
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  876 

Optimizing Business Logic Execution: The Role of Stored 

Procedures and Functions in SQL-Based Systems 

  

Sukhdevsinh Dhummad, Tejaskumar Patel 

Submitted: 12/05/2024    Revised: 22/06/2024     Accepted: 05/07/2024 

Abstract- This study compares the storage needs and runtime performance of SQL-based systems with various indexing 

strategies, including None, Clustered, Non-Clustered, and Both. It focuses on integer and string data types. The results show 

that integer data typically has lower storage requirements and runs faster, whereas string data has a higher storage overhead. 

When it comes to string data in particular, the "Both" indexing strategy—which combines Clustered and Non-Clustered—

offers efficient data retrieval but uses the most storage space. When compared to SQL indexing, Python-based systems may 

provide more versatile in-memory data management, which could optimize specific operations without using as much disk 

space. Nevertheless, SQL's indexing features make it superior for sophisticated queries on big datasets. Insights into the 

benefits and drawbacks of SQL-based indexing are offered by this analysis, which helps in making application-specific 

decisions about data storage and access. 

Keyword Used- SQL indexing methods, Runtime performance, Storage requirements, Clustered and Non-Clustered indexing, 

Integer vs. string data and SQL vs. Python data handling 

1. Introduction 

1.1. Importance of optimizing business logic 

execution 

The term "business process" (from now on "BP") 

refers to a series of interrelated tasks carried out in 

tandem by various entities within a given 

organizational and technological framework. All of 

these things work together to make the company 

succeed. Business processes can be represented 

imperatively in several languages. The process can 

be turned into an executable model and the explicit 

order of execution between activities can be 

described by business experts using an imperative 

specification [1]. Consequently, the data flow and 

the activities' requirements are laid out in an 

imperative description. This description may specify 

that activities A, B, and C must be executed in a 

specific order, or that activities D and E must be 

executed simultaneously. It is possible to 

characterize system knowledge in terms of what is 

permissible or forbidden. Instead of specifying how 

something must be done, declarative descriptions 

allow for specifying what must be done. For 

instance, an action cannot be performed before 

activity B ends. Even though imperative models are 

far easier to grasp than declarative ones [2], 

declarative specifications can work in tandem with 

an imperative model to fill in gaps that arise when 

an imperative description is not feasible. This is why 

several writers have put forward languages that 

would allow BPs to be defined as declarative models 

[3]. Also, this modeling can be utilized in cases 

where the BP is not always able to be defined before 

execution. The whole set of permitted activity 

sequences can be seen in imperative models, which 

means they should be known and specified during 

design time. In contrast, declarative models outline 

the allowed orders of operations in an open-world 

assumption (anything is possible as long as it is not 

explicitly stated). For instance, if operation A is 

carried out, then operation B must be carried out 

afterward. Otherwise, no action can be taken.  

1.1.1 Managing Business Processes Strategically 

The field that applies insights from management 

science and information technology to the day-to-

day running of businesses is known as business 

process management (BPM) [4]. Its promise of 

vastly improved efficiency and cost savings has 

garnered a lot of interest in recent years. More than 

that, business process management (BPM) systems 

System Architect, Enterprise Data Development, Sardar 

Vallabhbhai National Institute of Technology, Surat 

Senior Data Engineer, Department: Enterprise Data 

Management, Masters from University of Bridgeport, 

USA Bachelors from Sardar Patel University, India 

Correspondence Email: dhummadsm@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  877 

are plentiful nowadays. Generic software systems 

that implement and oversee operational business 

processes based on explicit process designs [5] are 

what these systems are all about.  

Business Process Management (BPM) is an 

expansion of Workflow Management (WFM). 

While business process management (BPM) covers 

more ground, including process analysis, processes 

management, and work association, workflow 

management (WFM) is mainly troubled with 

automating business processes [6]. While new 

technology may not always be necessary, business 

process management pursues to improve working 

business processes anyway. Management may, for 

instance, obtain suggestions for cost-cutting and 

service-enhancing measures by simulating and 

analyzing a business process. Software to manage, 

control, and support operational processes is often 

linked with business process management (BPM). 

At first, this was where WFM put its emphasis. On 

the other hand, conventional WFM solutions 

focused on mechanically automating company 

processes with little regard for human factors or 

managerial backing.  

1.2 Management of Strategic Business Processes 

To maintain the organization's competitive 

advantage, business process optimization seeks to 

reduce lead time and costs, improve product quality, 

and increase the degree to which both customers and 

employees are satisfied with the organization's 

services. It is common practice to use statistical 

methods to evaluate the outputs of business 

processes to determine the quality of a product or 

service. It is still not possible to find a unified 

performance indicator that can be used to evaluate 

the quality of business processes that are used to 

support the optimization design of business 

processes. Despite presenting the trade-off model 

among time, cost, and quality, [7] does not offer a 

conclusive concept of quality in a broad sense. 

Business process performance evaluations are found 

in the literature, for example in [8]. However, there 

is a dearth of examples that address the constantly 

changing optimization design of process 

performance metrics like time, money, and quality. 

The arrangement of resource capacities across 

company procedure chains is a major consequence 

that has a significant impact on the performance of 

business processes. Resource assignment is the 

process of corresponding a resource's capabilities 

with the skills needed for an activity. A resource's 

assignment quality is defined as the extent to which 

its capabilities and needs are met. Business process 

predictive quality or confidence factor of 

measurable indicators like time and cost are two 

ways to look at this quality. This is because regular 

and consistent resource allocation results in 

predictable and repeatable business process output. 

For both internal and external business processes, 

multifaceted assessment combined optimization 

models based on the principle of assign excellence 

have been created. To resolve this type of issue, a 

nondominated sorting genetic algorithm is 

employed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Implementing Business Process Management – A Strategic Approaches 

 
Begin by identifying 

your business process. 

Understand how each 

process contributes to 

your organizational 

goal and the role it 

plays in customer 

satisfaction. 

Step 1: 
Identify your 

processes 

 
Next analyze these 

processes to identify 

potential inefficiencies 

or bottlenecks. Use 

process modeling 

techniques to visualize 

how changes might 

affect outcomes. 

Step 2: 
Analyze the 
processes 

 
Based on your 

analysis, redesign the 

processes. Once 

finalized implement 

these new processes, 

ensuring all 

stakeholders are 

aligned and informed.  

Step 3: 
Redesign & 
implement 

 

Finally, monitor the 

new processes, 

adjusting, based on 

feedback and 

performance data to 

continually optimize 

outcomes. 

Step 4: 
Monitor & 
Optimize 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  878 

The diagram illustrates a four-step process 

improvement cycle. Step 1: Identify your processes, 

involves recognizing and mapping out the key 

processes within a system. Step 2: Analyze the 

processes, and focus on evaluating these processes 

to identify inefficiencies or areas for improvement. 

