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Abstract: The stock market's dynamic nature predicts accurate prices which is a daunting task for analysts and investors. Conventional 

statistical models struggle with this due to hidden non-linear relationships and time-dependent patterns in financial data. This sparks a 

rising interest in harnessing the power of machine learning, particularly neural networks, for improved stock price forecasting. This study 

uses four neural network models - CNN, LSTM, CNN-LSTM, and CNN-BILSTM to forecast stock prices. Their performance is evaluated 

through four metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-squared (R²), and Mean Absolute Percentage 

Error (MAPE). The US stock price dataset from 1998-2021 was used, the dataset was obtained from Kaggle and was preprocessed by 

normalizing and scaling. Python was used to train the models, the study then compares the hybrid models (CNN-LSTM and CNN-BILSTM) 

to their standalone counterparts, aiming to reveal their potential superiority in prediction accuracy and error minimization. Analysis that 

the hybrid models, particularly CNN-LSTM with its attention mechanism, outperformed their standalone counterparts in predicting stock 

prices and minimizing errors. CNN-BiLSTM followed closely, demonstrating strong performance as well. While CNN exhibited the lowest 

RMSE and MAE, its high MAPE suggests limited predictive power. This may be due to CNN's focus on feature extraction rather than 

temporal dependencies, highlighting the effectiveness of hybrid models in capturing complex market dynamics. 

Keywords: Stock price, CNN, LSTM, BiLSTM 

1. Introduction 

Financial markets, particularly the stock market, serve as the 

backbone of modern economies, acting as a gauge for 

economic health and a crucial mechanism for capital 

allocation. Understanding the stock market's movements is 

crucial since they reflect the economic strength and 

financial health of a nation. The market's behaviour is 

influenced by a myriad of factors, from international trade 

dynamics to domestic economic performance, and from 

global events to government financial announcements and 

central bank policy shifts. It is a complex and volatile realm, 

where investments carry inherent unpredictability. 

The challenge lies in the inherent complexity and volatility 

of the stock market. Stock prices are affected by various 

factors, ranging from company-specific events to 

macroeconomic shifts, geopolitical developments, and even 

psychological factors affecting investor sentiment. This 

multifaceted nature makes the stock market notoriously 

difficult to predict, presenting a formidable challenge to 

investors, analysts, and researchers alike. 

Traditionally, experts have used two main approaches to 

navigate this uncertainty and forecast future stock trends: 

Technical and fundamental analysis. Fundamental analysis 

delves deep into the financials of a company, market 

position, and economic indicators to predict its future 

performance. It builds a case for the investment based on 

how solid a company's business is. However, it can overlook 

short-term market sentiment and rapid shifts in investor 

behaviour. On the other hand, technical analysis looks at 

historical price patterns and market activity to forecast 

future movements, may fail to account for unexpected 

events or structural changes in the market. While insightful, 

the two methods fall short in capturing the full complexity 

and unpredictability of the stock market. 

Machine learning steps up to address these limitations, using 

algorithms like Linear Regression, Support Vector 

Machines, and ARIMA. Each of these has had varying 

successes, often limited by their inability to fully capture the 

random and complex patterns of stock prices, which are 

influenced by numerous known and unknown variables. The 

limitations of these traditional methods have spurred interest 

in more sophisticated approaches, particularly in the realm 

of machine learning and artificial intelligence. These 

technologies offer the potential to compute large volumes of 

data, identify complex patterns, and adjust to changing 

market conditions in ways that surpass human capabilities. 

However, even conventional machine learning algorithms 

like Linear Regression, Support Vector Machines, and 

ARIMA have struggled to fully capture the non-linear and 

often chaotic nature of stock price movements. The 

challenge lies not just in processing large volumes of data, 

but in understanding the intricate temporal dependencies 
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and multifaceted influences that shape stock prices. 

Deep learning, especially Long Short-Term Memory 

(LSTM) networks, offers a breakthrough by accounting for 

long-term trends and dependencies in stock price data. 

LSTMs are adept at understanding the temporal sequences 

within the data, an essential aspect considering the time 

series nature of stock prices. Conversely, Convolutional 

Neural Networks (CNNs), though traditionally associated 

with spatial data recognition in fields such as image 

processing, have shown promise in identifying intricate 

patterns within time-series data. Their ability to extract 

features from sequences makes them a valuable addition to 

stock price prediction models. 

