International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

www.ijisae.org

1JISAE

ISSN:2147-6799 Original Research Paper

Optimizing Business Logic Execution: The Role of Stored
Procedures and Functions in SQL-Based Systems

Sukhdevsinh Dhummad, Tejaskumar Patel
Submitted: 12/05/2024 Revised: 22/06/2024 Accepted: 05/07/2024

Abstract- This study compares the storage needs and runtime performance of SQL-based systems with various indexing
strategies, including None, Clustered, Non-Clustered, and Both. It focuses on integer and string data types. The results show
that integer data typically has lower storage requirements and runs faster, whereas string data has a higher storage overhead.
When it comes to string data in particular, the "Both" indexing strategy—which combines Clustered and Non-Clustered—
offers efficient data retrieval but uses the most storage space. When compared to SQL indexing, Python-based systems may
provide more versatile in-memory data management, which could optimize specific operations without using as much disk
space. Nevertheless, SQL's indexing features make it superior for sophisticated queries on big datasets. Insights into the
benefits and drawbacks of SQL-based indexing are offered by this analysis, which helps in making application-specific
decisions about data storage and access.

Keyword Used- SQL indexing methods, Runtime performance, Storage requirements, Clustered and Non-Clustered indexing,

Integer vs. string data and SQL vs. Python data handling
1. Introduction

1.1. Importance of optimizing business logic
execution

The term "business process” (from now on "BP")
refers to a series of interrelated tasks carried out in
tandem by various entities within a given
organizational and technological framework. All of
these things work together to make the company
succeed. Business processes can be represented
imperatively in several languages. The process can
be turned into an executable model and the explicit
order of execution between activities can be
described by business experts using an imperative
specification [1]. Consequently, the data flow and
the activities' requirements are laid out in an
imperative description. This description may specify
that activities A, B, and C must be executed in a
specific order, or that activities D and E must be
executed simultaneously. It is possible to
characterize system knowledge in terms of what is
permissible or forbidden. Instead of specifying how
something must be done, declarative descriptions

System Architect, Enterprise Data Development, Sardar
Vallabhbhai National Institute of Technology, Surat
Senior Data Engineer, Department: Enterprise Data
Management, Masters from University of Bridgeport,
USA Bachelors from Sardar Patel University, India

Correspondence Email: dhummadsm@gmail.com

allow for specifying what must be done. For
instance, an action cannot be performed before
activity B ends. Even though imperative models are
far easier to grasp than declarative ones [2],
declarative specifications can work in tandem with
an imperative model to fill in gaps that arise when
an imperative description is not feasible. This is why
several writers have put forward languages that
would allow BPs to be defined as declarative models
[3]. Also, this modeling can be utilized in cases
where the BP is not always able to be defined before
execution. The whole set of permitted activity
sequences can be seen in imperative models, which
means they should be known and specified during
design time. In contrast, declarative models outline
the allowed orders of operations in an open-world
assumption (anything is possible as long as it is not
explicitly stated). For instance, if operation A is
carried out, then operation B must be carried out
afterward. Otherwise, no action can be taken.

1.1.1 Managing Business Processes Strategically

The field that applies insights from management
science and information technology to the day-to-
day running of businesses is known as business
process management (BPM) [4]. Its promise of
vastly improved efficiency and cost savings has
garnered a lot of interest in recent years. More than
that, business process management (BPM) systems

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(23s), 876-891 | 876

are plentiful nowadays. Generic software systems
that implement and oversee operational business
processes based on explicit process designs [5] are
what these systems are all about.

Business Process Management (BPM) is an
expansion of Workflow Management (WFM).
While business process management (BPM) covers
more ground, including process analysis, processes
management, and work association, workflow
management (WFM) is mainly troubled with
automating business processes [6]. While new
technology may not always be necessary, business
process management pursues to improve working
business processes anyway. Management may, for
instance, obtain suggestions for cost-cutting and
service-enhancing measures by simulating and
analyzing a business process. Software to manage,
control, and support operational processes is often
linked with business process management (BPM).
At first, this was where WFM put its emphasis. On
the other hand, conventional WFM solutions
focused on mechanically automating company
processes with little regard for human factors or
managerial backing.

1.2 Management of Strategic Business Processes

To maintain the organization's competitive
advantage, business process optimization seeks to
reduce lead time and costs, improve product quality,
and increase the degree to which both customers and
employees are satisfied with the organization's
services. It is common practice to use statistical

Step 1: Step 2:
Analyze the

processes

Identify your
processes

methods to evaluate the outputs of business
processes to determine the quality of a product or
service. It is still not possible to find a unified
performance indicator that can be used to evaluate
the quality of business processes that are used to
support the optimization design of business
processes. Despite presenting the trade-off model
among time, cost, and quality, [7] does not offer a
conclusive concept of quality in a broad sense.
Business process performance evaluations are found
in the literature, for example in [8]. However, there
is a dearth of examples that address the constantly
changing optimization design of process
performance metrics like time, money, and quality.
The arrangement of resource capacities across
company procedure chains is a major consequence
that has a significant impact on the performance of
business processes. Resource assignment is the
process of corresponding a resource's capabilities
with the skills needed for an activity. A resource's
assignment quality is defined as the extent to which
its capabilities and needs are met. Business process
predictive quality or confidence factor of
measurable indicators like time and cost are two
ways to look at this quality. This is because regular
and consistent resource allocation results in
predictable and repeatable business process output.
For both internal and external business processes,
multifaceted assessment combined optimization
models based on the principle of assign excellence
have been created. To resolve this type of issue, a
nondominated sorting genetic algorithm is
employed.

Step 4:

Step 3:
Monitor &

Optimize

Redesign &
implement

Finally, monitor the

Begin by identifying

your business process.

Understand how each
process contributes to
your organizational
goal and the role it
plays in customer
satisfaction.

Next analyze these
processes to identify
potential inefficiencies
or bottlenecks. Use
process modeling
techniques to visualize
how changes might
affect outcomes.

Based on your
analysis, redesign the
processes. Once
finalized implement
these new processes,
ensuring all
stakeholders are

aligned and informed.

new processes,
adjusting, based on
feedback and
performance data to
continually optimize
outcomes.

Figure 1: Implementing Business Process Management — A Strategic Approaches

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 877

The diagram illustrates a four-step process
improvement cycle. Step 1: Identify your processes,
involves recognizing and mapping out the key
processes within a system. Step 2: Analyze the
processes, and focus on evaluating these processes
to identify inefficiencies or areas for improvement.
Step 3: Redesign & implement, involves modifying
or restructuring the processes based on the analysis
and implementing these changes to enhance
efficiency. Step 4: Monitor & Optimize, is the
continuous evaluation and optimization of the
redesigned processes, ensuring they remain efficient
and aligned with goals. This cycle promotes ongoing
process improvement through a structured, iterative
approach.