Step 3: Redesign & implement, involves modifying 

or restructuring the processes based on the analysis 

and implementing these changes to enhance 

efficiency. Step 4: Monitor & Optimize, is the 

continuous evaluation and optimization of the 

redesigned processes, ensuring they remain efficient 

and aligned with goals. This cycle promotes ongoing 

process improvement through a structured, iterative 

approach. 

1.2.1 Reduced network traffic 

Business process mining methods rely on event logs 

as their primary data source. Nevertheless, they 

aren't always accessible, and they're generated by a 

portion of the systems [9]. Moreover, a particular 

information system's logs might not cover the entire 

process, which could involve steps taken by entities 

outside the system. They propose that the data 

produced by the process's connected communication 

network traffic can cover this gap in terms of both 

availability and span. But there's a huge conceptual 

chasm between technically focused and noisy traffic 

statistics and business-meaning occasion logs. This 

work fills that void by creating a theoretical model 

of how traffic behaves during commercial 

operations. They iteratively apply process 

discovery, abstract and filter the data using virtual 

circulation data interpreted by the creating action, 

and then use this information to build the model 

[10]. The end product is a generic, higher-level 

model of traffic behavior in a business activity, as 

well as separate procedure mockups for apiece 

action type. Models with high suitability and 

generalizability transversely several administrative 

areas are evaluated through conformance checking. 

1.2.2 An explanation and rundown of SQL 

Injection  

One danger to database-connected applications is 

SQL (structure query language) injection [11]. 

Criminals can irresponsibly steal large amounts of 

data by exploiting SQL injection vulnerabilities and 

gaining complete access to the database or 

application. Applications leave themselves open to 

SQL injection attacks if they fail to properly validate 

user input. There are several approaches to avoiding 

SQL injection, and each has its own set of pros and 

cons. To avoid SQL injection, make sure to properly 

implement the PHP Data Object Parameterized 

Query. Because PDO can be used on multiple 

databases, it not only makes the code portable but 

also provides a method to facilitate the 

implementation of parameterized queries. To reduce 

the occurrence of SQL Injection in the newly 

developed scheduling application, this article details 

the findings of a study that utilized PDO 

Parameterized Query [12]. The integration of 

“client-side web technology (indexedDB)” with 

“PDO Parameterized Query” is what makes this 

study stand out. Using “PDO Parameterized Query”, 

this application is protected from SQL injection 

attacks. 

2. Review of Literature 

Chapke Dhavan, et al. (2024) [13] said the new 

methods of data storage have emerged alongside the 

meteoric rise in data volumes brought about by the 

Internet and contemporary computing. Related 

decisions regarding the processing and storage of 

big data are made when storing petabytes of data for 

analysis and to gain new insight. Companies often 

use servers housed in their own data centers to 

physically store their data. Data stored on servers in 

an organization's data center is known as "on-

premises" or "on-prem" storage. There is an 

increasing demand in the big data industry for 

solutions that can help users derive actionable 

insights from various data types and use those 

insights to inform more informed decision-making. 

The biggest obstacle is quickly storing all of this 

data in a commercial data warehouse. Converting 

such data from its unstructured form into a more 

manageable format and then storing it in the cloud 

or distributed clusters according to user needs is the 

most efficient way to store it. Stored in the cloud, 

structured data is both cheap and endlessly scalable. 

Hive, Impala, Presto, and Drill are distributed query 

engines that are necessary for accessing these 

massive datasets stored in the cloud. These free and 

open-source Structured Query Language (SQL) 

engines can query massive datasets in a matter of 

seconds. Distributed SQL engines capable of 

querying very big datasets, such as Hive and Impala, 

are the focus of the current study. 

Olabanji Samuel Oladiipo (2023) [14] assessed 

that organizations must incorporate cutting-edge 

technologies in their daily operations to remain 

competitive in today's fast-paced business 

world. One exciting new direction for improving 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  879 

efficiency and introducing new ideas to existing 

processes is cloud computing, a game-changing 

technical development. In this study, they looked at 

how to automate control processes and strengthen 

cloud security by combining cloud computing with 

two strong programming languages: Python and 

SQL. The widespread use of cloud computing has, 

via virtualization and other computing models, 

completely altered the way resources are managed. 

But there are new security risks, such as data 

breaches and illegal access, that it brings. To 

overcome these obstacles and automate different 

control procedures, Python and SQL stand out as 

crucial tools. Python's flexibility allows businesses 

to automate computer vision, real-time monitoring, 

intrusion detection, anomaly detection, and other 

complex security processes. Database management, 

backup, recovery, access control, and resource 

provisioning are just a few of the control processes 

that SQL automates. Python and SQL, when 

combined, provide a comprehensive strategy for 

improving cloud security. Problems that need fixing 

include issues with data privacy, scalability, 

integration, maintenance, and the necessary skill 

sets. Luckily, some solutions offer platforms that 

unify different programming languages. Snow Park, 

dbt, Hex, and Dataiku are just a few of them. This 

fosters collaboration and makes tasks much easier.  

Karras Aristeidis, et al. (2022) [15] explained that 

using Spark SQL, an Apache Spark module that 

incorporates relational data processing, they provide 

a way to optimize queries. In this study, they 

investigated NoSQL databases and how they can be 

used in distributed environments to optimize query 

execution time. This will help to meet the complex 

demands of cloud computing users, who need 

dynamic pages generated in real-time and 

information provided in real-time.  

Here, they combine MongoDB with Spark SQL to 

study query optimization through different query 

execution paths, to lower the time it takes for a query 

to run on average. To achieve this, they utilize a 

mediator that acts as an intermediary between 

Apache Spark and MongoDB. Additionally, they 

implement a series of scenarios for query execution 

paths, which involve splitting the original query into 

sub-queries between Spark SQL and MongoDB, to 

enhance the query execution time. Either all of the 

data from MongoDB is transferred to Spark by this 

intermediate or only a subset of the results from the 

sub-queries executed in MongoDB are transferred. 

Based on the experimental results, which were 

tested with eight different query execution path 

scenarios and six different database sizes, one 

scenario stands out as superior and scalable. 

Torres-Jimenez et al. (2022) [16] said that 

combinatorial optimization is focused on 

developing solvers for larger cases because the 

difficulty of the problem increases as its complexity 

increases. But there are also little occurrences in the 

real world that warrant the attention of researchers. 

In the context of web development, for instance, a 

developer may encounter minor combinatorial 

optimization problems that fall into one of three 

categories: (1) the developer may not have the time 

or expertise to devise a solution; (2) the 

programming paradigm in use may compromise the 

efficiency of naive brute force strategies; or (3) the 

developer may not have the resources to develop an 

ad hoc specialized strategy. A research area had 

opened up to develop simple, non-specialized 

strategies that can compete with those naive ones in 

this context, thanks to similar situations and the 

recent uptick in interest in optimization data from 

databases. Consequently, this study updates ways to 

combinatorial optimization using Structured Query 

Language and suggests new ways to solve problems 

like the Portfolio Selection Problem, Maximum 

Clique Problem, and Graph Coloring Problem. The 

results of the queries are evaluated in comparison to 

more simplistic methods, and their applicability to 

various optimization issues is investigated. Using a 

SQL approach to solve small optimization problem 

instances is both simple and versatile, as shown in 

the presented examples. 

