
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

NIOJS: A Novel Intelligent Model Based on Optimal Jumps for

Creating Data Sampling from Big Dataset

Mohammed Mohammed Zayed1* , Prof. Fadl Mutaher Ba-Alwi2 , Hiba ALMarwi3 and Prof. Gheleb H.

AL-Gaphari4

Submitted:20/03/2024 Revised: 01/05/2024 Accepted: 12/05/2024

Abstract: The pervasiveness of big data has revolutionized the landscape of information technology (IT), offering a wealth of insights and

opportunities for various sectors, including healthcare, education, and the Internet of Things (IoT). However, the sheer volume and

complexity of big data pose challenges in extracting meaningful knowledge. To address this, we propose a novel model for optimal sample

selection, enabling efficient extraction of representative subsets from big data. The proposed model, based on optimal jumps, dynamically

adapts the clustering process to enhance the efficiency of data sampling. We employ the Adjusted Rand Index (ARI) to evaluate the similarity

between clusters and guide the selection of new data in each iteration This model holds the potential to significantly enhance the utilization

of big data while reducing computational demands. The proposed could run on big datasets and the samples taken represents the dataset.

Keywords:

Big data sampling, Cluster sampling, DBSCAN,

NIOJS ,

Samples, Optimal Jump

Introduction

The emergence of big data has posed significant challenges

in the field of information technology. With its vast volume,

intricate nature, and diverse characteristics, big data

presents formidable hurdles for traditional data processing

techniques. Moreover, inherent issues such as noise,

redundancy, imbalance, and false discovery rates further

compound the challenges associated with big data. These

factors collectively contribute to the computational

complexity and burden, rendering many conventional

algorithms ineffective.

To tackle these challenges, various approaches have been

proposed, including feature selection methods and sampling

techniques. Feature selection methods aim to identify and

extract the most relevant and informative features from the

dataset, thereby reducing dimensionality and improving

computational efficiency. On the other hand, sampling

techniques focus on extracting representative subsets from big

data, enabling the construction of cost-effective models without

compromising accuracy.

Our proposed model falls under the category of sampling- based

approaches. We aim to alleviate the burden of big data volume

by iteratively extracting small samples from the dataset.

This approach not only reduces computational demands

but also ensures that the extracted samples cover a wide range

of cases, introduce an acceptable degree of redundancy,

maintain data balance, and reduce noise.

1 Information system, Sana'a University, Yemen

ORCID ID : 0000-0002-4961-9467
2 Information system, Sana'a University, Yemen
3 Computer Science, Sana'a University, Yemen

ORCID ID : 0000-0002-0941-1143
* Corresponding Author Email: mzayed@su.edu.ye

Additionally, it enhances practicality and scalability.

This paper introduces "Jump Sampling," an innovative

approach to sample selection that leverages the DBSCAN

clustering algorithm to efficiently select samples from big

datasets. DBSCAN is renowned for its versatility in

identifying clusters of various shapes and its adept handling of

noisy patterns[1]. However, it faces computational

challenges due to the high complexity of its nearest neighbor

query[1]. To overcome this hurdle, two strategic approaches are

employed.

Firstly, Algorithmic Optimization concentrates on refining the

efficiency of the nearest neighbor query algorithm itself. This

 involves incorporating advanced techniques like

spatial indexing structures (e.g., KD-trees) to expedite the

search process. However, this method may encounter

difficulties when dealing with high-dimensional datasets.

Secondly, Data-driven Strategies implement sampling

techniques to operate on a representative subset of instances,

thereby reducing the overall data processed during the

nearest neighbor query. Techniques such as random

sampling, stratified sampling, or the application of locality-

sensitive hashing (LSH) are deployed, striking a balance

between precision and computational efficiency.