1.2.1 Reduced network traffic

Business process mining methods rely on event logs
as their primary data source. Nevertheless, they
aren't always accessible, and they're generated by a
portion of the systems [9]. Moreover, a particular
information system's logs might not cover the entire
process, which could involve steps taken by entities
outside the system. They propose that the data
produced by the process's connected communication
network traffic can cover this gap in terms of both
availability and span. But there's a huge conceptual
chasm between technically focused and noisy traffic
statistics and business-meaning occasion logs. This
work fills that void by creating a theoretical model
of how traffic behaves during commercial
operations. They iteratively apply process
discovery, abstract and filter the data using virtual
circulation data interpreted by the creating action,
and then use this information to build the model
[10]. The end product is a generic, higher-level
model of traffic behavior in a business activity, as
well as separate procedure mockups for apiece
action type. Models with high suitability and
generalizability transversely several administrative
areas are evaluated through conformance checking.

122 An explanation and rundown of SQL
Injection

One danger to database-connected applications is
SQL (structure query language) injection [11].
Criminals can irresponsibly steal large amounts of
data by exploiting SQL injection vulnerabilities and
gaining complete access to the database or
application. Applications leave themselves open to
SQL injection attacks if they fail to properly validate
user input. There are several approaches to avoiding
SQL injection, and each has its own set of pros and

cons. To avoid SQL injection, make sure to properly
implement the PHP Data Object Parameterized
Query. Because PDO can be used on multiple
databases, it not only makes the code portable but
also provides a method to facilitate the
implementation of parameterized queries. To reduce
the occurrence of SQL Injection in the newly
developed scheduling application, this article details
the findings of a study that utilized PDO
Parameterized Query [12]. The integration of
“client-side web technology (indexedDB)” with
“PDO Parameterized Query”is what makes this
study stand out. Using “PDO Parameterized Query”,
this application is protected from SQL injection
attacks.

2. Review of Literature

Chapke Dhavan, et al. (2024) [13] said the new
methods of data storage have emerged alongside the
meteoric rise in data volumes brought about by the
Internet and contemporary computing. Related
decisions regarding the processing and storage of
big data are made when storing petabytes of data for
analysis and to gain new insight. Companies often
use servers housed in their own data centers to
physically store their data. Data stored on servers in
an organization's data center is known as "on-
premises” or "on-prem" storage. There is an
increasing demand in the big data industry for
solutions that can help users derive actionable
insights from various data types and use those
insights to inform more informed decision-making.
The biggest obstacle is quickly storing all of this
data in a commercial data warehouse. Converting
such data from its unstructured form into a more
manageable format and then storing it in the cloud
or distributed clusters according to user needs is the
most efficient way to store it. Stored in the cloud,
structured data is both cheap and endlessly scalable.
Hive, Impala, Presto, and Drill are distributed query
engines that are necessary for accessing these
massive datasets stored in the cloud. These free and
open-source Structured Query Language (SQL)
engines can query massive datasets in a matter of
seconds. Distributed SQL engines capable of
querying very big datasets, such as Hive and Impala,
are the focus of the current study.

Olabanji Samuel Oladiipo (2023) [14] assessed
that organizations must incorporate cutting-edge
technologies in their daily operations to remain
competitive in today's fast-paced business
world. One exciting new direction for improving

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 878

efficiency and introducing new ideas to existing
processes is cloud computing, a game-changing
technical development. In this study, they looked at
how to automate control processes and strengthen
cloud security by combining cloud computing with
two strong programming languages: Python and
SQL. The widespread use of cloud computing has,
via virtualization and other computing models,
completely altered the way resources are managed.
But there are new security risks, such as data
breaches and illegal access, that it brings. To
overcome these obstacles and automate different
control procedures, Python and SQL stand out as
crucial tools. Python's flexibility allows businesses
to automate computer vision, real-time monitoring,
intrusion detection, anomaly detection, and other
complex security processes. Database management,
backup, recovery, access control, and resource
provisioning are just a few of the control processes
that SQL automates. Python and SQL, when
combined, provide a comprehensive strategy for
improving cloud security. Problems that need fixing
include issues with data privacy, scalability,
integration, maintenance, and the necessary skill
sets. Luckily, some solutions offer platforms that
unify different programming languages. Snow Park,
dbt, Hex, and Dataiku are just a few of them. This
fosters collaboration and makes tasks much easier.

Karras Aristeidis, et al. (2022) [15] explained that
using Spark SQL, an Apache Spark module that
incorporates relational data processing, they provide
a way to optimize queries. In this study, they
investigated NoSQL databases and how they can be
used in distributed environments to optimize query
execution time. This will help to meet the complex
demands of cloud computing users, who need
dynamic pages generated in real-time and
information provided in real-time.
Here, they combine MongoDB with Spark SQL to
study query optimization through different query
execution paths, to lower the time it takes for a query
to run on average. To achieve this, they utilize a
mediator that acts as an intermediary between
Apache Spark and MongoDB. Additionally, they
implement a series of scenarios for query execution
paths, which involve splitting the original query into
sub-queries between Spark SQL and MongoDB, to
enhance the query execution time. Either all of the
data from MongoDB is transferred to Spark by this
intermediate or only a subset of the results from the
sub-queries executed in MongoDB are transferred.
Based on the experimental results, which were

tested with eight different query execution path
scenarios and six different database sizes, one
scenario stands out as superior and scalable.

Torres-Jimenez et al. (2022) [16] said that
combinatorial ~ optimization is focused on
developing solvers for larger cases because the
difficulty of the problem increases as its complexity
increases. But there are also little occurrences in the
real world that warrant the attention of researchers.
In the context of web development, for instance, a
developer may encounter minor combinatorial
optimization problems that fall into one of three
categories: (1) the developer may not have the time
or expertise to devise a solution; (2) the
programming paradigm in use may compromise the
efficiency of naive brute force strategies; or (3) the
developer may not have the resources to develop an
ad hoc specialized strategy. A research area had
opened up to develop simple, non-specialized
strategies that can compete with those naive ones in
this context, thanks to similar situations and the
recent uptick in interest in optimization data from
databases. Consequently, this study updates ways to
combinatorial optimization using Structured Query
Language and suggests new ways to solve problems
like the Portfolio Selection Problem, Maximum
Cligue Problem, and Graph Coloring Problem. The
results of the queries are evaluated in comparison to
more simplistic methods, and their applicability to
various optimization issues is investigated. Using a
SQL approach to solve small optimization problem
instances is both simple and versatile, as shown in
the presented examples.

