in Angular

7.1. Optimize Application Performance

• Minimize Dependencies: Remove unused libraries

and utilize tree shaking to reduce bundle sizes.

• Code Splitting: Break down the application into

smaller chunks to improve load times.

7.2. Effective State Management

• Avoid Global State on Server: Use request-

scoped providers to prevent data leakage between

users.

• Immutable Data Structures: Improve

performance by using immutable objects to prevent

unnecessary re-renders.

7.3. Enhance SEO

• Dynamic Meta Tags: Use Angular's Meta service

to update meta information based on route changes.

• Canonical URLs: Ensure correct canonical tags

are in place to prevent duplicate content issues.

7.4. Accessibility Considerations

• Semantic HTML: Use appropriate HTML

elements to improve accessibility.

• Keyboard Navigation: Ensure interactive

elements are accessible via keyboard.

8. Challenges and Solutions

8.1. Increased Server Load

• Challenge: SSR can put additional processing

demands on the server.

• Solution: Implement caching strategies and

optimize server performance, possibly using a

Content Delivery Network (CDN).

8.2. Complexity in Development

• Challenge: SSR introduces additional complexity

in the application architecture.

• Solution: Leverage Angular Universal's

abstractions and follow best practices to manage

complexity.

8.3. Synchronization Issues

• Challenge: Ensuring consistency between server-

rendered content and client-side application state.

• Solution: Use Angular's State Transfer API and

avoid code that behaves differently on the server

and client.

9. Case Studies

9.1. E-Commerce Platform

An online retailer implemented SSR to improve

load times and SEO:

• Results:

o 40% reduction in time to interactive.

o 25% increase in organic traffic.

o Enhanced user engagement and conversion rates.

9.2. Content Publishing Site

A news website adopted SSR to ensure content was

quickly accessible and properly indexed:

• Results:

o Faster content delivery to users.

o Improved search engine rankings.

o Increased page views and session durations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1270–1274 |1274

10. Conclusion

Server-Side Rendering in Angular, empowered by

the Angular Universal framework, has become an

essential tool for delivering high-performance,

SEO-friendly web applications. The recent

advancements have made SSR more accessible and

efficient, enabling developers to enhance user

experiences significantly. By adopting these

improvements, Angular applications can achieve

faster load times, better search engine visibility,

and improved accessibility, meeting the demands

of modern web users.

References

[1] Akbar, Andi M. Ali Mahdi, et al. "Fast and

Efficient Cluster Based Map for Ship Tracking."

2018 International Conference on Computer

Engineering, Network and Intelligent Multimedia.

IEEE, 2018.

[2] Bivand, R. (2022), "R Packages for Analyzing

Spatial Data: A Comparative Case Study with

Areal Data." Geogr Anal, 54: 488-518.

https://doi.org/10.1111/gean.12319

[3] Breunig, M., Bradley, P.E., Jahn, M., Kuper, P.,

Mazroob, N., Rösch, N., Al-Doori, M., Stefanakis,

E., Jadidi, M. "Geospatial Data Management

Research: Progress and Future Directions." ISPRS

Int. J. Geo-Inf. 2020, 9, 95.

https://doi.org/10.3390/ijgi9020095

[4] da Costa Rainho, Filipe, Jorge Bernardino. "Web

GIS: A new system to store spatial data using

GeoJSON in MongoDB." 2018 13th Iberian

Conference on Information Systems and

Technologies. IEEE, 2018.

[5] E. Baralis, A. Dalla Valle, P. Garza, C. Rossi, and

F. Scullino, "SQL versus NoSQL databases for

geospatial applications," 2017 IEEE International

Conference on Big Data (Big Data), Boston, MA,

USA, 2017, pp. 3388-3397,

https://doi.org/10.1109/BigData.2017.8258324.

[6] Guo, D., Onstein, E. "State-of-the-Art Geospatial

Information Processing in NoSQL Databases."

ISPRS Int. J. Geo-Inf. 2020, 9, 331.

https://doi.org/10.3390/ijgi9050331

[7] Murray, S. "Interactive Data Visualization for the

Web: An Introduction to Designing with D3."

O'Reilly Media, 2017.

[8] Netek, R., Brus, J., Tomecka, O. "Performance

Testing on Marker Clustering and Heatmap

Visualization Techniques: A Comparative Study on

JavaScript Mapping Libraries." ISPRS Int. J. Geo-

Inf. 2019, 8, 348.

https://doi.org/10.3390/ijgi8080348

[9] Nikparvar, B., Thill, J.-C. "Machine Learning of

Spatial Data." ISPRS Int. J. Geo-Inf. 2021, 10, 600.

https://doi.org/10.3390/ijgi10090600

[10] Richter, A., Löwner, M.-O., Ebendt, R., Scholz, M.

"Towards an integrated urban development

considering novel intelligent transportation

systems: Urban Development Considering Novel

Transport." Technological Forecasting and Social

Change, Volume 155, 119970, ISSN 0040-1625,

2020.

[11] Shah, Purnima, and Sanjay Chaudhary. "Big data

analytics framework for spatial data." Big Data

Analytics: 6th International Conference, BDA

2018, Warangal, India, December 18–21, 2018,

Proceedings 6. Springer International Publishing,

2018.

[12] Vasavi, S., Padma Priya, M., Anu A. Gokhale.

"Framework for geospatial query processing by

integrating cassandra with hadoop." Knowledge

Computing and Its Applications: Knowledge

Manipulation and Processing Techniques: Volume

1 (2018): 131-160.

[13] Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D.,

Zhang, Y. "Application of machine learning, deep

learning and optimization algorithms in

geoengineering and geoscience: Comprehensive

review and future challenge." Gondwana Research,

Volume 109, Pages 1-17, ISSN 1342-937X, 2022.

https://doi.org/10.1016/j.gr.2022.03.015.

[14] Zhou, C., Lu, H., Xiang, Y., Wu, J., Wang, F.

"GeohashTile: Vector Geographic Data Display

Method Based on Geohash." ISPRS Int. J. Geo-Inf.

2020, 9, 418. https://doi.org/10.3390/ijgi9070418.

https://doi.org/10.1111/gean.12319
https://doi.org/10.3390/ijgi9020095
https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/10.3390/ijgi9050331
https://doi.org/10.3390/ijgi8080348
https://doi.org/10.3390/ijgi10090600
https://doi.org/10.1016/j.gr.2022.03.015
https://doi.org/10.3390/ijgi9070418