Shantharajah S. P. and E. Maruthavani (2021) 

[17] expressed that with the massive increase in data 

volumes due to the Internet and contemporary 

computing, new methods of data storage have 

emerged. Related decisions regarding the processing 

and storage of big data are made when storing 

petabytes of data for analysis and to gain new 

insight. Companies often use servers housed in their 

own data centers to physically store their data. Data 

stored on servers in an organization's data center is 

known as "on-premises" or "on-prem" storage. 

There is an increasing demand in the big data 

industry for solutions that can help users derive 

actionable insights from various data types and use 

those insights to inform more informed decision-

making. The biggest obstacle is quickly storing all 

of this data in a commercial data warehouse. 

Converting such data from its unstructured form into 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  880 

a more manageable format and then storing it in the 

cloud or distributed clusters according to user needs 

is the most efficient way to store it. Stored in the 

cloud, structured data is both cheap and endlessly 

scalable. Hive, Impala, Presto, and Drill are 

distributed query engines that are necessary for 

accessing these massive datasets stored in the cloud. 

These free and open-source Structured Query 

Language (SQL) engines can query massive datasets 

in a matter of seconds. Distributed SQL engines 

capable of querying very big datasets, such as Hive 

and Impala, are the focus of the current study.  

Schönig Stefan, et al. (2019) [18] assessed that the 

area of research became known as process mining, 

which involves the automated discovery of process 

models as well as the testing of conformance and 

enhancement of those models. Discovering models 

of flexible processes from event logs can be 

accomplished automatically through the use of 

declarative process mining approaches. This is 

especially true when the constraints that need to be 

discovered go beyond a standard repertoire of 

templates. However, they frequently experience 

performance issues when dealing with real-life 

event logs. To enhance performance while still 

preserving the adaptability of discovered 

constraints, a novel approach that is based on SQL 

querying has recently been introduced. This 

approach makes use of relational database 

performance technology. A comprehensive analysis 

of configuration parameters that enable a reduction 

in the amount of storage space required for query 

processing and a speeding up of the answering time 

was presented in this study. After that, they offer 

recommendations for the configuration of relational 

databases through the use of SQL for process 

mining. 

Begoli Edmon, et al. (2019) [19] discussed the 

ability to analyze and manage data in real time is 

becoming more and more important for modern 

companies. Although SQL is widely used for these 

endeavors, there is still a lack of support for strong 

streaming analysis and management with SQL. 

Many methods necessitate a set of non-standard 

constructs or limit semantics to a smaller subset of 

features. Furthermore, there are significant 

limitations to the use of event timestamps as native 

support for event analysis based on when they 

occurred, and it is not widely used. First, they 

propose event-time semantics as a basis for both 

classical tables and streaming data; second, they lay 

out a three-pronged approach to incorporating 

robust streaming into SQL; and third, they offer a 

small set of optional keyword extensions to manage 

the materialization of time-varying query 

results. Demonstrate that by making these small 

adjustments, robust stream processing can be 

accomplished by utilizing the full suite of standard 

SQL semantics.  

Idhaim Hasan Ali (2019) [20] suggested 

a methodology for SQL tuning in database systems, 

supported by tests performed using test data 

workloads in Oracle 11g XE. To determine the best 

execution plan for a specific SQL, the study cited 

statements that take process time into account as 

well as statistics regarding objects related to tables. 

Tables, their indexes, access methods, SQL 

commands, and runtime consumption are all part of 

these statistics. The accuracy of the data discovered 

regarding the SQL command to fix an 

underperforming query is the primary determinant 

of the quality of the final execution plan. This work 

added to the body of knowledge in the field by 

presenting essential details regarding database 

tuning with the help of a practical tool for assessing 

SQL commands. When it comes to choosing the best 

form for an SQL statement, the suggested method 

aids developers, database administrators, and 

researchers in evaluating the effects of their choices. 

For the sake of experimentation, Oracle 11g XE is 

being used. 

D. Silva et al. (2019) [21] studied how the 

expansion of data science and machine learning has 

led modern RDBMSs to explore ways to support 

advanced analytical computations alongside 

relational operations. The most typical approach 

involves incorporating numerical computation 

libraries and an embedded high-level language 

interpreter into the “RDBMS”. There has been little 

optimization of user-defined functions (UDFs) and 

numerous complicated workflows that involve 

passing and processing datasets back and forth 

between the embedded HLL interpreter and the 

query execution engine. Entrenched HLL interpreter 

data set objects can be exposed to the query engine 

for relational operations through virtual tables, 

which were introduced in this study. Unlike 

competing methods, ours uses lazy copying and 

conversion to transform data. Since the RDBMS can 

examine data from HLL objects before making an 

execution plan, it also enhances SQL query 

optimization. The implementation of computational 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  881 

workflows is made easier with a programmer-

friendly approach. They evaluated the performance 

and programming advantages of virtual tables on 

different workloads. 

Baldacci Lorenzo and Matteo Golfarelli. (2018) 

[22] presented a new cost model for Spark SQL that 

they have developed. It is a good idea to apply the 

cost model to GPSJ class queries. The cost model 

accounts for the most crucial CPU costs as well as 

those associated with the network and input/output 

(IO). The computation of the execution cost is 

initiated from a physical plan that Spark has 

produced. When running a GPSJ query, Spark 

models the collection of operations it employs 

analytically. The cluster and application parameters, 

along with a set of database statistics, form the basis 

of this modeling. Experiments on three benchmarks 

and two clusters with different sizes and 

computation features showed that our model could 

estimate the actual execution time with an average 

error of about 20%. With this degree of precision, 

the system can choose the best course of action even 

when there is only a small variation in the total time 

required to complete tasks. They were able to reduce 

the error rate to 14% by combining the analytical 

model with our straggler handling strategy. 

Giannakouris Victor, et al. (2016) [23] expressed 

those academics and businesses alike are starting to 

take an interest in multi-engine analytics because of 

its ability to handle the complexity and 

heterogeneity caused by the proliferation of 

frameworks, technologies, and requirements. These 

days, a data analyst will often conduct complicated 

analytics queries that combine data from various 

separate engines. SQL-based multi-engine solutions 

can make these kinds of endeavors easier since SQL 

is a widely used standard that most data scientists 

are familiar with. The current state of the art 

suggests using middleware to centrally optimize the 

execution of queries for various engines. However, 

this method requires the manual integration of each 

operator and cost model for a primitive engine, 

making it extremely inextensible to add new 

operators or engines. Our solution, MuSQLE, is a 

framework for SQL-based analytics in multi-engine 

settings, and it solves this problem. MuSQLE can 

optimize both within and between engines by 

making efficient use of external SQL engines. Our 

framework takes a fresh approach by relying on 

APIs. For each SQL engine endpoint, “MuSQLE” 

specifies a generic API to be implemented.  