Shantharajah S. P. and E. Maruthavani (2021)
[17] expressed that with the massive increase in data
volumes due to the Internet and contemporary
computing, new methods of data storage have
emerged. Related decisions regarding the processing
and storage of big data are made when storing
petabytes of data for analysis and to gain new
insight. Companies often use servers housed in their
own data centers to physically store their data. Data
stored on servers in an organization's data center is
known as "on-premises" or "on-prem" storage.
There is an increasing demand in the big data
industry for solutions that can help users derive
actionable insights from various data types and use
those insights to inform more informed decision-
making. The biggest obstacle is quickly storing all
of this data in a commercial data warehouse.
Converting such data from its unstructured form into

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(23s), 876-891 | 879

a more manageable format and then storing it in the
cloud or distributed clusters according to user needs
is the most efficient way to store it. Stored in the
cloud, structured data is both cheap and endlessly
scalable. Hive, Impala, Presto, and Drill are
distributed query engines that are necessary for
accessing these massive datasets stored in the cloud.
These free and open-source Structured Query
Language (SQL) engines can query massive datasets
in a matter of seconds. Distributed SQL engines
capable of querying very big datasets, such as Hive
and Impala, are the focus of the current study.

Schonig Stefan, et al. (2019) [18] assessed that the
area of research became known as process mining,
which involves the automated discovery of process
models as well as the testing of conformance and
enhancement of those models. Discovering models
of flexible processes from event logs can be
accomplished automatically through the use of
declarative process mining approaches. This is
especially true when the constraints that need to be
discovered go beyond a standard repertoire of
templates. However, they frequently experience
performance issues when dealing with real-life
event logs. To enhance performance while still
preserving the adaptability of discovered
constraints, a novel approach that is based on SQL
querying has recently been introduced. This
approach makes use of relational database
performance technology. A comprehensive analysis
of configuration parameters that enable a reduction
in the amount of storage space required for query
processing and a speeding up of the answering time
was presented in this study. After that, they offer
recommendations for the configuration of relational
databases through the use of SQL for process
mining.

Begoli Edmon, et al. (2019) [19] discussed the
ability to analyze and manage data in real time is
becoming more and more important for modern
companies. Although SQL is widely used for these
endeavors, there is still a lack of support for strong
streaming analysis and management with SQL.
Many methods necessitate a set of non-standard
constructs or limit semantics to a smaller subset of
features. Furthermore, there are significant
limitations to the use of event timestamps as native
support for event analysis based on when they
occurred, and it is not widely used. First, they
propose event-time semantics as a basis for both
classical tables and streaming data; second, they lay

out a three-pronged approach to incorporating
robust streaming into SQL; and third, they offer a
small set of optional keyword extensions to manage
the materialization of time-varying query
results. Demonstrate that by making these small
adjustments, robust stream processing can be
accomplished by utilizing the full suite of standard
SQL semantics.

Idhaim Hasan Ali (2019) [20] suggested
a methodology for SQL tuning in database systems,
supported by tests performed using test data
workloads in Oracle 11g XE. To determine the best
execution plan for a specific SQL, the study cited
statements that take process time into account as
well as statistics regarding objects related to tables.
Tables, their indexes, access methods, SQL
commands, and runtime consumption are all part of
these statistics. The accuracy of the data discovered
regarding the SQL command to fix an
underperforming query is the primary determinant
of the quality of the final execution plan. This work
added to the body of knowledge in the field by
presenting essential details regarding database
tuning with the help of a practical tool for assessing
SQL commands. When it comes to choosing the best
form for an SQL statement, the suggested method
aids developers, database administrators, and
researchers in evaluating the effects of their choices.
For the sake of experimentation, Oracle 11g XE is
being used.

D. Silva et al. (2019) [21] studied how the
expansion of data science and machine learning has
led modern RDBMSs to explore ways to support
advanced analytical computations alongside
relational operations. The most typical approach
involves incorporating numerical computation
libraries and an embedded high-level language
interpreter into the “RDBMS”. There has been little
optimization of user-defined functions (UDFs) and
numerous complicated workflows that involve
passing and processing datasets back and forth
between the embedded HLL interpreter and the
query execution engine. Entrenched HLL interpreter
data set objects can be exposed to the query engine
for relational operations through virtual tables,
which were introduced in this study. Unlike
competing methods, ours uses lazy copying and
conversion to transform data. Since the RDBMS can
examine data from HLL objects before making an
execution plan, it also enhances SQL query
optimization. The implementation of computational

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 880

workflows is made easier with a programmer-
friendly approach. They evaluated the performance
and programming advantages of virtual tables on
different workloads.

Baldacci Lorenzo and Matteo Golfarelli. (2018)
[22] presented a new cost model for Spark SQL that
they have developed. It is a good idea to apply the
cost model to GPSJ class queries. The cost model
accounts for the most crucial CPU costs as well as
those associated with the network and input/output
(10). The computation of the execution cost is
initiated from a physical plan that Spark has
produced. When running a GPSJ query, Spark
models the collection of operations it employs
analytically. The cluster and application parameters,
along with a set of database statistics, form the basis
of this modeling. Experiments on three benchmarks
and two clusters with different sizes and
computation features showed that our model could
estimate the actual execution time with an average
error of about 20%. With this degree of precision,
the system can choose the best course of action even
when there is only a small variation in the total time
required to complete tasks. They were able to reduce
the error rate to 14% by combining the analytical
model with our straggler handling strategy.

Giannakouris Victor, et al. (2016) [23] expressed
those academics and businesses alike are starting to
take an interest in multi-engine analytics because of
its ability to handle the complexity and
heterogeneity caused by the proliferation of
frameworks, technologies, and requirements. These
days, a data analyst will often conduct complicated
analytics queries that combine data from various
separate engines. SQL-based multi-engine solutions
can make these kinds of endeavors easier since SQL
is a widely used standard that most data scientists
are familiar with. The current state of the art
suggests using middleware to centrally optimize the
execution of queries for various engines. However,
this method requires the manual integration of each
operator and cost model for a primitive engine,
making it extremely inextensible to add new
operators or engines. Our solution, MuSQLE, is a
framework for SQL-based analytics in multi-engine
settings, and it solves this problem. MuSQLE can
optimize both within and between engines by
making efficient use of external SQL engines. Our
framework takes a fresh approach by relying on
APIs. For each SQL engine endpoint, “MuSQLE”
specifies a generic API to be implemented.