In our model, ARI is utilized to measure the similarity

between two clusters, assessing the agreement between the

labels assigned by a clustering algorithm. This index is often

used in the evaluation of clustering algorithms as it

considers all pairs of samples and measures how many pairs are

assigned to the same or different clusters

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4290–4295 | 4290

1.

http://www.ijisae.org/
mailto:mzayed@su.edu.ye

Related Work

2.1 The PROTRAS algorithm

 introduced by Ros and Guillaume in 2018, stands out for its

focus on producing a coreset—a smaller and representative

subset of the original dataset. It employs a single parameter,

denoted as γ, which signifies the sampling cost and

determines the level of approximation for the sample. The

parameter is used both in the sampling process and as a

stopping criterion. To avoid confusion with the

homonymous parameter in DBSCAN, this paper refers to it as

γ.

PROTRAS operates through four key steps:

1.

The CF-Tree data structure is built during the process,

storing subclusters as entries in leaf nodes. Each entry is not

just a single element but represents a subcluster with many

elements within a spherical neighborhood defined by the

Threshold.

BIRCHSCAN uses the centroids of these subclusters as the

biased sample for clustering.

DBSCAN on Biased Sample:

DBSCAN is applied to the biased sample obtained from

BIRCH, using parameters minPTS, ε, and weights assigned

to each sample element based on the size of the

corresponding CF subcluster returned by BIRCH.

Weights allow for more consistent clustering by identifying

dense elements. Only one element is considered dense, even

if it represents multiple elements in the entire dataset. Labeling

and Final Clustering:

2.

3.

Association of Non-Selected Elements: The second

step involves associating each element not selected

with the closest element already present in the sample.

Cost Computation: The algorithm then computes the

cost based on the selected sample and associated non-

selected elements.

DBSCAN labels each element of the biased sample.

The entire dataset is labeled based on the subclusters

returned by BIRCH. Elements belonging to the same

subcluster share the same label.

Parameter Tuning (δ):

Stopping Criterion: In the final step, it is checked

whether the computed cost is below the specified

threshold determined by the γ parameter. The

algorithm terminates when the cost is sufficiently low.

Unlike clustering algorithms such as DENDIS or DIDES,

PROTRAS specifically targets the creation of a coreset. The

sampling cost, represented by the γ parameter, plays a

crucial role both as a single parameter guiding the sampling

process and as a stopping criterion. The algorithm utilizes

probability calculations to strike a balance between

representing density and achieving spatial coverage of the

dataset. This trade-off allows PROTRAS to efficiently

generate a representative coreset with a controlled level of

approximation.

2.2 The BIRCHSCAN algorithm

 proposed by Ros and Guillaume in 2018, is designed to

efficiently cluster large datasets by combining the BIRCH and

DBSCAN clustering algorithms. The algorithm utilizes biased

sampling, aiming to generate a sample that accurately represents

the entire dataset without overlooking small partitions.

Here's a breakdown of the BIRCHSCAN algorithm and its key

steps:

Biased Sampling with BIRCH (CF-Tree):

BIRCH is applied to the entire dataset using parameters

minPTS and ε (used by DBSCAN), along with the

parameter δ, defining the Threshold for BIRCH.

The size of the CF-Tree generated by BIRCH is influenced

by the Threshold parameter (ε × δ).

An empirical study was conducted to determine a

reasonable value for δ, with the study indicating that δ = 0.5

achieved a good balance between sample size and clustering

results.

The experiments showed that BIRCHSCAN is competitive

compared to other methods for clustering large datasets. The

algorithm's strength lies in its use of biased sampling with

BIRCH to create a representative sample, facilitating

efficient clustering with DBSCAN. The parameter δ plays a

crucial role in balancing the sample size and achieving

The Proposed Model

Samples shall cover as most variety of data as possible, to

be bias, introduce an acceptable degree of redundancy and

reduce noise with the least computational cost possible. In

this approach, we employ the DBSCAN clustering

algorithm to identify areas of density within the dataset,

aided by the proposed jump and ARI metrics. ARI, which

does not entail a high computational cost. our primary

objective is not to establish clusters but rather to identify

representative samples. DBSCAN is chosen for its ability to

discern density-based structures within the data, allowing us

to pinpoint regions of significance. By incorporating ARI, a

measure of clustering similarity, we can evaluate the

effectiveness of our approach in identifying these dense

areas and selecting suitable samples from them. Although

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4290–4295 | 4291

2.