Kolev Boyan et al. (2016) [24] said the proliferation 

of cloud data management infrastructures tailored to 

specific data types and tasks, a common 

programming paradigm has been lost and DBMS 

interfaces have become extremely diverse. The 

present study presented CloudMdsQL, a query 

language and engine for cloud multi-data stores. The 

functional SQL-like language known as 

"CloudMdsQL" can query multiple heterogeneous 

data stores (relational and NoSQL) at the same time 

by integrating embedded invocations into each data 

store's native query interface. Significant 

optimization opportunities are presented by the 

query engine's entirely distributed architecture. The 

most notable improvement is the ability for 

"CloudMdsQL" queries to fully leverage the 

capabilities of local data stores. To do this, and made 

use of functions that can optimize queries in various 

ways, like bind join, join ordering, pushing down 

select predicates, and planning intermediate data 

shipping. These functions are native to local data 

stores and work to achieve this goal. The five 

essential requirements for a cloud multi-data store 

query language are satisfied by "CloudMdsQL" 

according to our experimental validation with three 

distinct data stores (graph, document, and relational) 

and sample queries. 

Krause Christian, et al. (2016) [25] studied graph 

databases that have been more popular in the past 

few years. From simple programming interfaces to 

complex declarative languages, there are many 

varieties of graph query languages. A novel SQL-

based language for modeling high-level graph 

queries is introduced in this study. They build on top 

of graph algorithms for calculating nested 

projections, shortest paths, and connected 

components and nested graph conditions with 

distance constraints. Reusing syntax parts for 

arithmetic expressions, aggregates, sorting, and 

limits, as well as combining graph and relational 

queries, are all made possible by incorporating 

graph theory into SQL. This study assessed the 

language ideas and our experimental SAP HANA 

Graph Scale-Out Extension (GSE) prototype. This is 

not SAP-approved content for internal 

communications. Instead of mentioning an existing 

or future SAP product, the focus is on a research 

prototype. Official SAP communication materials 

should form the basis of any business decisions 

involving SAP products, according to the LDBC 

Social Network Benchmark.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  882 

Braun Lucas, et al. (2015) [26] said processing the 

data into actual logical information has eliminated a 

large dataset that is constantly evolving, which is 

essential for the modern data-centric flow in the 

telecom industry. This requirement cannot be 

satisfied by the conventional method of separating 

workloads that are OLTP and OLAP. When it comes 

to managing hybrid workloads, a new category of 

integrated solutions is what is required instead. This 

study presented a novel architecture and an 

industrial use case that works on a single distributed 

store as both analytical processing based on SQL 

and key-value-based event processing. The 

distributed store's total cost of ownership (TCO) 

minimization is the driving force behind this design. 

Our method incorporates several well-known 

techniques, such as shared scans, delta processing, a 

storage layout inspired by PAX, and interleaving 

scanning and delta merging. This method is new. 

Our system's performance is directly proportional to 

the number of servers, as shown by the experiments. 

Our system is capable of maintaining 100,000 event 

streams per second while concurrently processing 

100 ad hoc analytical queries.  

Wang Yue, et al. (2015) [27] assessed that Internet 

companies have widely used Apache Hive for big 

data analytics applications. Users are liberated from 

laborious and complex programming due to its 

capacity to compile high-level languages into 

efficient MapReduce workflows. Not only do 

modern businesses take notice of Hive, but they are 

also interested in its HiveQL-compatible systems, 

such as Impala and Shark. Smart Grid applications 

and other enterprise big data processing systems 

typically use Hive to replace RDBMS-based legacy 

apps instead of writing new logic in HiveQL. 

Manually translating SQL in RDBMS to HiveQL is 

a tedious, error-prone, and frequently performance-

degrading process due to the two languages' distinct 

syntax and cost models. In this study, they present 

QMapper, an application that can convert SQL 

queries into correct HiveQL queries automatically. 

Both a rule-based rewriter and an optimizer based on 

costs make up QMapper. The TPC-H benchmark 

experiments show that QMapper significantly 

reduces the average query latency compared to Hive 

queries that were manually rewritten by Hive 

contributors. Our Smart Grid application in the real 

world also demonstrates its efficiency. 

Woods Louis et al. (2014) [28] explained that 

modern data appliances are very likely to face severe 

bandwidth bottlenecks while transferring large 

amounts of data from storage to query processing 

nodes. One possible solution to alleviate the 

bottlenecks causing these problems is to offload 

queries to an intelligent storage engine. In this 

process, partial or complete queries are pushed 

down to the storage engine. An intelligent storage 

engine prototype, Ibex allows for the off-loading of 

complicated query operators. Those responsible for 

the earlier study presented it here. Instead of using a 

traditional central processing unit (CPU), Ibex 

improves performance and reduces energy 

consumption by implementing the off-load engine 

with a field-programmable gate array (FPGA). Ibex 

is a combination of hardware and software that can 

evaluate SQL expressions at line rates. When the 

hardware engine is overwhelmed, the software can 

take over. In addition to projection and selection-

based filtering, Ibex can also aggregate using the 

GROUP BY command. The GROUP BY 

aggregation operator is more challenging to 

implement on a field-programmable gate array 

(FPGA), but it has a greater impact on performance. 

Wang Tieniu et al. (2012) [29] studied how a large 

portion of the data collected by the modern business 

world is still underutilized, even though it contains 

a lot of information. Companies in the business and 

IT industries must thus make every effort to use 

cutting-edge technology to investigate these data 

sets. This helped with two things: first, helping 

businesses make better decisions, and second, 

helping them increase their market share and profits. 

The role of ETL (Extract, Transform, and Load), 

which is responsible for finishing the technical 

service and providing support for decision-making, 

is significant in the BI project, and business 

intelligence (BI) technologies are evolving to meet 

the demands of the times. "BI" is an acronym for 

"business intelligence." This study’s goal was to 

examine the many ETL methods in use today and 

highlight their salient features, as well as their 

benefits and drawbacks. In addition, this section 

provides a brief overview of a few factors that affect 

the effectiveness of ETL. Moreover, an ETL 

strategy that integrates SQL code and ETL tools was 

proposed and implemented using an ETL 

methodology known as the EL-T (Extract, Load, and 

Transform) framework. Practical and experimental 

results demonstrate that the suggested approach 

outperforms other current ETL methods in terms of 

efficiency and scope of application.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  883 

Saba Ahmed et al. (2012) [30] said that recent 

technological developments have made embedded 

systems more accessible. They play an integral role 

in our daily lives. They are largely responsible for 

the proliferation of electronic devices in all aspects 

of modern life: These days, it's hard to imagine 

modern life without mobile phones, music players, 

and managers. An ever-increasing daily challenge 

for embedded system technology is ensuring access 

to information regardless of location or time. In 

keeping with a fresh concept, this article details an 

embedded system that can access any database via 

short message service (SMS) commands, allowing 

for the extension of data consultation to earlier 

generations of mobile networks. This work's output, 

which is based on a UNIX embedded system, can be 

used as a standard for database consultation through 

SQL-SMS Gateway, which translates an SMS 

command into an SQL query. Without putting them 

in danger of online publication, this system will 

make the database accessible via mobile 

consultation. Part one of this study will focus on the 

current landscape of onboard input systems and 

multi-agent systems, while Part two will lay out the 

blueprints for our ideal system. They provide a 

detailed description of the completed prototype in 

the third section. A conclusion and future outlook 

are presented at the end of this piece.  