Kolev Boyan et al. (2016) [24] said the proliferation
of cloud data management infrastructures tailored to
specific data types and tasks, a common
programming paradigm has been lost and DBMS
interfaces have become extremely diverse. The
present study presented CloudMdsQL, a query
language and engine for cloud multi-data stores. The
functional SQL-like language known as
"CloudMdsQL" can query multiple heterogeneous
data stores (relational and NoSQL) at the same time
by integrating embedded invocations into each data
store's native query interface. Significant
optimization opportunities are presented by the
query engine's entirely distributed architecture. The
most notable improvement is the ability for
"CloudMdsQL" queries to fully leverage the
capabilities of local data stores. To do this, and made
use of functions that can optimize queries in various
ways, like bind join, join ordering, pushing down
select predicates, and planning intermediate data
shipping. These functions are native to local data
stores and work to achieve this goal. The five
essential requirements for a cloud multi-data store
query language are satisfied by "CloudMdsQL"
according to our experimental validation with three
distinct data stores (graph, document, and relational)
and sample queries.

Krause Christian, et al. (2016) [25] studied graph
databases that have been more popular in the past
few years. From simple programming interfaces to
complex declarative languages, there are many
varieties of graph query languages. A novel SQL-
based language for modeling high-level graph
queries is introduced in this study. They build on top
of graph algorithms for calculating nested
projections, shortest paths, and connected
components and nested graph conditions with
distance constraints. Reusing syntax parts for
arithmetic expressions, aggregates, sorting, and
limits, as well as combining graph and relational
queries, are all made possible by incorporating
graph theory into SQL. This study assessed the
language ideas and our experimental SAP HANA
Graph Scale-Out Extension (GSE) prototype. This is
not SAP-approved content for internal
communications. Instead of mentioning an existing
or future SAP product, the focus is on a research
prototype. Official SAP communication materials
should form the basis of any business decisions
involving SAP products, according to the LDBC
Social Network Benchmark.

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(23s), 876-891 | 881

Braun Lucas, et al. (2015) [26] said processing the
data into actual logical information has eliminated a
large dataset that is constantly evolving, which is
essential for the modern data-centric flow in the
telecom industry. This requirement cannot be
satisfied by the conventional method of separating
workloads that are OLTP and OLAP. When it comes
to managing hybrid workloads, a new category of
integrated solutions is what is required instead. This
study presented a novel architecture and an
industrial use case that works on a single distributed
store as both analytical processing based on SQL
and key-value-based event processing. The
distributed store's total cost of ownership (TCO)
minimization is the driving force behind this design.
Our method incorporates several well-known
techniques, such as shared scans, delta processing, a
storage layout inspired by PAX, and interleaving
scanning and delta merging. This method is new.
Our system's performance is directly proportional to
the number of servers, as shown by the experiments.
Our system is capable of maintaining 100,000 event
streams per second while concurrently processing
100 ad hoc analytical queries.

Wang Yue, et al. (2015) [27] assessed that Internet
companies have widely used Apache Hive for big
data analytics applications. Users are liberated from
laborious and complex programming due to its
capacity to compile high-level languages into
efficient MapReduce workflows. Not only do
modern businesses take notice of Hive, but they are
also interested in its HiveQL-compatible systems,
such as Impala and Shark. Smart Grid applications
and other enterprise big data processing systems
typically use Hive to replace RDBMS-based legacy
apps instead of writing new logic in HiveQL.
Manually translating SQL in RDBMS to HiveQL is
a tedious, error-prone, and frequently performance-
degrading process due to the two languages' distinct
syntax and cost models. In this study, they present
QMapper, an application that can convert SQL
queries into correct HiveQL queries automatically.
Both a rule-based rewriter and an optimizer based on
costs make up QMapper. The TPC-H benchmark
experiments show that QMapper significantly
reduces the average query latency compared to Hive
queries that were manually rewritten by Hive
contributors. Our Smart Grid application in the real
world also demonstrates its efficiency.

Woods Louis et al. (2014) [28] explained that
modern data appliances are very likely to face severe

bandwidth bottlenecks while transferring large
amounts of data from storage to query processing
nodes. One possible solution to alleviate the
bottlenecks causing these problems is to offload
queries to an intelligent storage engine. In this
process, partial or complete queries are pushed
down to the storage engine. An intelligent storage
engine prototype, Ibex allows for the off-loading of
complicated query operators. Those responsible for
the earlier study presented it here. Instead of using a
traditional central processing unit (CPU), Ibex
improves performance and reduces energy
consumption by implementing the off-load engine
with a field-programmable gate array (FPGA). lbex
is a combination of hardware and software that can
evaluate SQL expressions at line rates. When the
hardware engine is overwhelmed, the software can
take over. In addition to projection and selection-
based filtering, Ibex can also aggregate using the
GROUP BY command. The GROUP BY
aggregation operator is more challenging to
implement on a field-programmable gate array
(FPGA), but it has a greater impact on performance.

Wang Tieniu et al. (2012) [29] studied how a large
portion of the data collected by the modern business
world is still underutilized, even though it contains
a lot of information. Companies in the business and
IT industries must thus make every effort to use
cutting-edge technology to investigate these data
sets. This helped with two things: first, helping
businesses make better decisions, and second,
helping them increase their market share and profits.
The role of ETL (Extract, Transform, and Load),
which is responsible for finishing the technical
service and providing support for decision-making,
is significant in the BI project, and business
intelligence (BI) technologies are evolving to meet
the demands of the times. "BI" is an acronym for
"business intelligence." This study’s goal was to
examine the many ETL methods in use today and
highlight their salient features, as well as their
benefits and drawbacks. In addition, this section
provides a brief overview of a few factors that affect
the effectiveness of ETL. Moreover, an ETL
strategy that integrates SQL code and ETL tools was
proposed and implemented using an ETL
methodology known as the EL-T (Extract, Load, and
Transform) framework. Practical and experimental
results demonstrate that the suggested approach
outperforms other current ETL methods in terms of
efficiency and scope of application.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 882

Saba Ahmed et al. (2012) [30] said that recent
technological developments have made embedded
systems more accessible. They play an integral role
in our daily lives. They are largely responsible for
the proliferation of electronic devices in all aspects
of modern life: These days, it's hard to imagine
modern life without mobile phones, music players,
and managers. An ever-increasing daily challenge
for embedded system technology is ensuring access
to information regardless of location or time. In
keeping with a fresh concept, this article details an
embedded system that can access any database via
short message service (SMS) commands, allowing
for the extension of data consultation to earlier
generations of mobile networks. This work's output,
which is based on a UNIX embedded system, can be
used as a standard for database consultation through
SQL-SMS Gateway, which translates an SMS
command into an SQL query. Without putting them
in danger of online publication, this system will
make the database accessible via mobile
consultation. Part one of this study will focus on the
current landscape of onboard input systems and
multi-agent systems, while Part two will lay out the
blueprints for our ideal system. They provide a
detailed description of the completed prototype in
the third section. A conclusion and future outlook
are presented at the end of this piece.

