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Abstract: The pervasiveness of big data has revolutionized the landscape of information technology (IT), offering a wealth of insights and  

opportunities  for  various  sectors,  including  healthcare,  education,  and  the  Internet  of  Things  (IoT).  However,  the  sheer  volume  and  

complexity of big data pose challenges in extracting meaningful knowledge. To address this, we propose a novel model for optimal sample  

selection, enabling efficient extraction of representative subsets from big data. The proposed model, based on optimal jumps, dynamically  

adapts the clustering process to enhance the efficiency of data sampling. We employ the Adjusted Rand Index (ARI) to evaluate the similarity  

between clusters and guide the selection of new data in each iteration This model holds the potential to significantly enhance the utilization  

of big data while reducing computational demands. The proposed could run on big datasets and the samples taken represents the dataset.    
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Introduction   

The emergence of big data has posed significant challenges   

in the field of information technology. With its vast volume,  

intricate   nature,  and   diverse  characteristics,  big  data  

presents formidable hurdles for traditional data processing  

techniques.   Moreover,   inherent   issues   such   as   noise,  

redundancy,  imbalance,  and  false  discovery  rates  further  

compound the challenges associated with big data. These  

factors  collectively  contribute  to  the  computational  

complexity   and   burden,   rendering   many   conventional  

algorithms ineffective.   

To tackle these challenges, various approaches have been  

proposed, including feature selection methods and sampling  

techniques. Feature selection methods aim to identify and  

extract the most relevant and informative features from the  

dataset,  thereby  reducing  dimensionality  and  improving  

computational  efficiency.  On  the  other  hand,  sampling  

techniques focus on extracting representative subsets from  big 

data, enabling the construction of cost-effective models  without 

compromising accuracy.   

Our proposed model falls under the category of sampling- based 

approaches. We aim to alleviate the burden of big data  volume  

by  iteratively  extracting  small  samples  from  the  dataset.  

This  approach  not  only  reduces  computational  demands 

but also ensures that the extracted samples cover a  wide  range  

of  cases,  introduce  an  acceptable  degree  of  redundancy,  

maintain  data  balance,  and  reduce  noise.   
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Additionally, it enhances practicality and scalability.   

This  paper  introduces  "Jump  Sampling,"  an  innovative  

approach to sample selection that leverages the DBSCAN  

clustering algorithm to efficiently select samples from big  

datasets.  DBSCAN  is  renowned  for  its  versatility  in  

identifying clusters of various shapes and its adept handling  of  

noisy  patterns[1].  However,  it  faces  computational  

challenges due to the high complexity of its nearest neighbor  

query[1]. To overcome this hurdle, two strategic approaches  are 

employed.   

Firstly, Algorithmic Optimization concentrates on refining  the 

efficiency of the nearest neighbor query algorithm itself.  This 

 involves   incorporating  advanced  techniques   like  

spatial indexing structures (e.g., KD-trees) to expedite the  

search  process.  However,  this  method  may  encounter  

difficulties  when  dealing  with  high-dimensional  datasets.  

Secondly,  Data-driven  Strategies  implement  sampling  

techniques to operate on a representative subset of instances,  

thereby  reducing  the  overall  data  processed  during  the  

nearest  neighbor  query.  Techniques  such  as  random  

sampling, stratified sampling, or the application of locality- 

sensitive  hashing  (LSH)  are  deployed,  striking  a  balance  

between precision and computational efficiency.   

In  our  model,  ARI  is  utilized  to  measure  the  similarity  

between two clusters, assessing the agreement between the  

labels assigned by a clustering algorithm. This index is often  

used  in  the  evaluation  of  clustering  algorithms  as  it  

considers all pairs of samples and measures how many pairs  are 

assigned to the same or different clusters  
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Related Work   

2.1 The PROTRAS algorithm   

 introduced by Ros and Guillaume in 2018, stands out for its  

focus on producing a coreset—a smaller and representative  

subset of the original dataset. It employs a single parameter,  

denoted  as  γ,  which  signifies  the  sampling  cost  and  

determines the level of approximation for the sample. The  

parameter  is  used  both  in  the  sampling  process  and  as  a  

stopping  criterion.  To  avoid  confusion  with  the  

homonymous parameter in DBSCAN, this paper refers to it  as 

γ.   