Mozafari Barzan, et al. (2010) [31] articulated 

several important applications made possible by 

query language extensions for pattern matching on 

stored database sequences and event streams, there 

is a growing interest in these extensions. Due to the 

high demand for these extensions, DSMS venture 

capital firms and database management system 

vendors have proposed Kleene-closure extensions of 

SQL standards. These extensions are based on 

groundbreaking research that proved how effective 

and easily implementable these constructs are. 

Despite their strength, these extensions have 

restrictions that make them useless in a lot of 

practical situations. They developed the K*SQL 

language and system to address these issues; it is 

based on our research into nested words, which are 

new models that generalize trees and words. 

Genomic research, software analysis, and XML 

processing are just a few of the fields that can benefit 

from K*SQL's expansion of relational sequence 

languages. Concurrently, K*SQL maintains its 

remarkable efficiency by utilizing our robust 

optimizations for pattern search over nested words. 

In addition, they demonstrated that K*SQL can be 

automatically translated into other sequence 

languages and XPath, enabling K*SQL to serve as a 

high-performance query execution back-end for 

those languages as well. Consequently, K*SQL 

offers innovative optimization techniques for both 

sequence and XML queries, and it unifies these two 

types of queries using a SQL-based engine. 

Chen Qiming, and Meichun Hsu (2009) [32] 

expressed that the key to high-performance and 

secure execution is to push data-intensive analysis to 

database engines. On the other hand, general graph-

based dataflow processes and orchestrating 

numerous dataflow processes with inter-operation 

data dependencies are both beyond the capabilities 

of the current SQL framework. This was where the 

framework fell short. This study presented an 

extension of SQL to Functional Form-SQL (FF-

SQL), a query calculus-based language for 

declaratively expressing complex dataflow graphs. 

A standard SQL query can be transformed into an 

FF-SQL query with the help of Function Forms 

(FFs). In traditional SQL queries, dataflow trees are 

represented, whereas, in FF-SQL queries, a more 

generalized dataflow graph is used. Furthermore, 

FF-SQL allows for the specification and cooperative 

execution within the database engine of collections 

of SQL dataflow processes that share data among 

their operations. Because of this, they no longer 

have to worry about redundant data retrieval, 

computation, and copying. Support for FF-SQL 

dataflow procedures is added to the PostgreSQL 

query engine through an innovative extension. 

Katircioglu Kaan, et al. (2007) [33] expressed that 

for an inventory optimization solution to be 

successfully implemented, it takes a lot of 

work. Businesses that implement these solutions run 

some risk when putting them into practice. The 

complexity of the requirements will determine 

whether or not a large information technology 

investment is necessary for the solution. This study 

presented an economical inventory optimization 

solution. For small and medium-sized enterprises 

with constrained IT budgets, this solution may prove 

beneficial. Any application platform capable of 

processing basic SQLTM (Structured Query 

Language) commands can be used to implement this 

solution. The solution provides a framework that 

enables accessing sales data stored in an Enterprise 

Resource Planning (ERP) system, generating 

demand statistics based on these data and other 

important parameters, and calculating and reporting 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  884 

the best inventory policies, including those 

involving safety stocks and lot sizes, all without the 

need to purchase additional software. 

Table 1: Approaches to Review of Literature 

S.no. Author Techniques Research gap Findings 

1. Chapke, et al. 

(2024)  

SQL's standardized 

and powerful nature 

makes it essential for 

managing, querying, 

and maintaining data 

in the dynamic 

database 

management 

landscape. 

 

Discovering 

dynamic 

optimization 

methods that 

modify query plans 

according to 

runtime 

circumstances is the 

goal of adaptive 

query optimization. 

 

 

SQL is crucial for 

business 

intelligence and 

decision-making 

because it allows 

efficient data 

manipulation, 

retrieval, and 

analysis. 

 

2. Olabanji Samuel 

(2023)  

Python, SQL, and 

cloud computing. 

Cloud-compatible 

Python and SQL 

integration 

frameworks are 

rare. A best 

practices guide 

could help 

organizations 

implement these 

technologies. 

Integrating Python 

and SQL 

strengthens cloud 

security by 

facilitating 

automated incident 

response, intrusion 

detection, and real-

time monitoring. 

 

3. Karras, et al. 

(2022)  

Making use of Spark 

SQL and MongoDB, 

two popular NoSQL 

databases, to handle 

data efficiently. 

 

Few studies 

compare NoSQL 

databases (besides 

MongoDB) with 

Spark SQL. Study 

how NoSQL 

choices affect query 

optimization. 

 

Using Spark SQL 

and MongoDB 

together reduces 

query execution 

times significantly. 

A hybrid strategy 

lets you use both 

technologies' best 

characteristics. 

 

4. Torres, et al. 

(2022)  

Formulating SQL 

queries to solve 

combinatorial 

optimization 

problems like 

Portfolio Selection, 

Maximum Clique, 

and Graph Coloring. 

 

SQL approaches 

may work for small 

instances, but 

further study is 

needed to scale 

combinatorial 

optimization 

problems without 

sacrificing 

efficiency. 

SQL outperforms 

inexperienced brute 

force approaches 

when it comes to 

solving small-sized 

combinatorial 

optimization 

problems. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  885 

5. Shantharajah S. 

P. and E. 

Maruthavani 

(2021)  

Methods for 

converting 

unstructured data into 

formats that are 

structured so that the 

data can be 

efficiently stored and 

queried. 

 

Comprehensive 

benchmarking 

studies comparing 

distributed SQL 

engines (e.g., Hive, 

Impala, Presto) 

under different 

workload scenarios 

and data properties 

are needed. 

 

Distributed SQL 

engines can process 

big databases 

quickly via parallel 

processing, 

reducing query 

execution times. 

 

3. Background Study  

The optimization of business logic in SQL-based 

systems is entirely dependent on stored procedures 

and functions. When client-server architectures 

were first developed, they relied on client-side 

processing, which resulted in performance [34] 

bottlenecks caused by excessive network traffic. 