Mozafari Barzan, et al. (2010) [31] articulated
several important applications made possible by
query language extensions for pattern matching on
stored database sequences and event streams, there
is a growing interest in these extensions. Due to the
high demand for these extensions, DSMS venture
capital firms and database management system
vendors have proposed Kleene-closure extensions of
SQL standards. These extensions are based on
groundbreaking research that proved how effective
and easily implementable these constructs are.
Despite their strength, these extensions have
restrictions that make them useless in a lot of
practical situations. They developed the K*SQL
language and system to address these issues; it is
based on our research into nested words, which are
new models that generalize trees and words.
Genomic research, software analysis, and XML
processing are just a few of the fields that can benefit
from K*SQL's expansion of relational sequence
languages. Concurrently, K*SQL maintains its
remarkable efficiency by utilizing our robust
optimizations for pattern search over nested words.
In addition, they demonstrated that K*SQL can be

automatically translated into other sequence
languages and XPath, enabling K*SQL to serve as a
high-performance query execution back-end for
those languages as well. Consequently, K*SQL
offers innovative optimization techniques for both
sequence and XML queries, and it unifies these two
types of queries using a SQL-based engine.

Chen Qiming, and Meichun Hsu (2009) [32]
expressed that the key to high-performance and
secure execution is to push data-intensive analysis to
database engines. On the other hand, general graph-
based dataflow processes and orchestrating
numerous dataflow processes with inter-operation
data dependencies are both beyond the capabilities
of the current SQL framework. This was where the
framework fell short. This study presented an
extension of SQL to Functional Form-SQL (FF-
SQL), a query calculus-based language for
declaratively expressing complex dataflow graphs.
A standard SQL query can be transformed into an
FF-SQL query with the help of Function Forms
(FFs). In traditional SQL queries, dataflow trees are
represented, whereas, in FF-SQL queries, a more
generalized dataflow graph is used. Furthermore,
FF-SQL allows for the specification and cooperative
execution within the database engine of collections
of SQL dataflow processes that share data among
their operations. Because of this, they no longer
have to worry about redundant data retrieval,
computation, and copying. Support for FF-SQL
dataflow procedures is added to the PostgreSQL
query engine through an innovative extension.

Katircioglu Kaan, et al. (2007) [33] expressed that
for an inventory optimization solution to be
successfully implemented, it takes a lot of
work. Businesses that implement these solutions run
some risk when putting them into practice. The
complexity of the requirements will determine
whether or not a large information technology
investment is necessary for the solution. This study
presented an economical inventory optimization
solution. For small and medium-sized enterprises
with constrained IT budgets, this solution may prove
beneficial. Any application platform capable of
processing basic SQLTM (Structured Query
Language) commands can be used to implement this
solution. The solution provides a framework that
enables accessing sales data stored in an Enterprise
Resource Planning (ERP) system, generating
demand statistics based on these data and other
important parameters, and calculating and reporting

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(23s), 876-891 | 883

the best inventory policies, including those
involving safety stocks and lot sizes, all without the
need to purchase additional software.

Table 1: Approaches to Review of Literature

S.no. Author Techniques Research gap Findings
1. Chapke, SQL's standardized | Discovering SQL is crucial for
(2024) and powerful nature | dynamic business
makes it essential for | optimization intelligence and
managing, querying, | methods that | decision-making
and maintaining data | modify query plans | because it allows
in the dynamic | according to | efficient data
database runtime manipulation,
management circumstances is the | retrieval, and
landscape. goal of adaptive | analysis.
query optimization.
2. Olabanji Samuel | Python, SQL, and | Cloud-compatible Integrating Python
(2023) cloud computing. Python and SQL | and SQL
integration strengthens cloud
frameworks are | security by
rare. A best | facilitating
practices guide | automated incident
could help | response, intrusion
organizations detection, and real-
implement these | time monitoring.
technologies.
3. Karras, Making use of Spark | Few studies | Using Spark SQL
(2022) SQL and MongoDB, | compare NoSQL | and MongoDB
two popular NoSQL | databases (besides | together reduces
databases, to handle | MongoDB) with | query execution
data efficiently. Spark SQL. Study | times significantly.
how NoSQL | A hybrid strategy
choices affect query | lets you use both
optimization. technologies' best
characteristics.
4, Torres, Formulating SQL | SQL approaches | SQL outperforms
(2022) queries to solve | may work for small | inexperienced brute
combinatorial instances, but | force approaches
optimization further study is | when it comes to
problems like | needed to scale | solving small-sized
Portfolio Selection, | combinatorial combinatorial
Maximum Clique, | optimization optimization
and Graph Coloring. | problems without | problems.
sacrificing
efficiency.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 884

Shantharajah S.
P. and E.
Maruthavani
(2021)

Methods for | Comprehensive Distributed SQL
converting benchmarking engines can process
unstructured data into | studies comparing | big databases
formats that are | distributed SQL | quickly via parallel
structured so that the | engines (e.g., Hive, | processing,

data can be | Impala, Presto) | reducing query
efficiently stored and | under different | execution times.

queried.

workload scenarios
and data properties
are needed.

3. Background Study

The optimization of business logic in SQL-based
systems is entirely dependent on stored procedures
and functions. When client-server architectures
were first developed, they relied on client-side
processing, which resulted in performance [34]
bottlenecks caused by excessive network traffic.
During the 1970s, stored procedures were
introduced, which made it possible for complex
SQL code to be stored within the database. This
greatly improved the speed at which the code could
be executed and reduced the amount of network
overhead. To facilitate code reusability and simplify
maintenance, stored procedures encapsulate
business logic. Furthermore, they can effectively
manage transactions, which guarantees the integrity
of the data, and they improve security by limiting
direct table access.[35] In addition to providing
additional modularity, functions do so by returning
specific values that can be utilized in queries.
However, some obstacles must be overcome, such
as the management of complexity, the lock-in of
vendors, and difficulties in debugging. To make the
most of the benefits that stored procedures and
functions have to offer, it is necessary to implement
best practices, such as modular design, performance
monitoring, and thoroughly documented
procedures.[36] In general, the efficient utilization
of these tools is essential for the achievement of
database operations that are scalable, secure, and
efficient.