Recognizing the potential in these technologies, this 

research proposes a Hybrid LSTM-CNN model. The model 

aims to synergize LSTM's temporal data analysis 

capabilities with the pattern recognition strengths of CNNs, 

to provide a sophisticated tool for stock price forecasting. 

This hybrid approach seeks to enhance accuracy and 

reliability in predictions, offering valuable insights for 

investors, portfolio managers, and financial analysts. The 

ensuing study will explore this integrative model, with the 

intent to push the boundaries of current forecasting 

methodologies and offer a potent solution in the complex 

domain of stock market investments. 

The significance of this research extends beyond academic 

interest. More accurate stock price predictions can have far-

reaching implications, empowering investors with better 

decision-making, enabling companies to optimize capital 

allocation, and aiding policymakers in navigating market 

trends. Ultimately, this paper seeks to push the boundaries 

of present-day forecasting methodologies and contribute to 

a more stable, efficient, and prosperous financial market.    

2. RELATED WORKS 

Accurately forecasting stock prices holds substantial 

economic advantages, particularly for investors, portfolio 

managers, and policymakers. Over time, various models and 

methodologies have been created and applied to enhance 

predictive precision, progressing from basic statistical 

models to advanced machine learning models. The 

Autoregressive Integrated Moving Average (ARIMA) 

model [1] is one of these models, though adept at handling 

linear relationships, falls short in capturing the market's 

inherent nonlinearities, limiting their effectiveness in stock 

price forecasting. 

Exploiting the potential of neural networks is now a leading 

focus in stock market forecasting research. This is due to 

their ability to identify important data characteristics from 

vast quantities of raw, high-frequency information without 

the need for pre-existing knowledge [2]. [3] introduced a 

novel approach that melded artificial neural networks 

(ANN) with random walk (RW) to forecast four financial 

time series datasets. Their findings indicated a noticeable 

enhancement in forecasting accuracy. [4] suggested an LM-

BP neural network-based network architecture for 

forecasting stock prices. This innovation addressed the 

drawbacks of the traditional BP neural network, particularly 

its slow training speed and low precision, leading to 

improved forecasting outcomes.  

An RNN, or recurrent Neural Network, is an advancement 

to neural networks equipped with internal memory, enabling 

it to make predictions by leveraging historical data features. 

This capability renders RNNs particularly adept for 

applications in Stock market forecasting. LSTM stands out 

as one of the most prominent variants of RNNs [5]. [6] 

developed an LSTM-based technique for gleaning insights 

and forecasting stock trends on Shanghai A-share financial 

markets, LSTM was seen to perform better than the other 

model with an accuracy rate of 57%, this accuracy could be 

improved upon. [7] in their study fed technical indicators to 

an LSTM network to predict stock market trends in Brazil, 

demonstrating that LSTM outperformed the Multilayer 

Perceptron (MLP) with an accuracy of 55.9% with a high 

variance. 

CNN gained widespread popularity in the domain of image 

recognition due to its remarkable ability to recognize 

complex patterns. This capability prompted its application 

in economic forecasting as well. Like traditional neural 

networks, CNN consists of multiple interconnected neurons 

organized hierarchically, with trainable weights and biases 

between layers [8]. [9] used convolutional neural networks 

(CNN) in time series prediction. They emphasized that deep 

learning, particularly CNN, was well-suited for addressing 

time series challenges. However, it was noted that using 

CNN in isolation led to relatively lower forecasting 

accuracy, likely due to its common application in image 

recognition and feature extraction.  

[10] combined CNN, MLP, and LSTM to predict the stock 

prices of four publicly traded U.S. companies. The results 

indicated that the three models surpassed comparable 

research in predicting price direction. However, it was noted 

that while LSTM is a computationally intensive algorithm 

requiring extended training periods, the MLP (Multilayer 

Perceptron) offers a more time-efficient alternative. Despite 

its faster processing, MLP still delivers competitive results 

akin to those achieved by LSTM.  It was advised to weigh 

the balance between speed and accuracy when selecting the 

optimal forecasting model. Although LSTM was highly 

recommended for its accuracy, the consideration of its 

slower processing speed compared to other models is crucial 

in making an informed decision. 

[11] also showed a very accurate short-term predicting 

model for financial market time series using the LSTM deep 

neural network. They found that the LSTM deep neural 

network effectively predicted stock market time series and 
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achieved superior forecasting accuracy when compared to 

other traditional methods like traditional RNNs, BP neural 

networks, and an improved LSTM deep neural network. 