Selection of New Element: In each iteration, a new
element is chosen for inclusion in the sample based on
the highest probability of cost reduction. This
approach aims to limit the sample size.

4.

satisfactory results.

3.

ARI itself does not impose significant computational

overhead, the overall computational complexity of our

approach may vary depending on the dataset's size and

dimensionality and minPoints parameter of DBSCAN . It's

important to note that the efficacy of our approach hinges on

the suitability of DBSCAN and ARI for our specific dataset

and objectives. In the proposed model, the Jump is a critical

aspects as it keeps the probability of finding new minor

clusters high , it does not neglect sparse areas. Jump mechanism

divides dataset initially to 2 segments (visited, unvisited) the

visited segments is further divided into promising areas

and weak or sparse areas as the model will collocate the number

of cluster created and how many noise points. the jump collects

fixed number of records in every iteration fig 1 illustrates the

flowchart of jump while fig 2 depicts the model.

3.1 algorithm for jump mechanism

The initial jump is randomly made within the range of the

dataset with a specific jump size.

If the data points are good (resulting in many new clusters), this

area is considered promising, and the next jump is made next to

it.

Jumping will continue to this area until it is fully utilized,

meaning the returned data is similar to the data we already have

or contains too much noise.

A new jump is executed to a far unvisited area. The model

controls the jump, utilizing DBSCAN and ARI to determine

whether to accept, exclude, or replace the sample.

In this paper, our approach involves utilizing clustering on jump

data to identify clusters and noise points, which are crucial

for the functionality of the jump and for enabling comparison

between clusters using ARI. The limited data provided by

the jump enhances clustering efficiency, although the

effectiveness of DBSCAN depends on two key parameters:

minPoints and eps. To address this, we manually specify

these parameters in our study.

We assess the output of each jump using ARI against all

previously accepted samples. Clusters meeting our criteria are

accepted and added to the array of accepted clusters.

Conversely, if the ARI index falls below a certain threshold, the

cluster is excluded. Excluded clusters are then compared to the

most relevant clusters from the accepted set. If an excluded

cluster demonstrates superior characteristics, it replaces the

relevant accepted cluster, while the latter is added to the

excluded array ,this process continues until we stopped finding

new clusters as the ensures that we get the optimal

representatives of the big dataset , and this is the stopping

criteria thus there is no need to specify sample size

Fig. 1 Jump Algorithm Flow Chart

3.2 Flowchart and proposed model

1 Start

2 Supply minPTS and esp and jump size

3 Execute the initial jump, cluster it, and add it to the

accepted cluster since there is nothing yet to compare it to

4 Execute the next jump, cluster it, and then compare it with

the accepted clusters for similarity. The Adjusted Rand

Index (ARI) comes in handy in this process. If the result of

ARI is less than 0, the clusters are not accepted.

5 If the result is greater than or equal to 0, then the cluster is

further checked for better sampling with the most similar

cluster.

 5.1 If the current cluster (doomed to be excluded) has

better clusters, it is replaced with the already accepted

weaker cluster. The replaced cluster is then added to the

rejected.

 5.2 If the current cluster is not better than the already

accepted most similar cluster, it is added to the rejected

clusters.

6 Check if the exit limit has been reached .

6.1 If no execute a jump .

 6.2 If yes stop .

7 Stop.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4290–4295 | 4292

Jump Model Flow Chart

 3.2.1 Pseudocode for Clustering with Jump Algorithm

 // Step 5.1: Check if new cluster has better quality

 if NewClusterIsBetter(NewCluster,

MostSimilarCluster) then

 // Replace weaker cluster

 ReplaceCluster(AcceptedClusters,

MostSimilarCluster, NewCluster)

 RejectedClusters.add(MostSimilarCluster)

 else

Stop

Original Shape

Our Model Preserve the same shape of the dataset after

sampling fig3 to fig 5 shows the shapes of dataset sample’s

shapes of

Abalone , Isolet and Machinery Fault\imbalance

respectively while fig 6 shows where samples were taken ,

that proves wild coverage of the samples over the dataset.