4. Research gaps

. Performance Metrics: Lack of comprehensive
studies evaluating the performance of stored
procedures/functions across different SQL
databases, with a need for standard benchmarks.

. Dynamic Optimization: Limited exploration of
dynamic adaptation strategies for real-time

o

optimization based on workload and system
performance metrics.

Modern Integration: Insufficient research on
integrating SQL stored procedures/functions with
modern development practices like microservices
and serverless architectures.

Security and Maintenance: There is a need for
strategies to enhance the security and
maintainability of stored procedures/functions,
addressing issues like access control and version
management.

Research Objectives

Evaluate Performance Benefits: Analyze the
impact of stored procedures and functions on the
performance of SQL-based systems compared to
traditional query execution methods.

Identify Best Practices: Develop a set of best
practices for implementing stored procedures and
functions to optimize business logic execution and
reduce database load.

Examine Maintainability and Scalability:
Investigate how the use of stored procedures and
functions affects the maintainability and scalability
of SQL-based applications, including considerations
for version control and code reuse.

Assess Security Implications: Assess the security
advantages and challenges associated with using
stored procedures and functions in SQL databases,
focusing on mitigating risks related to SQL injection
and unauthorized access.

Problem Formulation

In modern SQL-based systems, optimizing business
logic execution is crucial for enhancing
performance, maintainability, and scalability.
However, organizations often face challenges when
deciding whether to use standard SQL queries or
adopt stored procedures and functions for
implementing business logic. This study seeks to
address the problem of inefficient business logic

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 885

execution in SQL-based systems by investigating
the role of stored procedures and functions. It will
explore how these SQL constructs impact key
performance indicators such as execution time,
resource utilization, and overall system efficiency.
Furthermore, the research will examine the
perceptions of developers, database administrators,
and system architects regarding the use of stored
procedures and functions, providing insights into
best practices for maximizing their potential in SQL-
based environments.

. Research Methodology
7.1 Data Collection

This phase of the research methodology entails data
collection from wvarious SQL-based systems
implemented across different organizations. A
mixed-methods approach will be utilized,
combining both qualitative and quantitative data
collection techniques.

Surveys and Interviews: Structured surveys will be
distributed to database administrators, developers,
and system architects to gather quantitative data on
their experiences with stored procedures and
functions. Open-ended interviews will be conducted
to obtain qualitative insights into their perceptions
of performance improvements, maintainability, and
security.

Case Studies: Detailed case studies of organizations
successfully implementing stored procedures and
functions will be developed. These case studies will
include a comprehensive analysis of the business
requirements, system architecture, and the specific
stored procedures and functions utilized.
Performance metrics such as execution time,
resource utilization, and user satisfaction will be
collected before and after implementation to provide
a comparative analysis.

Implementation Setup: An experimental SQL
environment will be established to test the
performance of stored procedures and functions. A
sample database will be created, simulating real-
world business logic scenarios. Different queries
will be executed using both standard SQL queries
and stored procedures/functions to measure
. Research Block Layout

7.3

performance metrics such as execution time, CPU
usage, and memory consumption.

7.2 Data Analysis

The third phase involves data analysis, where both
quantitative and qualitative data will be examined
to derive meaningful conclusions.

Statistical Analysis: Quantitative data from surveys
and performance metrics will be analyzed using
statistical methods, such as descriptive statistics and
inferential statistics. Software tools like SPSS or R
may be employed to conduct hypothesis testing,
regression analysis, and ANOVA to understand the
relationship between the use of stored
procedures/functions and performance metrics.

Thematic Analysis: Qualitative data gathered from
interviews and open-ended survey responses will be
analyzed using thematic analysis. This process will
involve coding the data to identify recurring themes
and patterns, helping to highlight the perceived
benefits and challenges associated with the use of
stored procedures and functions.

Comparative Analysis: A comparative analysis of
the experimental results will be conducted to
evaluate the performance differences between
standard SQL queries and stored
procedures/functions. This analysis will illustrate
the practical implications of using stored procedures
and functions in optimizing business logic
execution.

Validation and Verification

To ensure the reliability and validity of the research
findings, a validation phase will be conducted. This
will include:

Triangulation: Data triangulation will be employed
to cross-verify findings from different sources,
ensuring that the conclusions drawn are robust and
reliable.

Feedback from Participants: Participants from
surveys and interviews will be allowed to review the
findings relevant to their contributions, allowing for
corrections or affirmations of the data collected.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 886

Training (80%)

Testing (20%)

%/_/

Statistical Analysis

Thematic Analysis

Data Collection »> Survey and interview,
Case Studies,
Implementation

v Setups
Pre-processing

v
Data Analysis

A \

Comparative

Analvsis

N

_J

\i/

e Triangulation
e Feedback from
participant

Validation and
Verification

Perfor

Metrix

mance

Figure 2: Research Methodology Layout

The layout presented appears to depict a hierarchical
or process flow structure, likely representing stages
in a business or software process. The overall
structure indicates a sequential and branching
decision-making or process path, likely illustrating a
workflow, algorithm, or system architecture.

This research methodology provides a
comprehensive framework for investigating the role

of stored procedures and functions in optimizing
business logic execution in SQL-based systems. By
integrating various data collection and analysis
techniques, this study aims to yield valuable insights
that can inform best practices and guide
organizations in leveraging stored procedures and
functions effectively.

performance and Storage by SQL Method

120

100

80

Performance (Sec)

60

—e— Storage (integer] —e— Storage (String) /

Mene Clustered

Indexing Methad

Non-Clustered

Bath

Figure 3: Performance and storage consideration

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(23s), 876-891 | 887

A comparison shown in fig.3 of runtime
performance and storage requirements for SQL-
based systems using None, Clustered, Non-
Clustered, and Both indexing strategies is presented
in this infographic. The bar charts display the
performance (runtime) in seconds and show integer
and string data separately. Across all methods, the
integer data has a little lower runtime compared to
the text data, suggesting speedier execution. With
the exception of the 'Clustered' indexing approach,
which uses minimal storage for both integer and
string data, integer data typically requires less
storage than string data (as shown by line graphs).