During the 1970s, stored procedures were 

introduced, which made it possible for complex 

SQL code to be stored within the database. This 

greatly improved the speed at which the code could 

be executed and reduced the amount of network 

overhead. To facilitate code reusability and simplify 

maintenance, stored procedures encapsulate 

business logic. Furthermore, they can effectively 

manage transactions, which guarantees the integrity 

of the data, and they improve security by limiting 

direct table access.[35] In addition to providing 

additional modularity, functions do so by returning 

specific values that can be utilized in queries. 

However, some obstacles must be overcome, such 

as the management of complexity, the lock-in of 

vendors, and difficulties in debugging. To make the 

most of the benefits that stored procedures and 

functions have to offer, it is necessary to implement 

best practices, such as modular design, performance 

monitoring, and thoroughly documented 

procedures.[36] In general, the efficient utilization 

of these tools is essential for the achievement of 

database operations that are scalable, secure, and 

efficient. 

4. Research gaps  

1. Performance Metrics: Lack of comprehensive 

studies evaluating the performance of stored 

procedures/functions across different SQL 

databases, with a need for standard benchmarks. 

2. Dynamic Optimization: Limited exploration of 

dynamic adaptation strategies for real-time 

optimization based on workload and system 

performance metrics. 

3. Modern Integration: Insufficient research on 

integrating SQL stored procedures/functions with 

modern development practices like microservices 

and serverless architectures. 

4. Security and Maintenance: There is a need for 

strategies to enhance the security and 

maintainability of stored procedures/functions, 

addressing issues like access control and version 

management. 

5. Research Objectives  

➢ Evaluate Performance Benefits: Analyze the 

impact of stored procedures and functions on the 

performance of SQL-based systems compared to 

traditional query execution methods. 

➢ Identify Best Practices: Develop a set of best 

practices for implementing stored procedures and 

functions to optimize business logic execution and 

reduce database load. 

➢ Examine Maintainability and Scalability: 

Investigate how the use of stored procedures and 

functions affects the maintainability and scalability 

of SQL-based applications, including considerations 

for version control and code reuse. 

➢ Assess Security Implications: Assess the security 

advantages and challenges associated with using 

stored procedures and functions in SQL databases, 

focusing on mitigating risks related to SQL injection 

and unauthorized access. 

6. Problem Formulation  

In modern SQL-based systems, optimizing business 

logic execution is crucial for enhancing 

performance, maintainability, and scalability. 

However, organizations often face challenges when 

deciding whether to use standard SQL queries or 

adopt stored procedures and functions for 

implementing business logic. This study seeks to 

address the problem of inefficient business logic 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  886 

execution in SQL-based systems by investigating 

the role of stored procedures and functions. It will 

explore how these SQL constructs impact key 

performance indicators such as execution time, 

resource utilization, and overall system efficiency. 

Furthermore, the research will examine the 

perceptions of developers, database administrators, 

and system architects regarding the use of stored 

procedures and functions, providing insights into 

best practices for maximizing their potential in SQL-

based environments. 

7. Research Methodology  

7.1 Data Collection 

This phase of the research methodology entails data 

collection from various SQL-based systems 

implemented across different organizations. A 

mixed-methods approach will be utilized, 

combining both qualitative and quantitative data 

collection techniques. 

• Surveys and Interviews: Structured surveys will be 

distributed to database administrators, developers, 

and system architects to gather quantitative data on 

their experiences with stored procedures and 

functions. Open-ended interviews will be conducted 

to obtain qualitative insights into their perceptions 

of performance improvements, maintainability, and 

security. 

• Case Studies: Detailed case studies of organizations 

successfully implementing stored procedures and 

functions will be developed. These case studies will 

include a comprehensive analysis of the business 

requirements, system architecture, and the specific 

stored procedures and functions utilized. 

Performance metrics such as execution time, 

resource utilization, and user satisfaction will be 

collected before and after implementation to provide 

a comparative analysis. 

• Implementation Setup: An experimental SQL 

environment will be established to test the 

performance of stored procedures and functions. A 

sample database will be created, simulating real-

world business logic scenarios. Different queries 

will be executed using both standard SQL queries 

and stored procedures/functions to measure 

performance metrics such as execution time, CPU 

usage, and memory consumption. 

7.2 Data Analysis 

The third phase involves data analysis, where both 

quantitative and qualitative data will be examined 

to derive meaningful conclusions. 

• Statistical Analysis: Quantitative data from surveys 

and performance metrics will be analyzed using 

statistical methods, such as descriptive statistics and 

inferential statistics. Software tools like SPSS or R 

may be employed to conduct hypothesis testing, 

regression analysis, and ANOVA to understand the 

relationship between the use of stored 

procedures/functions and performance metrics. 

• Thematic Analysis: Qualitative data gathered from 

interviews and open-ended survey responses will be 

analyzed using thematic analysis. This process will 

involve coding the data to identify recurring themes 

and patterns, helping to highlight the perceived 

benefits and challenges associated with the use of 

stored procedures and functions. 

• Comparative Analysis: A comparative analysis of 

the experimental results will be conducted to 

evaluate the performance differences between 

standard SQL queries and stored 

procedures/functions. This analysis will illustrate 

the practical implications of using stored procedures 

and functions in optimizing business logic 

execution. 

7.3 Validation and Verification 

To ensure the reliability and validity of the research 

findings, a validation phase will be conducted. This 

will include: 

• Triangulation: Data triangulation will be employed 

to cross-verify findings from different sources, 

ensuring that the conclusions drawn are robust and 

reliable. 

• Feedback from Participants: Participants from 

surveys and interviews will be allowed to review the 

findings relevant to their contributions, allowing for 

corrections or affirmations of the data collected. 

8. Research Block Layout 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  887 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Research Methodology Layout 

The layout presented appears to depict a hierarchical 

or process flow structure, likely representing stages 

in a business or software process. The overall 

structure indicates a sequential and branching 

decision-making or process path, likely illustrating a 

workflow, algorithm, or system architecture.  

This research methodology provides a 

comprehensive framework for investigating the role 

of stored procedures and functions in optimizing 

business logic execution in SQL-based systems. By 

integrating various data collection and analysis 

techniques, this study aims to yield valuable insights 

that can inform best practices and guide 

organizations in leveraging stored procedures and 

functions effectively.  

 

Figure 3: Performance and storage consideration 

Start 

Training (80%) 
Testing (20%) 

 

Data Collection 
Survey and interview, 

Case Studies, 

Implementation 

Setups 

Pre-processing 

Data Analysis 

Statistical Analysis 
Comparative 

Analysis 
Thematic Analysis 

Validation and 

Verification 

• Triangulation 

• Feedback from 

participant 

Performance 

Metrix 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  888 

A comparison shown in fig.3 of runtime 

performance and storage requirements for SQL-

based systems using None, Clustered, Non-

Clustered, and Both indexing strategies is presented 

in this infographic. The bar charts display the 

performance (runtime) in seconds and show integer 

and string data separately. Across all methods, the 

integer data has a little lower runtime compared to 

the text data, suggesting speedier execution. With 

the exception of the 'Clustered' indexing approach, 

which uses minimal storage for both integer and 

string data, integer data typically requires less 

storage than string data (as shown by line graphs). 