Additionally, they noted that while LSTMs solve the 

vanishing gradient problem common in traditional RNNs, 

their research also pointed to room for further improvement 

in prediction accuracy. Notably, the inherent noise 

associated with stock market time series data was identified 

as a potential factor affecting the accuracy of LSTM 

predictions. 

[2] compares the effectiveness of different variants of neural 

network models including Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), 

CNN-RNN, and CNN-LSTM. The results indicate that 

CNN-LSTM has the highest accuracy among the six 

forecasting models, with the predicted values nearly 

matching the real values. 

[12] implemented a hybrid model for stock price forecasting 

that combines CNN, BiLSTM (Bidirectional Long Short-

Term Memory) and an Attention mechanism. CNN-

BiLSTM-Attention was evaluated by contrasting it with 

alternative models. The CNN-BiLSTM-Attention model 

fared better than the other models in forecasting the closing 

prices of these indices. 

3. CNN, LSTM AND BILSTM 

Architectural breakdown of the Deep learning techniques 

are as follows; 

3.1  Convolutional Neural Networks (CNN) 

 Convolutional Neural Network, commonly known as CNN, 

is a feedforward neural network that has gained prominence 

due to its effectiveness across different fields, such as image 

and natural language processing. Its application in time 

series forecasting is equally noteworthy, as it aptly captures 

temporal dependencies and patterns within sequential data 

[13]. 

The CNN architecture employs a clever design to reduce the 

model's complexity and prevent overfitting. This is achieved 

through local receptive fields, shared weights, and pooling 

layers, which collectively enhance the efficiency of the 

learning process [14]. 

At the heart of the CNN are its convolution layers, where 

multiple convolution kernels are applied to the input data. 

The convolution operation, which is pivotal for feature 

extraction, is mathematically formulated as follows: 

  𝑂𝑐𝑛𝑛(𝑡) =  ∑ I(t + i). F(i)
𝑘−1

𝑖=0
 (1) 

The output feature map at time step t is Ocnn(t), I(t+i) 

represents stock market data at time t+i, F(i) is the filter's 

weights, and k is the kernel size. Post convolution, non-

linearity is introduced by using an activation function, like 

the Rectified Linear Unit (ReLU), which helps the model 

learn intricate patterns: 

    ReLU(x)=max(0,x)                                        (2) 

Following the convolution and activation, the pooling layer, 

typically max pooling, is used to reduce the feature maps 

dimensionality. This operation simplifies the network by 

down sampling the convolutional layers output, retaining 

only the most significant features:      

  P(t) = 𝑚𝑎𝑥𝑖=𝑡
𝑡+𝑝−1 𝑂𝑐𝑛𝑛(𝑖) (3) 

where P(t) is the pooled output at time step t, and p is the 

pooling size. 

 

Fig 1 .  CNN Architecture 

3.2.  LONG SHORT-TERM MEMORY (LSTM) 

 Convolutional Neural Network, commonly known as CNN, 

is a Long Short-Term Memory (LSTM) networks, a 

specialized sub-branch of Recurrent Neural Networks 

(RNNs) first proposed by Hochreiter and Schmidhuber in 

1997, address the long-term dependency issue inherent in 

RNNs by incorporating internal memory gates. LSTMs 

have proven effective in various sequential data 

applications, including speech recognition, language 

translation, and time series forecasting. 

The primary innovation of LSTMs is its ability to address 

the vanishing gradient issue common in traditional RNNs. 

This challenge arises during the backpropagation process, 

where calculated gradients are passed backward through the 

network. In deep networks or with lengthy sequences, these 

gradients can diminish to negligible levels, hindering the 

network's capacity to learn from extended data 

dependencies. 

LSTMs tackle the vanishing gradient problem with a 

distinctive structure featuring memory cells and a series of 

gates that control information flow. These gates, specifically 

the input, forget, and output gates, enable LSTMs to 

selectively retain or discard information over extended 

periods. This capability is particularly beneficial for time 

series modeling, where significant intervals may separate 

relevant data points. 
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The internal mechanisms of an LSTM cell are governed by 

a set of equations that orchestrate these gates' functions, 

ensuring the effective management of information 

throughout the learning process. 