The 'Both' indexing method uses the most storage at
51.84 MB, but the 'Non-Clustered' and 'Clustered’
indexing methods use significantly more storage,
particularly for string data. This indicates that there
is a substantial storage overhead associated with
indexing schemes such as combination clustered and
non-clustered indexing, as well as non-clustered
indexing, which may improve retrieval times,
especially for string-based data. Choosing the right
indexing strategy according to the data type and
storage limits is crucial, as this analysis shows the
storage vs. performance trade-offs.

1e—6 Execution Time Comparison

84

74

64

Time (seconds)
-

sSQL Approach

T
Python Approach

Figure 4: Execution Time Comparison Layout

Execution Time Comparison shown in fig.4 shed
light on the efficacy and validity of the SQL and
Python methods. The database's capacity to
optimize query execution through indexing,
caching, and direct data manipulation usually results
in faster execution when comparing the SQL
technique in Execution Time. By eliminating the
need to transmit data back and forth between the
database and the application layer, SQL is now

better able to manage massive datasets. Because of
the low processing load and lack of need for
sophisticated optimizations, the SQL and Python
techniques may display similar execution times for
smaller datasets or very basic reasoning. Databases
are advantageous for processing large-scale
activities, and this becomes even more apparent if
the SQL time is substantially shorter.

Accuracy Comparison

100

80+

60 4

40 -

204

SQL Approach

Python Approach

Figure 5: Accuracy Comparison Comparison Layout

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 888

The Accuracy Comparison were the same for both
SQL and Python, given that the rationale is the same
in both. The figure 5 displays 100% accuracy for
both ways, demonstrating that results will be
identical whether logic is implemented in Python or
SQL, provided that the business logic is consistent.
Performance, measured in execution time, can differ
greatly depending on data complexity and the
optimization capabilities of the underlying database,
although accuracy is unaffected by execution
technique choice. Finally, these numbers
demonstrate that the business logic is consistent
across the two approaches, and also highlight SQL's
performance advantage for bigger datasets and more
complicated queries.

Conclusion- This investigation shows how various
indexing methods (None, Clustered, Non-Clustered,
and Both) affect storage and performance in SQL-
based systems. Even though clustered and non-
clustered indexing might speed up data retrieval
times, they both require a lot of storage space,
especially for string data. The "Both" indexing
option takes up the most space. Across the board,
integer data performs better and requires less storage
than string data when indexing. If you need quick
and efficient access to massive amounts of
structured data, SQL is the way to go since, as
compared to Python, its indexing algorithms give
better performance for complicated queries on big
datasets. On the other hand, smaller datasets or apps
with less demanding storage requirements may
benefit from Python's adaptability and efficient in-
memory processing. The application's unique needs
in terms of storage, scalability, and performance
should be considered while deciding between
Python and SQL for data management.

References

[1] Aguilar-Savén, Ruth Sara. "Business
process modeling: Review and
framework." International Journal of
Production Economics 90, no. 2 (2004): 129-
149.

[2] Fabra, Javier, Valeria De Castro, Pedro
Alvarez, and Esperanza Marcos. "Automatic
execution of business process models:
Exploiting the benefits of model-driven
engineering approaches." Journal of Systems
and Software 85, no. 3 (2012): 607-625.

[3] Ly, L. T., Rinderle-Ma, S., Knuplesch, D.,
& Dadam, P. (2011). Monitoring business
process compliance using compliance rule

graphs. In On the Move to Meaningful Internet
Systems: OT™M 2011: Confederated

International Conferences: CooplS, DOA-SVI,
and ODBASE 2011, Hersonissos, Crete,
Greece, October 17-21, 2011, Proceedings,
Part I (pp. 82-99). Springer Berlin Heidelberg.

[4] Van Der Aalst, Wil MP. Business process
management demystified: A tutorial on models,
systems and standards for workflow
management. Springer Berlin Heidelberg,
2004.

[5] Ter Hofstede, Arthur, Wil MP van der
Aalst, Arthur HM ter Hofstede, and Mathias
Weske. "Business process management: A
survey." In Business Process Management:
International ~ Conference, BPM 2003
Eindhoven, The Netherlands, June 26-27, 2003
Proceedings 1, pp. 1-12. Springer Berlin
Heidelberg, 2003.

[6] Van Der Aalst, Wil, and Kees Max Van
Hee. Workflow management: models, methods,
and systems. MIT Press, 2004.

[7] Babu, A. J. G., and Nalina Suresh. "Project
management with time, cost, and quality
considerations.” European Journal of
Operational Research 88, no. 2 (1996): 320-
327.

[8] Ghodsypour, Seyed Hassan, and
Christopher O'Brien. "A decision support
system for supplier selection using an integrated
analytic hierarchy process and linear
programming."” International journal of
production economics 56 (1998): 199-212.

[9] Van Der Aalst, Wil MP, Hajo A. Reijers,
Anton JMM Weijters, Boudewijn F. van
Dongen, AK Alves De Medeiros, Minseok
Song, and H. M. W. Verbeek. "Business process
mining: An industrial application.” Information
Systems 32, no. 5 (2007): 713-732.

[10] Engelberg, Gal, Moshe Hadad,
and Pnina Soffer. "From network traffic data to
business activities: a process mining driven
conceptualization.” In International
Conference on Business Process Modeling,
Development and Support, pp. 3-18. Cham:
Springer International Publishing, 2021.

[11] Alwan, Zainab S., and Manal F.
Younis. "Detection and prevention of SQL
injection attack: a survey." International
Journal of Computer Science and Mobile
Computing 6, no. 8 (2017): 5-17.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 889

[12] Sendiang, Maksy, Anritsu Polii,
and Jusuf Mappadang. "Minimization of SQL
injection in scheduling application
development.” In 2016 International
conference on knowledge creation and
intelligent computing (KCIC), pp. 14-20. IEEE,
2016.

[13] Chapke, Dhavan, Kalyani Akant,
and Pankaj Chandankhede. "Strategic
Approaches to Modern Data Management
Leveraging Relational Database Systems."
In 2024 International Conference on Inventive
Computation Technologies (ICICT), pp. 353-
358. IEEE, 2024.

[14] Olabanji, Samuel Oladiipo.
"Advancing cloud technology security:
Leveraging high-level coding languages like
Python and SQL for strengthening security
systems and automating top control
processes." Journal of Scientific Research and
Reports 29, no. 9 (2023): 42-54.