The 'Both' indexing method uses the most storage at 

51.84 MB, but the 'Non-Clustered' and 'Clustered' 

indexing methods use significantly more storage, 

particularly for string data. This indicates that there 

is a substantial storage overhead associated with 

indexing schemes such as combination clustered and 

non-clustered indexing, as well as non-clustered 

indexing, which may improve retrieval times, 

especially for string-based data. Choosing the right 

indexing strategy according to the data type and 

storage limits is crucial, as this analysis shows the 

storage vs. performance trade-offs. 

 

Figure 4: Execution Time Comparison Layout 

Execution Time Comparison shown in fig.4 shed 

light on the efficacy and validity of the SQL and 

Python methods. The database's capacity to 

optimize query execution through indexing, 

caching, and direct data manipulation usually results 

in faster execution when comparing the SQL 

technique in Execution Time. By eliminating the 

need to transmit data back and forth between the 

database and the application layer, SQL is now 

better able to manage massive datasets. Because of 

the low processing load and lack of need for 

sophisticated optimizations, the SQL and Python 

techniques may display similar execution times for 

smaller datasets or very basic reasoning. Databases 

are advantageous for processing large-scale 

activities, and this becomes even more apparent if 

the SQL time is substantially shorter. 

 

 

 Figure 5: Accuracy Comparison Comparison Layout 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  889 

The Accuracy Comparison were the same for both 

SQL and Python, given that the rationale is the same 

in both. The figure 5 displays 100% accuracy for 

both ways, demonstrating that results will be 

identical whether logic is implemented in Python or 

SQL, provided that the business logic is consistent. 

Performance, measured in execution time, can differ 

greatly depending on data complexity and the 

optimization capabilities of the underlying database, 

although accuracy is unaffected by execution 

technique choice. Finally, these numbers 

demonstrate that the business logic is consistent 

across the two approaches, and also highlight SQL's 

performance advantage for bigger datasets and more 

complicated queries. 

Conclusion- This investigation shows how various 

indexing methods (None, Clustered, Non-Clustered, 

and Both) affect storage and performance in SQL-

based systems. Even though clustered and non-

clustered indexing might speed up data retrieval 

times, they both require a lot of storage space, 

especially for string data. The "Both" indexing 

option takes up the most space. Across the board, 

integer data performs better and requires less storage 

than string data when indexing. If you need quick 

and efficient access to massive amounts of 

structured data, SQL is the way to go since, as 

compared to Python, its indexing algorithms give 

better performance for complicated queries on big 

datasets. On the other hand, smaller datasets or apps 

with less demanding storage requirements may 

benefit from Python's adaptability and efficient in-

memory processing. The application's unique needs 

in terms of storage, scalability, and performance 

should be considered while deciding between 

Python and SQL for data management. 

References 

[1] Aguilar-Savén, Ruth Sara. "Business 

process modeling: Review and 

framework." International Journal of 

Production Economics 90, no. 2 (2004): 129-

149. 

[2] Fabra, Javier, Valeria De Castro, Pedro 

Álvarez, and Esperanza Marcos. "Automatic 

execution of business process models: 

Exploiting the benefits of model-driven 

engineering approaches." Journal of Systems 

and Software 85, no. 3 (2012): 607-625. 

[3] Ly, L. T., Rinderle-Ma, S., Knuplesch, D., 

& Dadam, P. (2011). Monitoring business 

process compliance using compliance rule 

graphs. In On the Move to Meaningful Internet 

Systems: OTM 2011: Confederated 

International Conferences: CoopIS, DOA-SVI, 

and ODBASE 2011, Hersonissos, Crete, 

Greece, October 17-21, 2011, Proceedings, 

Part I (pp. 82-99). Springer Berlin Heidelberg. 

[4] Van Der Aalst, Wil MP. Business process 

management demystified: A tutorial on models, 

systems and standards for workflow 

management. Springer Berlin Heidelberg, 

2004. 

[5] Ter Hofstede, Arthur, Wil MP van der 

Aalst, Arthur HM ter Hofstede, and Mathias 

Weske. "Business process management: A 

survey." In Business Process Management: 

International Conference, BPM 2003 

Eindhoven, The Netherlands, June 26–27, 2003 

Proceedings 1, pp. 1-12. Springer Berlin 

Heidelberg, 2003. 

[6] Van Der Aalst, Wil, and Kees Max Van 

Hee. Workflow management: models, methods, 

and systems. MIT Press, 2004. 

[7] Babu, A. J. G., and Nalina Suresh. "Project 

management with time, cost, and quality 

considerations." European Journal of 

Operational Research 88, no. 2 (1996): 320-

327. 

[8] Ghodsypour, Seyed Hassan, and 

Christopher O'Brien. "A decision support 

system for supplier selection using an integrated 

analytic hierarchy process and linear 

programming." International journal of 

production economics 56 (1998): 199-212. 

[9] Van Der Aalst, Wil MP, Hajo A. Reijers, 

Anton JMM Weijters, Boudewijn F. van 

Dongen, AK Alves De Medeiros, Minseok 

Song, and H. M. W. Verbeek. "Business process 

mining: An industrial application." Information 

Systems 32, no. 5 (2007): 713-732. 

[10] Engelberg, Gal, Moshe Hadad, 

and Pnina Soffer. "From network traffic data to 

business activities: a process mining driven 

conceptualization." In International 

Conference on Business Process Modeling, 

Development and Support, pp. 3-18. Cham: 

Springer International Publishing, 2021. 

[11] Alwan, Zainab S., and Manal F. 

Younis. "Detection and prevention of SQL 

injection attack: a survey." International 

Journal of Computer Science and Mobile 

Computing 6, no. 8 (2017): 5-17. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  890 

[12] Sendiang, Maksy, Anritsu Polii, 

and Jusuf Mappadang. "Minimization of SQL 

injection in scheduling application 

development." In 2016 International 

conference on knowledge creation and 

intelligent computing (KCIC), pp. 14-20. IEEE, 

2016. 

[13] Chapke, Dhavan, Kalyani Akant, 

and Pankaj Chandankhede. "Strategic 

Approaches to Modern Data Management 

Leveraging Relational Database Systems." 

In 2024 International Conference on Inventive 

Computation Technologies (ICICT), pp. 353-

358. IEEE, 2024. 

[14] Olabanji, Samuel Oladiipo. 

"Advancing cloud technology security: 

Leveraging high-level coding languages like 

Python and SQL for strengthening security 

systems and automating top control 

processes." Journal of Scientific Research and 

Reports 29, no. 9 (2023): 42-54. 