3.2.1. Forget Gate: decides which data is removed from the 

cell state. To determine which values in the cell state Ct−1 

should be permitted to go through, it applies a sigmoid 

function σ to the former hidden state ht−1 and the current 

input 𝒳t                

     𝑓𝑡 = δ(W𝑓. [ℎ𝑡−1,   𝑋𝑡,   ]  +  b𝑓)                                   (4) 

3.2.2 Input Gate: which new information is to be added to 

the cell state is chosen by the input gate. The values to update 

are selected using a sigmoid function, and a vector of new 

candidate values C˜t that might be added to the state is 

created using the tanh function. 

     𝑖𝑡 = δ(W𝑓. [ℎ𝑡−1,   𝑋𝑡,   ]  +  b𝑖)                                (5) 

     𝐶˜𝑡 = tanh(W𝐶. [ℎ𝑡−1,   𝑋𝑡,   ]  +  b𝑐)                       (6) 

3.2.3 Cell State Update: This is updated by multiplying the 

old state by ƒt, the information that is no longer needed is 

discarded, and iₜ* C˜t is added which are the new candidate 

values determined by how much we decided to update each 

state value. 

     𝐶˜𝑡 = tanh(W𝐶. [ℎ𝑡−1,   𝑋𝑡,   ]  +  b𝑐)                       (7)            

3.2.4 Output Gate:  Lastly, the output gate selects the value 

of the next hidden state ht. The hidden state has data about 

previous inputs. The sigmoid function selects the portions 

of the cell state that are sent to the output. The cell state is 

then passed through tanh (which pushes the value between -

1 and 1) and multiplied by the output of the sigmoid gate, 

resulting in the output of only the selected parts. 

  

          𝑂𝑡 = δ(W𝑜. [ℎ𝑡−1,   𝑋𝑡,   ]  +  b𝑜)                          (8) 

         ℎ𝑡 =  𝑂𝑡  ∗   tanh(𝐶𝑡)                                         (9) 

The LSTM is a very good option for time series analysis 

because of its ability to handle data with long-range 

temporal variability, where understanding the context 

and history is crucial for accurate forecasting. By 

leveraging its sophisticated gating mechanisms, 

dependencies LSTMs can maintain a memory of past 

information, using it to inform predictions and adapt to 

new data trends over time. 

 

 

Fig 2.  LSTM Architecture 

3.3.    BIDIRECTIONAL LSTM (BiLSTM) 

The Bidirectional Long Short-Term Memory (BiLSTM) 

network enhances traditional LSTM framework by 

incorporating both future and past context in its analysis. 

This advanced architecture is achieved by integrating two 

LSTM layers: one uses forward LSTM to process the 

sequence in its original order, while the other uses backward 

LSTM to process the sequence in reverse. This dual-layer 

setup ensures that at each point in the sequence, the network 

has comprehensive insights from both preceding and 

subsequent data points.  

BiLSTMs are particularly adept in scenarios where the 

understanding of an entire sequence, including both 

historical and upcoming data, is crucial for accurate 

predictions or interpretations. This attribute renders 

BiLSTMs exceptionally suitable for time series forecasting 

tasks. In such applications, they excel by identifying 

patterns and dependencies that might be overlooked if the 

analysis were confined to historical data alone. By 

considering both past and future, the bidirectional approach 

allows the model to make significantly accurate predictions.                                     

In the BiLSTM the forward layer processes the input 

sequence in the usual manner, generating an output 

sequence ℎ→. This sequence is obtained by moving through 

the input data from the beginning to the end, capturing 

forward temporal dependencies. The two sequences capture 

temporal dependencies from both past and future. The 

outputs from both layers are then combined, using a sigmoid 

function (σ), to form a unified output vector yₜ. The final 

output of the BiLSTM layer is a vector Yₜ = [yₜ₋ₙ,....,yₜ₋₁] 

where yₜ₋₁ represents the combined prediction for the next 

time step, leveraging insights from the entire sequence. 
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Fig 3.  BiLSTM  Architecture 

4.   MATERIAL AND METHODS 

4.1. Data Sources 

 This analysis utilizes the "US Historical Stock Prices with 

Earnings Data" dataset sourced from Kaggle. This dataset 

includes twenty-three years (1998-2021) of daily stock 

prices and earnings data, with each entry containing the 

company symbol, date, market opening price (open), the 

highest point the stock reached (high), the lowest point 

(low), trading volume (volume), earnings per share (eps), 

earnings estimate (eps_est), and the company closing price 

(close). All these features play a crucial role in the time 

series forecasting model. The chosen (1998-2021) is 

relevant for several reasons. Firstly, it captures significant 

market events like the dot-com bubble burst (2000), the 

Great Recession (2008), and the COVID-19 pandemic 

(2020). These events significantly impacted stock prices and 

provided valuable data for training the model to recognize 

diverse market conditions. Secondly, with 108,100 data 

points, this timeframe offers sufficient historical depth to 

learn long-term trends and seasonal patterns in stock price 

movements. 

