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Abstract: Plant diseases are not only resilient but also exhibit rapid proliferation, posing a significant threat to plant health and 

agricultural yield. Detecting and diagnosing these diseases automatically is paramount in the field of agriculture. Many a methods have 

been suggested to tackle the challenge for the identification of plant diseases and diagnosis, with deep learning emerging as the favored 

process due to its outstanding performance. In this study, we introduce an effective methodology that leverages Machine Learning and 

Deep Learning a approaches. Our approach combines an AlexNet convolutional neural network (CNN) within the Hessian matrix for 

calculating image surface eigenvalues. Furthermore, we employ the principal component analysis (PCA) Technique for dimension 

reduction. 

Numerous tests were conducted to assess the effectiveness of our method for classifying and detecting plant leaf diseases. We compared 

the production of our compare the model to other cutting-edge deep learning models, utilizing the PlantVillage dataset for model training. 

Our models were trained on the initial dataset and an enhanced dataset, comprising 55,448 and 61,486 images, respectively. The 

experimental results conclusively illustrate the excellence of our approach contrasted to current process, manifesting as improved 

accuracy, average precision (AP), and reduced computational complexity. 

Keywords: Eig(Hess), Machine learning , Plant diseases, HOG, AlexNet , Training precision, PCA.  

1. Introduction 

Plant diseases have significant repercussions on food 

safety and agriculture, posing perennial challenges in the 

field. They lead to diminished crop quality, substantial 

financial burdens, and have profound impacts on 

sustainable agriculture, rural migration, and the overall 

agricultural economy [1]. Furthermore, these diseases 

affect rural communities, particularly those reliant on 

agriculture in the region. The conventional approach for 

disease identification involves visual inspection by 

experienced plant pathologists, utilizing visual 

examination of diseased plant leaves [2], [3]. However, the 

wide array of plant species, variations in disease 

development due to climate change, and the rapid infection 

transmission across regions can make accurate diagnosis 

difficult, even for seasoned experts. Consequently, there is 

a growing interest among researchers to address the issues 

of classifying and detecting plant diseases effectively. The 

quest is for a model that can deliver satisfactory results 

without the need for extensive preprocessing. In 

contemporary times, advanced technologies like artificial 

intelligence, machine learning, and deep learning are 

gaining increasing attention in agriculture due to their 

significant computational advancements and data 

processing capabilities, making them essential for efficient 

plant disease detection and diagnosis [4]. leading-edge 

plant sensing approaches often rely on a high volume of 

training parameters, resulting in increased prediction and 

training times. To counter this, machine learning methods 

characterized by a smaller quantity of training parameters 

preferred for effective plant disease detection [5]. 

Automatic disease detection via leaf image analysis 

streamlines the process and reduces costs [6]. Recent 

developments include novel approaches like federated 

distillation learning systems [7] [8] and efficient semi-

supervised models [9], which simplify the classification of 

various tasks simultaneously. These models can be applied 

to improve the classification of different types of diseases 

in crop disease detection tasks. It has been observed that 

many machine learning systems struggle to provide 

effective occurs when dealing with extensive datasets and 

deep-seated lesions in different parts of plant leaves [10]. 

To overcome in the face of these challenges, deep learning 

models, particularly convolutional neural networks 

(CNNs), have attained prominence for immediate plant 

leaf disease identification.. A range numerous CNN-based 

structures have been presented for plant leaf disease 

categorization, including Xception net, DenseNet, 

AlexNet, ResNet, GoogleNet, Inception Net V4, VGGNet, 

and SoyNet, among others [11]- [33]. Additionally, more 

complex networks have been designed based on these 

classifiers for specific applications in various crops. While 

some researchers have proposed methods for the diagnosis 

of crop-specific diseases, they often lack versatility and 
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struggle when applied to different crop datasets [34]. The 

efficiency of a plant disease classification system largely 

hinges on the effectiveness of attribute selection and the 

choice of classifiers used for training, primarily related to 

foliar disease symptoms. While these techniques perform 

well with small datasets, their performance deteriorates 

when confronted with large datasets. Machine learning 

techniques like Random Forest (RF) and Artificial Neural 

Network (ANN) offer improved results but require a high 

number of parameters and computation time, making them 

time-consuming and complex to process. To address these 

challenges, researchers are developing a novel architecture 

aimed at reducing complexity, avoiding excessive 

numerical parameters, and minimizing computational time. 

The proposed model has demonstrated superior 

performance compared to comparable advanced models 

via thorough simulations, offering reduced computational 

complexity, cost-effectiveness, and improved classification 

accuracy. The structure of the paper's structure is as 

follows: Segment 2 elaborates on prior literature, Segment 

3 describes the proposed model, Segment 4 discusses 

simulation results, and segment 5 concludes the document. 

2. Related Works 

The traditional method of visually diagnosing plant 

diseases is a time-consuming process, labor concentrated, 

costly, and personal. These drawbacks have motivated 

researchers to explore alternative, more efficient methods. 

Various machine learning methods have been offered to 

address this issue with great precision, cost decrease, and 

reduced subjectivity. 

Yanli.et al. [35] highlighted the benefits of lightweight 

models, which offer faster disease identification and 

require less memory space. They introduced the HLNet 

deep learning prototype, found on a featherweight 

convolutional neural network (CNN), designed for rapid 

and powerful disease recognition. 

In another study by [36], the diagnosis of cotton leaf 

disease was examined. They proposed a deep meta-

learning-based model capable of identifying various crop 

diseases. The dataset consisted of 2,385 healthy and 

diseased leaf images, and the model achieved an 

impressive precision of 98.53%. 