[15] Karras, Aristeidis, Christos 

Karras, Antonios Pervanas, Spyros Sioutas, and 

Christos Zaroliagis. "SQL query optimization 

in distributed NoSQL databases for cloud-based 

applications." In International Symposium on 

Algorithmic Aspects of Cloud Computing, pp. 

21-41. Cham: Springer International 

Publishing, 2022. 

[16] Torres-Jimenez, Jose, Nelson 

Rangel-Valdez, Miguel De-la-Torre, and Himer 

Avila-George. "An Approach to Aid Decision-

Making by Solving Complex Optimization 

Problems Using SQL Queries." Applied 

Sciences 12, no. 9 (2022): 4569. 

[17] Shantharajah, S. P., and E. 

Maruthavani. "A survey on challenges in 

transforming No-SQL data to SQL data and 

storing in cloud storage based on user 

requirement." International Journal of 

Performability Engineering 17, no. 8 (2021): 

703. 

[18] Schönig, Stefan, Claudio Di 

Ciccio, and Jan Mendling. "Configuring SQL-

based process mining for performance and 

storage optimization." In Proceedings of the 

34th ACM/SIGAPP Symposium on Applied 

Computing, pp. 94-97. 2019. 

[19] Begoli, Edmon, Tyler Akidau, 

Fabian Hueske, Julian Hyde, Kathryn Knight, 

and Kenneth Knowles. "One SQL to rule them 

all efficient and syntactically idiomatic 

approach to the management of streams and 

tables." In Proceedings of the 2019 

International Conference on Management of 

Data, pp. 1757-1772. 2019. 

[20] Idhaim, Hasan Ali. "Selecting and 

tuning the optimal query form of different SQL 

commands." International Journal of Business 

Information Systems 30, no. 1 (2019): 1-12. 

[21] D'silva, Joseph Vinish, Florestan 

De Moor, and Bettina Kemme. "Keep your host 

language object and also query it: A case for 

SQL query support in RDBMS for host 

language objects." In Proceedings of the 31st 

International Conference on Scientific and 

Statistical Database Management, pp. 133-144. 

2019. 

[22] Baldacci, Lorenzo, and Matteo 

Golfarelli. "A cost model for SPARK 

SQL." IEEE Transactions on Knowledge and 

Data Engineering 31, no. 5 (2018): 819-832. 

[23] Giannakouris, Victor, Nikolaos 

Papailiou, Dimitrios Tsoumakos, and Nectarios 

Koziris. "MuSQLE: Distributed SQL query 

execution over multiple engine environments." 

In 2016 IEEE International Conference on Big 

Data (Big Data), pp. 452-461. IEEE, 2016. 

[24] Kolev, Boyan, Patrick Valduriez, 

Carlyna Bondiombouy, Ricardo Jiménez-Peris, 

Raquel Pau, and José Pereira. "CloudMdsQL: 

querying heterogeneous cloud data stores with 

a common language." Distributed and parallel 

databases 34 (2016): 463-503. 

[25] Krause, Christian, Daniel 

Johannsen, Radwan Deeb, Kai-Uwe Sattler, 

David Knacker, and Anton Niadzelka. "An 

SQL-based query language and engine for 

graph pattern matching." In Graph 

Transformation: 9th International Conference, 

ICGT 2016, in Memory of Hartmut Ehrig, Held 

as Part of STAF 2016, Vienna, Austria, July 5-

6, 2016, Proceedings 9, pp. 153-169. Springer 

International Publishing, 2016. 

[26] Braun, Lucas, Thomas Etter, 

Georgios Gasparis, Martin Kaufmann, Donald 

Kossmann, Daniel Widmer, Aharon Avitzur, 

Anthony Iliopoulos, Eliezer Levy, and Ning 

Liang. "Analytics in motion: High-performance 

event-processing and real-time analytics in the 

same database." In Proceedings of the 2015 

ACM SIGMOD International Conference on 

Management of Data, pp. 251-264. 2015. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 876–891  |  891 

[27] Wang, Yue, Yingzhong Xu, Yue 

Liu, Jian Chen, and Songlin Hu. "QMapper for 

smart grid: Migrating SQL-based application to 

Hive." In Proceedings of the 2015 ACM 

SIGMOD International Conference on 

Management of Data, pp. 647-658. 2015. 

[28] Woods, Louis, Zsolt István, and 

Gustavo Alonso. "Ibex: An intelligent storage 

engine with support for advanced SQL 

offloading." Proceedings of the VLDB 

Endowment 7, no. 11 (2014): 963-974. 

[29] Wang, Tieniu, Jianhua Hu, and 

Haihe Zhou. "Design and implementation of an 

ETL approach in business intelligence project." 

In Practical Applications of Intelligent 

Systems: Proceedings of the Sixth International 

Conference on Intelligent Systems and 

Knowledge Engineering, Shanghai, China, Dec 

2011 (ISKE2011), pp. 281-286. Springer Berlin 

Heidelberg, 2012. 

[30] Sbaa, Ahmed, Rachid El Bejjet, 

and Hicham Medromi. "An SMS-SQL based 

On-board system to manage and query a 

database." International Journal of Advanced 

Computer Science and Applications 3, no. 6 

(2012). 

[31] Mozafari, Barzan, Kai Zeng, and 

Carlo Zaniolo. "From regular expressions to 

nested words: Unifying languages and query 

execution for relational and XML 

sequences." Proceedings of the VLDB 

Endowment 3, no. 1-2 (2010): 150-161. 

[32] Chen, Qiming, and Meichun Hsu. 

"Cooperating SQL dataflow processes for In-

DB analytics." In On the Move to Meaningful 

Internet Systems: OTM 2009: Confederated 

International Conferences, CoopIS, DOA, IS, 

and ODBASE 2009, Vilamoura, Portugal, 

November 1-6, 2009, Proceedings, Part I, pp. 

389-397. Springer Berlin Heidelberg, 2009. 

[33] Katircioglu, Kaan, Timothy M. 

Brown, and Mateen Asghar. "An SQL-based 

cost-effective inventory optimization 

solution." IBM Journal of Research and 

Development 51, no. 3.4 (2007): 433-445. 

[34] Gunnulfsen, Michael. "Scalable 

and efficient web application architectures: 

Thin-clients and SQL vs. thick-clients and 

NoSQL." Master's thesis, 2013. 

[35] Epiphaniou, Gregory, Prashant 

Pillai, Mirko Bottarelli, Haider Al-Khateeb, 

Mohammad Hammoudesh, and Carsten Maple. 

"Electronic regulation of data sharing and 

processing using smart ledger technologies for 

supply-chain security." IEEE Transactions on 

Engineering Management 67, no. 4 (2020): 

1059-1073. 

[36] Crnkovic, Ivica, Ulf Asklund, and 

Annita Persson Dahlqvist. Implementing and 

integrating product data management and 

software configuration management. Artech 

House, 2003. 

 

 

 