4.2. Data Preprcocessing  

• The data was checked for missing values and Outliers, 

there were no missing values  

• Pertinent features such as 'Open', 'Low', 'High', 'Close', 

and 'Volume' were selected and computed additional 

technical indicators to enrich the dataset. 

abbreviation “i.e.,” means “that is,” and the abbreviation 

“e.g.,” means “for example” (these abbreviations are not 

italicized). 

4.3. Normalization/Standardization 

• Feature Scaling: To ensure all features contribute evenly 

to the model's predictions, feature scaling techniques were 

employed to normalize the input data. This is particularly 

important for models like CNNs and LSTMs, which are 

sensitive to the scale of input data. One specific technique 

used for this purpose was Min-Max Scaling. This method 

transforms each feature value to a range between 0 and 1, as 

it ensures that all features contribute evenly to the model's 

learning process. 

4.4. Data preparation  

• Sequence Formation: The time series data was 

transformed into sequences to facilitate the learning of 

temporal dependencies by the LSTM. This transformation 

involves creating a series of overlapping time windows, 

where each window is used to predict the subsequent value. 

• Training And Testing Split: Crucial for evaluating model 

generalizability, the dataset was partitioned into training and 

testing sets. The training data spanned up to 2016, while the 

testing data was from 2017 onwards, ensuring the model's 

predictions 

4.5. CNN Feature Extraction 

The CNN part of the model processes the input features to 

extract spatial patterns. For time series data like stock prices, 

it identifies patterns across different technical indicators or 

across several days of price movements. 

Max pooling was used for Pooling operation and Rectified 

Linear Unit (ReLU) for Activation function. 

4.6. Preparation for LSTM 

The output from the CNN layers, which is the condensed 

version of the stock market data, is flattened and passed 

through a time-distributed layer to maintain the temporal 

sequence for the LSTM. The LSTM and BiLSTM layers 

model the temporal relationships in the sequence of features 

extracted by the CNN. The LSTM operations include the 

gates and tate updates. The BiLSTM extends this by 

processing the data bidirectionally. 

 

Fig 4. CNN-LSTM Flowchart 
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Fig 5.  CNN-BiLSTM Flowchart 

4.7 Attention Mechanism and Hybrid Model Output 

Both models incorporate an attention mechanism after the 

LSTM/BiLSTM layers. This enables the model to 

concentrate selectively on certain parts of the input 

sequence, enhancing the model's ability to discern relevant 

information for making accurate predictions. 

The final output of the hybrid models is a dense layer that 

takes the last output of the LSTM/BiLSTM sequence, 

refined by the attention mechanism, and produces the 

prediction for the next stock price or movement. 

𝑌𝑡 = 𝑊𝑦. ℎ𝑡 + 𝑏𝑦                                                             (10) 

 

Where Yt   is the predicted stock price or movement at time 

t, ht is the last hidden state of the LSTM and the output 

layer's learnt weights and biases are denoted by Wy and by. 

5. MODEL TRAINING AND RESULTS 

The selected model was built using the Python 

programming language of version 3.11, Pytorch. The 

evaluation of the hybrid CNN-LSTM and CNN-BiLSTM 

models for stock price forecasting was conducted using four 

key metrics: Mean Absolute Error (MAE), R squared (R²), 

Root Mean Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPE). To appraise the accuracy and 

effectiveness of these hybrid models, their performance was 

benchmarked against the standalone CNN and LSTM 

models using the same metrics. This comparative analysis 

aimed to establish the superiority of the hybrid models in 

terms of how accurate its prediction and error minimization 

are when contrasted with the individual performances of the 

standalone models 

 

Fig 6. Visual Representation of the data 

 

Fig 7. Moving Average visualization 

The stock price data was preprocessed, and features like 

Moving Average (MA10) and Relative Strength Index (RSI) 

were calculated. The data was then divided into training and 

testing sets. 

5.1. Model Architecture 

Convolutional layers were utilized in both models for 

feature extraction, while LSTM or BiLSTM layers were 

used to capture temporal dependencies. An attention 

mechanism was also integrated to enhance the model's focus 

on relevant features. 