PROTRAS operates through four key steps:   

1.   

 

 

The  CF-Tree  data  structure  is  built  during  the  process,  

storing subclusters as entries in leaf nodes. Each entry is not  

just a single element but represents a subcluster with many  

elements  within  a  spherical  neighborhood  defined  by  the  

Threshold.   

BIRCHSCAN uses the centroids of these subclusters as the  

biased sample for clustering.   

DBSCAN on Biased Sample:   

DBSCAN  is  applied  to  the  biased  sample  obtained  from  

BIRCH, using parameters minPTS, ε, and weights assigned  

to  each  sample  element  based  on  the  size  of  the  

corresponding CF subcluster returned by BIRCH.   

Weights allow for more consistent clustering by identifying  

dense elements. Only one element is considered dense, even  

if it represents multiple elements in the entire dataset.  Labeling 

and Final Clustering:  

2.   

 

 

3.   

 

Association  of  Non-Selected  Elements:  The  second  

step  involves  associating  each  element  not  selected  

with the closest element already present in the sample.   

Cost Computation: The algorithm then computes the  

cost based on the selected sample and associated non- 

selected elements.   

 

DBSCAN labels each element of the biased sample.   

The  entire  dataset  is  labeled  based  on  the  subclusters  

returned  by  BIRCH.  Elements  belonging  to  the  same  

subcluster share the same label.   

Parameter Tuning (δ):  

Stopping  Criterion:  In  the  final  step,  it  is  checked  

whether  the  computed  cost  is  below  the  specified  

threshold  determined  by  the  γ  parameter.  The  

algorithm terminates when the cost is sufficiently low.   

Unlike clustering algorithms such as DENDIS or DIDES,  

PROTRAS specifically targets the creation of a coreset. The  

sampling  cost,  represented  by  the  γ  parameter,  plays  a  

crucial role both as a single parameter guiding the sampling  

process and as a stopping criterion. The algorithm utilizes  

probability  calculations  to  strike  a  balance  between  

representing density and achieving spatial coverage of the  

dataset.  This  trade-off  allows  PROTRAS  to  efficiently  

generate a representative coreset with a controlled level of  

approximation.   

2.2 The BIRCHSCAN algorithm   

 proposed  by  Ros  and  Guillaume  in  2018,  is  designed  to  

efficiently cluster large datasets by combining the BIRCH  and 

DBSCAN clustering algorithms. The algorithm utilizes  biased 

sampling, aiming to generate a sample that accurately  represents  

the  entire  dataset  without  overlooking  small  partitions.   

Here's a breakdown of the BIRCHSCAN algorithm and its  key 

steps:   

Biased Sampling with BIRCH (CF-Tree):   

BIRCH  is  applied  to  the  entire  dataset  using  parameters  

minPTS  and  ε  (used  by  DBSCAN),  along  with  the  

parameter δ, defining the Threshold for BIRCH.   

 

The size of the CF-Tree generated by BIRCH is influenced  

by the Threshold parameter (ε × δ).   

An  empirical  study  was  conducted  to  determine  a  

reasonable value for δ, with the study indicating that δ = 0.5  

achieved a good balance between sample size and clustering  

results.   