 // Step 5.2: Add current cluster to rejected

 RejectedClusters.add(NewCluster)

 end if

 else

 // Clusters not similar, reject

 RejectedClusters.add(NewCluster)

Fig. 3 Abalone Samples Shape

Fig. 4 Isolet Samples Shape

 end if

 // Step 6: Check exit condition

 if ExitLimitReached() then

 Stop

 end if

 end while

// Step 7: End process

 Fig.5 Machinery Fault\ Samples Shape

 Fig.6 shows samples coverage all over the dataset

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4),

4290–4295

 4293

Fig. 2

3.3 Model Preserving Dataset

|

Dataset Name Size Features Example DBSCAN MinPt ARI Time in Seconds

Abalone

184 kb 8 4177 50 80.05 0.30

Isolet 34881 kb 617 7797 1 70.86

1.37

Machinery
Fault\imbalance

5.37 GB 3056 11749953

100 82.02 481.51

Table 1. Experimental parameters and time

learning, with this hybrid model could further enhance

predictive analytics and anomaly detection, enabling more

effective decision-making in high-dimensional and complex

data environments.

References

[1] Deng, Dingsheng. "DBSCAN clustering algorithm

based on density." 2020

[2] 7th international forum on electrical engineering and

automation (IFEEA). IEEE, 2020.

[3] Warrens, Matthijs J., and Hanneke van der Hoef.

"Understanding the adjusted rand index and other

partition comparison indices based on counting object

pairs." Journal of Classification 39.3 (2022): 487-509.

 Future Work

In future work, this research could be expanded to address

the challenges of real-time streaming data. The current

model focuses on static datasets, but real-time data requires

continuous sampling and clustering, which would involve

developing dynamic and adaptive techniques. Integrating the

hybrid model into streaming frameworks like Apache Kafka

or Apache Flink could allow for real-time analytics while

managing large data flows.

Additionally, further investigation into automatic

hyperparameter tuning for DBSCAN could improve its

scalability and robustness across different datasets.

Techniques such as Bayesian optimization or genetic

algorithms could be explored to fine-tune DBSCAN’s

parameters in a more automated and efficient manner,

reducing the need for manual intervention.

Another promising direction would be to apply the model in

domain-specific areas such as healthcare, finance, and IoT,

where big data is increasingly prevalent. In healthcare, for

instance, this model could help analyze large patient

[4]

[5]

[6]

[7]

[8]

[9]

Chacón, José E., and Ana I. Rastrojo. "Minimum

adjusted Rand index for two clusterings of a given size."

Advances in Data Analysis and Classification 17.1

(2023): 125-133.

de Moura Ventorim, Igor, et al. "BIRCHSCAN: A

sampling method for applying DBSCAN to

large

datasets." Expert Systems with Applications 184 (2021):

115518.

Ros, Frédéric, and Serge Guillaume. "DENDIS: A new

density-based sampling for clustering algorithm."

Expert Systems with Applications 56 (2016): 349-359.

Ros, Frédéric, and Serge Guillaume. "DIDES: a fast and

effective sampling for clustering algorithm." Knowledge

and information systems 50 (2017): 543-568.

Zhu, Lu, et al. "Improvement of DBSCAN algorithm

based on adaptive Eps parameter estimation."

Proceedings of the 2018 international conference on

algorithms, computing and artificial intelligence. 2018.

Xianting, Qi, and Wang Pan. "A density-based

clustering algorithm for high-dimensional data with

feature selection." 2016 International Conference on

Industrial Informatics-Computing Technology,

Intelligent Technology, Industrial Information

datasets to identify patterns for disease prediction or

treatment outcomes. The integration of advanced machine

learning algorithms, such as deep learning or reinforcement

Integration (ICIICII). IEEE, 2016.