5.2. Model Evaluation Metrics 

Model performance was assessed using these key metrics: 

mean absolute error (MAE), root mean square error 

(RMSE),R-squared (R²) and  mean absolute percentage 

error (MAPE).  

5.3. CNN-LSTM Model 

The model is implemented with the following parameter 

settings.  The architecture involves one-dimensional 

convolutional layers, LSTM layers, and an attention 

mechanism. 
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Table 1. CNN-LSTM parameters and values 

Parameters Values 

Convolution layer filters 64 

Convolution layer kernel size 3 

Convolution layer activation 

function 

Relu 

MaxPooling 1D layer Pool size = 2 

Droupout rate 0.2 

LSTM units 100 

Activation tanh 

Return Sequences True 

Learning rate 0.0005 

Optimizer Adam 

Loss function MSE 

Timestep 10 

Epochs 50 

 

5.4. CNN-BiLSTM Model 

The CNN-BiLSTM model is implemented with the same 

parameter settings as the CNN-LSTM model, with the 

addition of bidirectional LSTM layers. The bidirectional 

layers enhance the model's ability to capture temporal 

dependencies in both forward and backward directions. 

5.5.  Result 

Table 2. Model performance comparison 

MODEL RMSE 

 

MAE R² MAPE 

CNN-

BiLSTM 

116.74 64.88 0.940 88.12% 

CNN-

LSTM 

76.79 25.02 0.974 25.66% 

CNN 39.23 8.80 0.993 390.47% 

LSTM 194.09 40.42 0.835 332.58% 

 

5.6. Interpretations 

5.6.1. LSTM Model 

RMSE: 194.09. This is relatively high, showing that, on 

average, the model's predictions and the actual values differ 

by 194.09 units. 

MAE: 40.42. On average, the absolute error of the 

predictions is around 40.42 units. 

R-squared: 0.835. This indicates that the independent 

factors account for about 83.5% of the variance in the 

dependent variable. 

MAPE: 332.58%. This extremely high percentage indicates 

poor predictive accuracy, as the average error is more than 

three times the actual value. 

5.6.2. CNN Model 

RMSE: 39.23. This is significantly lower than the LSTM 

model, indicating better predictive accuracy. 

 MAE: 8.80. In comparison to the LSTM model, the CNN 

model appears to have a higher average accuracy per 

prediction, as indicated by its lower MAE. 

 R-squared: 0.993. This high number suggests that almost 

all the response data variability around its mean can be 

explained by the model. 

 MAPE: 390.47%. Despite the lower RMSE and MAE, the 

MAPE is extremely high, suggesting that the model may not 

be reliable for certain types of predictions or in certain 

conditions. 

5.6.3. CNN-LSTM Model: 

RMSE: 76.79. This indicates moderate prediction accuracy 

because it is lower than the LSTM model but greater than 

the CNN model. 

MAE: 25.02. This suggests a reasonable average accuracy 

per prediction. 

   R-squared: 0.974. A high number, meaning a significant 

amount of data variation can be explained by the model. 

   MAPE: 25.66%. In terms of percentage error, this is the 

lowest of all the models, indicating that the CNN-LSTM 

model has the most reliable and accurate predictions. 

5.6.4. CNN-BiLSTM Model 

RMSE: 116.74. This shows that there is an average 

difference of 116.74 units between the model's predicted 

value and the actual value. 

MAE: 64.88. With the largest MAE of all the models, it 

predicts less accurately on average. 

R-squared: 0.940. This is a strong score, indicating that a 

sizable amount of data variance can be explained by the 

model. 

MAPE: 88.12%. This is high but lower than the LSTM and 

CNN models, indicating moderate predictive accuracy in 

terms of percentage error. 

5.7. Evaluation Metrics Visualization 
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Fig 8.  RMSE comparison visualization 

 

Fig 9. MAE comparison visualization 

 

Fig 10. R² comparison visualization 

 

Fig 11. R² comparison visualization 

5.8. Comparative evaluation  

The comparative evaluation of the different models provides 

valuable insights into their strengths and weaknesses in 

forecasting time series. The CNN model stands out with 

higher performance in terms of RMSE and MAE, 

showcasing its strong predictive accuracy and consistency. 

However, the notably high MAPE of the CNN model raises 

concerns about its reliability, especially in scenarios where 

actual values are low, leading to disproportionately high 

MAPE values. 