The experiments showed that BIRCHSCAN is competitive 

compared to other methods for clustering large datasets. The 

algorithm's strength lies in its use of biased sampling with 

BIRCH  to  create  a  representative  sample,  facilitating 

efficient clustering with DBSCAN. The parameter δ plays a 

crucial  role  in  balancing  the  sample  size  and  achieving 

 
The Proposed Model   

Samples shall cover as most variety of data as possible, to  

be bias, introduce an acceptable degree of redundancy and  

reduce noise with the least computational cost possible.  In  

this  approach,  we  employ  the  DBSCAN  clustering  

algorithm  to  identify  areas  of  density  within  the  dataset,  

aided by the proposed jump and ARI metrics. ARI, which  

does  not  entail  a  high  computational  cost.  our  primary  

objective is not to establish clusters but rather to identify  

representative samples. DBSCAN is chosen for its ability to  

discern density-based structures within the data, allowing us  

to pinpoint regions of significance. By incorporating ARI, a  

measure  of  clustering  similarity,  we  can  evaluate  the  

effectiveness  of  our  approach  in  identifying  these  dense  

areas and selecting suitable samples from them. Although 
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2.  

Selection  of  New  Element:  In  each  iteration,  a  new   
element is chosen for inclusion in the sample based on   
the  highest  probability  of  cost  reduction.  This   
approach aims to limit the sample size.   

4.   

satisfactory results.   

3.  



 

ARI  itself  does  not  impose  significant  computational  

overhead,  the  overall  computational  complexity  of  our  

approach  may  vary  depending  on  the  dataset's  size  and  

dimensionality and minPoints parameter of DBSCAN . It's  

important to note that the efficacy of our approach hinges  on  

the  suitability  of  DBSCAN  and  ARI  for  our  specific  dataset 

and objectives. In the proposed model, the Jump is a  critical 

aspects as it keeps the probability of finding new  minor 

clusters high , it does not neglect sparse areas. Jump  mechanism 

divides  dataset initially to 2 segments (visited,  unvisited)  the  

visited  segments  is  further  divided  into  promising areas 

and weak or sparse areas as the model will  collocate the number 

of cluster created and how many noise  points. the jump collects 

fixed number of records in every  iteration fig 1 illustrates the 

flowchart of jump while fig 2  depicts the model.      

3.1 algorithm for jump mechanism    

The initial jump is randomly made within the range of the  

dataset with a specific jump size.   

If the data points are good (resulting in many new clusters),  this 

area is considered promising, and the next jump is made  next to 

it.   

Jumping will continue to this area until it is fully utilized,  

meaning the returned data is similar to the data we already  have 

or contains too much noise.   

A new jump is executed to a far unvisited area. The model  

controls the jump, utilizing DBSCAN and ARI to determine  

whether to accept, exclude, or replace the sample.   

In this paper, our approach involves utilizing clustering on  jump 

data to identify clusters and noise points, which are  crucial 

for the functionality of the jump and for enabling  comparison 

between clusters using ARI. The limited data  provided  by  

the  jump  enhances  clustering  efficiency,  although the 

effectiveness of DBSCAN depends on two key  parameters:   

minPoints   and   eps.   To   address   this,   we  manually specify 

these parameters in our study.   

We assess the output of each jump using ARI against all  

previously accepted samples. Clusters meeting our criteria  are  

accepted  and  added  to  the  array  of  accepted  clusters.  

Conversely, if the ARI index falls below a certain threshold,  the 

cluster is excluded. Excluded clusters are then compared  to  the  

most  relevant  clusters  from  the  accepted  set.  If  an  excluded  

cluster  demonstrates  superior  characteristics,  it  replaces  the  

relevant  accepted  cluster,  while  the  latter  is  added to the 

excluded array ,this process continues until we  stopped finding 

new clusters as the ensures that we get the  optimal 

representatives of the big dataset  , and this is the  stopping 

criteria thus there is no need to specify  sample size    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Jump Algorithm Flow Chart  

  
3.2 Flowchart and proposed model 

1 Start   

2 Supply minPTS and esp and jump size   

3  Execute  the  initial  jump,  cluster  it,  and  add  it  to  the  

accepted cluster since there is nothing yet to compare it to   

4 Execute the next jump, cluster it, and then compare it with  

the  accepted  clusters  for  similarity.  The  Adjusted  Rand  

Index (ARI) comes in handy in this process. If the result of  

ARI is less than 0, the clusters are not accepted.   

5 If the result is greater than or equal to 0, then the cluster is  

further checked for better sampling with the most similar  

cluster.   