[15] Karras, Aristeidis, Christos
Karras, Antonios Pervanas, Spyros Sioutas, and
Christos Zaroliagis. "SQL query optimization
in distributed NoSQL databases for cloud-based
applications.” In International Symposium on
Algorithmic Aspects of Cloud Computing, pp.
21-41. Cham: Springer International
Publishing, 2022.

[16] Torres-Jimenez, Jose, Nelson
Rangel-Valdez, Miguel De-la-Torre, and Himer
Avila-George. "An Approach to Aid Decision-
Making by Solving Complex Optimization
Problems Using SQL Queries." Applied
Sciences 12, no. 9 (2022): 45609.

[17] Shantharajah, S. P., and E.
Maruthavani. "A survey on challenges in
transforming No-SQL data to SQL data and
storing in cloud storage based on user
requirement.” International Journal of
Performability Engineering 17, no. 8 (2021):
703.

[18] Schonig, Stefan, Claudio Di
Ciccio, and Jan Mendling. "Configuring SQL-
based process mining for performance and
storage optimization."” In Proceedings of the
34th ACM/SIGAPP Symposium on Applied
Computing, pp. 94-97. 2019.

[19] Begoli, Edmon, Tyler Akidau,
Fabian Hueske, Julian Hyde, Kathryn Knight,
and Kenneth Knowles. "One SQL to rule them
all efficient and syntactically idiomatic

approach to the management of streams and
tables." In Proceedings of the 2019
International Conference on Management of
Data, pp. 1757-1772. 20109.

[20] Idhaim, Hasan Ali. "Selecting and
tuning the optimal query form of different SQL
commands." International Journal of Business
Information Systems 30, no. 1 (2019): 1-12.

[21] D'silva, Joseph Vinish, Florestan
De Moor, and Bettina Kemme. "Keep your host
language object and also query it: A case for
SQL query support in RDBMS for host
language objects.” In Proceedings of the 31st
International Conference on Scientific and
Statistical Database Management, pp. 133-144.
2019.

[22] Baldacci, Lorenzo, and Matteo
Golfarelli. "A cost model for SPARK
SQL." IEEE Transactions on Knowledge and
Data Engineering 31, no. 5 (2018): 819-832.

[23] Giannakouris, Victor, Nikolaos
Papailiou, Dimitrios Tsoumakos, and Nectarios
Koziris. "MuSQLE: Distributed SQL query
execution over multiple engine environments.”
In 2016 IEEE International Conference on Big
Data (Big Data), pp. 452-461. IEEE, 2016.

[24] Kolev, Boyan, Patrick Valduriez,
Carlyna Bondiombouy, Ricardo Jiménez-Peris,
Raquel Pau, and José Pereira. "CloudMdsQL.:
querying heterogeneous cloud data stores with
a common language.” Distributed and parallel
databases 34 (2016): 463-503.

[25] Krause, Christian, Daniel
Johannsen, Radwan Deeb, Kai-Uwe Sattler,
David Knacker, and Anton Niadzelka. "An
SQL-based query language and engine for
graph pattern matching."” In Graph
Transformation: 9th International Conference,
ICGT 2016, in Memory of Hartmut Ehrig, Held
as Part of STAF 2016, Vienna, Austria, July 5-
6, 2016, Proceedings 9, pp. 153-169. Springer
International Publishing, 2016.

[26] Braun, Lucas, Thomas Etter,
Georgios Gasparis, Martin Kaufmann, Donald
Kossmann, Daniel Widmer, Aharon Avitzur,
Anthony Iliopoulos, Eliezer Levy, and Ning
Liang. "Analytics in motion: High-performance
event-processing and real-time analytics in the
same database.” In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data, pp. 251-264. 2015.

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2024, 12(23s), 876-891 | 890

[27] Wang, Yue, Yingzhong Xu, Yue
Liu, Jian Chen, and Songlin Hu. "QMapper for
smart grid: Migrating SQL-based application to
Hive." InProceedings of the 2015 ACM
SIGMOD International Conference on
Management of Data, pp. 647-658. 2015.

[28] Woods, Louis, Zsolt Istvan, and
Gustavo Alonso. "Ibex: An intelligent storage
engine with support for advanced SQL
offloading.” Proceedings of the VLDB
Endowment 7, no. 11 (2014): 963-974.

[29] Wang, Tieniu, Jianhua Hu, and
Haihe Zhou. "Design and implementation of an
ETL approach in business intelligence project.”
In Practical ~ Applications of Intelligent
Systems: Proceedings of the Sixth International
Conference on Intelligent Systems and
Knowledge Engineering, Shanghai, China, Dec
2011 (ISKE2011), pp. 281-286. Springer Berlin
Heidelberg, 2012.

[30] Sbhaa, Ahmed, Rachid El Bejjet,
and Hicham Medromi. "An SMS-SQL based
On-board system to manage and query a
database.” International Journal of Advanced
Computer Science and Applications 3, no. 6
(2012).

[31] Mozafari, Barzan, Kai Zeng, and
Carlo Zaniolo. "From regular expressions to
nested words: Unifying languages and query
execution for relational and XML
sequences." Proceedings of the VLDB
Endowment 3, no. 1-2 (2010): 150-161.

[32] Chen, Qiming, and Meichun Hsu.
"Cooperating SQL dataflow processes for In-
DB analytics." In On the Move to Meaningful
Internet Systems: OTM 2009: Confederated
International Conferences, CooplS, DOA, IS,
and ODBASE 2009, Vilamoura, Portugal,
November 1-6, 2009, Proceedings, Part I, pp.
389-397. Springer Berlin Heidelberg, 2009.
[33] Katircioglu, Kaan, Timothy M.
Brown, and Mateen Asghar. "An SQL-based
cost-effective inventory optimization
solution." IBM Journal of Research and
Development 51, no. 3.4 (2007): 433-445.

[34] Gunnulfsen, Michael. "Scalable
and efficient web application architectures:
Thin-clients and SQL vs. thick-clients and
NoSQL." Master's thesis, 2013.

[35] Epiphaniou, Gregory, Prashant
Pillai, Mirko Bottarelli, Haider Al-Khateeb,
Mohammad Hammoudesh, and Carsten Maple.
"Electronic regulation of data sharing and
processing using smart ledger technologies for
supply-chain security." IEEE Transactions on
Engineering Management 67, no. 4 (2020):
1059-1073.

[36] Crnkovic, lvica, UIf Asklund, and
Annita Persson Dahlqvist. Implementing and
integrating product data management and
software configuration management. Artech
House, 2003.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 876-891 | 891