CNN's proficiency in feature extraction significantly 

contributes to its high RMSE and MAE performance. CNNs 

excel at identifying complex patterns in data, a critical 

aspect of accurate outcome prediction. This capability to 

discern and learn intricate features underpins the model's 

precision and consistency, as reflected in the low RMSE and 

MAE. Nevertheless, the elevated MAPE suggests that while 

the model generally predicts accurately, it may exhibit 

substantial relative errors when inaccuracies occur. This 

could be attributed to potential overfitting or a lack of 

generalization across diverse data points. 

In contrast, the CNN-LSTM model, which merges CNN's 

feature extraction prowess with LSTM's sequential data 

handling, demonstrates a more balanced performance. It 

outperforms the standalone LSTM model in RMSE and 

MAE metrics and most importantly, it achieves the lowest 

MAPE among all models. This indicates that beyond high 

accuracy, the CNN-LSTM model maintains consistent 

relative error across diverse data points. The inclusion of the 

attention mechanism in this model likely contributes to its 

enhanced focus on relevant features and temporal contexts, 

leading to more accurate and reliable predictions. This 

balance positions it as a potentially more dependable model 

for this specific dataset and task. 

The standalone LSTM model, while not matching the CNN 

or CNN-LSTM in RMSE and MAE, still exhibits 

commendable predictive capabilities. LSTMs are adept at 

capturing protracted temporal dependencies in time-series 

data, essential for accurate forecasting. However, its higher 

RMSE and MAE suggest a less effective capture of data 

nuances as opposed to the CNN-based models. 

The CNN-BiLSTM model, integrating bidirectional LSTMs 

with CNNs, delivers moderate performance. It doesn't 

achieve the accuracy levels of the CNN model but surpasses 

the standalone LSTM. The bidirectional approach of this 

model, processing information from both past and future 

data points, aims to enhance predictive accuracy. However, 

in this specific scenario, the added complexity of the 

bidirectional LSTM doesn't proportionately improve 

predictive accuracy. 

In summary, while the CNN model excels in RMSE and 

MAE, its high MAPE indicates potential reliability issues in 

certain contexts. The CNN-LSTM model, with its balanced 

performance and the lowest MAPE, emerges as a potentially 

more reliable choice for this dataset and task, likely 

benefiting from the attention mechanism's ability to enhance 

feature focus and contextual understanding. 

6. Conclusion 

This study presents a comprehensive comparative analysis 
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of four distinct models: CNN, LSTM, CNN-LSTM, and 

CNN-BiLSTM in the context of stock price forecasting. The 

results highlight the strengths and weaknesses of each 

approach. The CNN model, renowned for its feature 

extraction capabilities, excels in terms of RMSE (39.23) and 

MAE (8.80), indicating high accuracy and consistency in 

predictions. However, its significantly high MAPE 

(390.47%) suggests potential overfitting or lack of 

generalization in certain scenarios. 

The LSTM model, while not as accurate as CNN in RMSE 

and MAE, demonstrates its effectiveness in identifying 

long-term relationships in time-series data. The hybrid 

CNN-LSTM model emerges as a balanced solution, 

leveraging CNN's feature extraction prowess and LSTM's 

sequential data handling to achieve lower RMSE (76.79) 

and MAE (25.02), and most notably, the lowest MAPE 

(25.66%) among all models. This balance suggests a high 

degree of reliability and consistency across various data 

points. The CNN-BiLSTM model, integrating bidirectional 

LSTMs, shows moderate performance, indicating that its 

added complexity does not necessarily translate into 

significantly improved accuracy for this dataset. 

6.1. Future work direction 

Future research could focus on optimizing these models 

further, particularly in addressing the high MAPE observed 

in the CNN model. Optimizing hyperparameters, especially 

techniques like dropout or L1/L2 regularization, could 

potentially improve generalizability. 

Incorporating additional features beyond historical prices, 

such as market sentiment, economic metrics, and 

geopolitical events, might enhance the models' ability to 

capture complex market dynamics. Advanced architecture 

can also be experimented with. More advanced neural 

network architectures, such as Transformer models, might 

offer improvements over the current models, especially in 

capturing complex patterns in stock price data. 

Cross-Market Analysis: Extending the analysis to different 

stock markets and sectors might help in understanding the 

models' effectiveness across various market conditions and 

environments, which will inform their potential adoption in 

real-world scenarios. 
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