   5.1  If  the  current  cluster  (doomed  to  be  excluded)  has  

better  clusters,  it  is  replaced  with  the  already  accepted  

weaker  cluster.  The  replaced  cluster  is  then  added  to  the  

rejected.   

   5.2  If  the  current  cluster  is  not  better  than  the  already  

accepted  most  similar  cluster,  it  is  added  to  the  rejected  

clusters.   

6 Check if the exit limit has been reached .      

6.1 If no execute a jump .   

    6.2 If yes stop .   

7 Stop.  
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Jump Model Flow Chart   

    3.2.1 Pseudocode for Clustering with Jump Algorithm   

            // Step 5.1: Check if new cluster has better quality   

            if  NewClusterIsBetter(NewCluster,  

MostSimilarCluster) then   

                // Replace weaker cluster   

                ReplaceCluster(AcceptedClusters,  

MostSimilarCluster, NewCluster)   

                RejectedClusters.add(MostSimilarCluster)   

            else   

 

 

Stop   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Shape   

Our  Model  Preserve  the  same  shape  of  the  dataset  after  

sampling fig3  to fig 5 shows the shapes of dataset sample’s   

shapes of    

Abalone  ,  Isolet  and  Machinery  Fault\imbalance  

respectively while fig 6 shows where samples were taken ,  

that proves wild coverage of the samples over the dataset.  

                // Step 5.2: Add current cluster to rejected   

                RejectedClusters.add(NewCluster)   

            end if   

        else   

            // Clusters not similar, reject   

            RejectedClusters.add(NewCluster)   

 

Fig. 3 Abalone Samples Shape  

 

Fig. 4 Isolet Samples Shape 

        end if   

        // Step 6: Check exit condition   

        if ExitLimitReached() then   

            Stop   

        end if   

    end while   

// Step 7: End process   

 

    Fig.5 Machinery Fault\ Samples Shape  

 

 

 

 

 

 

 

    Fig.6 shows samples coverage all over the dataset  
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Fig. 2  

3.3 Model  Preserving  Dataset  

|  



   

 

Dataset Name Size Features             Example               DBSCAN MinPt                 ARI Time in Seconds 

Abalone 

 
184 kb 8 4177 50 80.05 0.30 

Isolet 34881 kb 617 7797 1 70.86 
 

1.37 

Machinery 
Fault\imbalance 

 
5.37 GB        3056 11749953 

 

100 82.02 481.51 

 

 

 

Table 1. Experimental parameters and time   

learning,  with  this  hybrid  model  could  further  enhance  

predictive analytics and anomaly detection, enabling more  

effective decision-making in high-dimensional and complex  

data environments.   
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 Future Work   
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the  challenges  of  real-time  streaming  data.  The  current  
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algorithms  could  be  explored  to  fine-tune  DBSCAN’s  

parameters  in  a  more  automated  and  efficient  manner,  

reducing the need for manual intervention.   

Another promising direction would be to apply the model in  

domain-specific areas such as healthcare, finance, and IoT,  

where big data is increasingly prevalent. In healthcare, for  

instance,  this  model  could  help  analyze  large  patient   
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4.  Results and Discussion   

Experiments  were  repeated  with  different  DBSCAN   
parameters, specifically MinPoints, until the optimal value   
was found. The epsilon (eps) value was kept fixed at 0.5.   
Table 1 lists the final parameters used for DBSCAN, and the   
reported time is the average time of 5 runs.   

The experiment was conducted on a PC running Windows   

10 Enterprise with 8 GB of RAM and an Intel® Core™ i5-  

10400 CPU, utilizing an HDD hard disk. The experiments   

demonstrated that the model could handle big datasets, such   

as Machinery Fault\imbalance, which was 5.37 GB in size.   

The execution time is affected by the MinPoints parameter;   

it should be set low because the data is divided into many   

chunks, thereby reducing redundancy. The jump sample size   

parameter does not have a significant effect on the result.    

The model demonstrates excellent performance in selecting   

samples across datasets of varying sizes and densities.   
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