[10] Alwosheel, Ahmad, Sander van Cranenburgh, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4290–4295 | 4294

4. Results and Discussion

Experiments were repeated with different DBSCAN
parameters, specifically MinPoints, until the optimal value
was found. The epsilon (eps) value was kept fixed at 0.5.
Table 1 lists the final parameters used for DBSCAN, and the
reported time is the average time of 5 runs.

The experiment was conducted on a PC running Windows

10 Enterprise with 8 GB of RAM and an Intel® Core™ i5-

10400 CPU, utilizing an HDD hard disk. The experiments

demonstrated that the model could handle big datasets, such

as Machinery Fault\imbalance, which was 5.37 GB in size.

The execution time is affected by the MinPoints parameter;

it should be set low because the data is divided into many

chunks, thereby reducing redundancy. The jump sample size

parameter does not have a significant effect on the result.

The model demonstrates excellent performance in selecting

samples across datasets of varying sizes and densities.

5.

Caspar G. Chorus. "Is your dataset big enough? Sample
size requirements when using artificial neural networks
for discrete choice analysis." Journal of choice

modelling 28 (2018): 167-182.

[11] Silva, José, Bernardete Ribeiro, and Andrew H. Sung.

"Finding the critical sampling of big datasets."

Proceedings of the Computing Frontiers Conference. 2017.

[12] Luchi, Diego, Alexandre Loureiros Rodrigues, and

Flávio Miguel Varejão. "Sampling approaches for

applying DBSCAN to large datasets." Pattern

Recognition Letters 117 (2019): 90-96.

[13] Berndt, Andrea E. "Sampling methods." Journal of

Human Lactation 36.2 (2020): 224-226.

[14] Li, Mingyang, et al. "A method of two-stage clustering

learning based on improved DBSCAN and density peak

algorithm." Computer Communications 167 (2021): 75-
84.

[15] Iliyasu, R., & Etikan, I. (2021). Comparison of quota sampling

and stratified random sampling. Biom. Biostat.
Int. J. Rev, 10(1), 24-27.

[16] Sharma, Gaganpreet. "Pros and cons of different

sampling techniques." International journal of applied research

3, no. 7 (2017): 749-752.

[17] Stratton, Samuel J. "Population research: convenience sampling

strategies." Prehospital and disaster Medicine
36, no. 4 (2021): 373-374.

[18] Berndt, Andrea E. "Sampling methods." Journal of

Human Lactation 36, no. 2 (2020): 224-226.

[19] Mahmud, Mohammad Sultan, Joshua Zhexue Huang,

Salman Salloum, Tamer Z. Emara, and Kuanishbay

Sadatdiynov. "A survey of data partitioning and

sampling methods to support big data analysis." Big Data

Mining and Analytics 3, no. 2 (2020): 85-101.

[20] Pandey, Kamlesh Kumar, and Diwakar Shukla.

"Stratified sampling-based data reduction and

categorization model for big data mining." In

Communication and Intelligent Systems: Proceedings of ICCIS

2019, pp. 107-122. Springer Singapore, 2020.

[21] Djouzi, Kheyreddine, Kadda Beghdad-Bey, and

Abdenour Amamra. "A new adaptive sampling

algorithm for big data classification." Journal of

Computational Science 61 (2022): 101653.

[22] Hasanin, Tawfiq, Taghi M. Khoshgoftaar, Joffrey L. Leevy,

and Richard A. Bauder. "Severely imbalanced
big data challenges: investigating data sampling

approaches." Journal of Big Data 6, no. 1 (2019): 1-25.

[23] Pandey, Kamlesh Kumar, and Diwakar Shukla.

"Euclidean distance stratified random sampling based

clustering model for big data mining." Computational

and Mathematical Methods 3, no. 6 (2021): e1206

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4290–4295 | 4295