An innovative approach to vegetation image identification 

found on deep learning procedures using sheet vein 

patterns were created [37]. This method successfully 

classified three legume species (white haricot ,kidney bean, 

and soy) utilize 3 to 6 levels of CNN technical solutions. 

Furthermore, deep learning examples were educated and 

evaluated on the Plant Village data pool in reference [38]. 

The study assessed the achievement of double well-known 

CNN structures, GoogLeNet and AlexNet,  in three 

scenarios (color, grayscale, and segmentation). The results 

revealed that GoogLeNet outperformed AlexNet, 

achieving an precision rate of 99.35% on the test set. 

To identify the symptoms of four gherkin diseases, In [39] 

utilized a deep CNN, achieving a recognition precision of 

93.4%. In [40] also presented a CNN-based system to 

identify cucumber leaf diseases with an a precision of 

94.9%. 

In [41] employed deep learning methods for identifying 

leaf diseases in plants and antecedents. They used nine 

neural network structures for feature extraction, with 

subsequent classification by support vector machines 

(SVM), extreme learning machines (ELM), and k-nearest 

neighbor methods. The highest accuracy, reaching 97.86%, 

was achieved using the SVM classifier and model ResNet 

50, though the limitation of this approach was the use of a 

very limited dataset consisting of solely 1965 images of 

eight another foliar crop diseases. 

In [42] introduced a deep CNN structure for recognizing 

and categorizing eight different types of soy stress. Their 

approach included a clarification mechanism and forecasts 

through high-resolution top-K property card, allowing for 

the identification, classification, and quantification of 

stress intensity. It also enabled the autonomous detection 

of visual indicators when expert annotations were lacking. 

Additionally, other innovative techniques involve the use 

of lesions and stains for disease identification [43], [44]. 

These approaches offer the advantage of identifying 

multiple diseases on the same leaf and enhancing data by 

dividing leaf images Into different sub images. 

In [45] employed the GoogLeNet model for differentiating 

79 health issues in 14 types of vegetation under demanding 

experimental environments. The exactness percentage for a 

sole lesion and territory was 94%, surpassing the 82% 

accuracy for the entire image. 

For wheat plant illness identification, in [46] used Mask-

RCNN with either ResNet50 or ResNet101 as the feature 

extraction network. the average precision on the test 

dataset was 92.01%. 

Huang et al. [47] introduced approaches that self-train the 

necessary determining the depth of neural network for 

plant leaf disease identification using neural structure 

search technique. The model achieved a recognition 

precision of 98.96% and 99.01% on unbalanced and 

balanced datasets, sequentially. Though, the precision 

declined to 95.40% when the image's gray equilibrium was 

not rectified. 

To diagnose camellia leaf diseases, Long et al. [48] 

explored two training methods: training from scratch and 

transfer learning from ImageNet. The results indicate that 

transfer learning significantly improved the categorization 

effectiveness and convergence rapidity, achieving a 
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classification precision of 96.53%. 

Other techniques, such as the use of saliency maps [49], 

segmentation, and edge mapping [50], were utilized to 

identify plant diseases. Brahimi et al. [51] introduced a 

new deep learning model network to identify disease spots, 

which offered a clearer visualization impact compared to 

traditional disease treatment approaches. 

In another study, J Arun Pandian offer a 14-tier deep 

Convolutional Neural Network (CNN) model for leaf 

disease screening using sheet images. The model achieved 

an precision of 99.96% and outperformed existing learning 

approaches. 

Waleed albattah [53] introduced a custom CentreNet 

framework with DenseNet-77 as the backbone network. 

The approach taken a tripartite strategy, including the 

extraction of the targeted region , key point abstraction 

using CentreNet, and disease categorization. 

In a comprehensive review [54], C. Jackulin et al. 

evaluated diverse ML and DL methods for diagnosis of 

plant diseases, comparing their performance and utilization 

in diverse studies. Additionally, Dahiya et al. [55] 

discussed the deep learning architecture and diverse 

parameters related to CNN and element affecting the 

performance of DL models in detecting plant leaf diseases.  

3. Materials and Methods  

3.1. Montage expérimental  

To address the current limitations and improve upon 

existing plant disease detection methods, we present the 

entire process of our proposed approach in this section.  

We conduct a comprehensive experimental analysis using 

precision average and recall criteria to evaluate the 

effectiveness of our proposed descriptor.  

Our proposed algorithm is implemented and executed 

within the Anaconda software on a computer system 

equipped with 12 GB of DDR 1600 MHz RAM, Intel HD 

Graphics 5000 with 15366 MB memory, an Intel Core i5 

processor, and a central processing unit running at 2.2 

GHz. 

Figure 1 illustrates the schematic of our proposed 

technique. The process begins with reading and resizing 

images to dimensions of 227 × 227 × 3 using MATLAB 

with bicubic interpolation. These images are then 

simultaneously processed by a deep feature generator, an 

enhanced AlexNet CNN, as well as the Eig(Hess)-HOG 

algorithm. The enhanced AlexNet CNN analyzes the 

images, recognizes patterns, and generates a feature vector 

of dimension 1 × 64 [56]. Concurrently, the Eig(Hess)-

HOG algorithm extracts features. Subsequently, the PCA 

algorithm is applied to reduce the dimensions of the 

features produced by the Eig(Hess)-HOG descriptor. 

In our approach, to ensure that the Eig(Hess)-HOG 

descriptor and the enhanced AlexNet CNN have equal 

contributions to the last characteristic attribute, the aspects 

of the Eig(Hess)-HOG descriptor are reduced to 1 × 59 

using the PCA algorithm. Following this dimension 

reduction step, the feature vectors Eig(Hess)-HOG-PCA, 

the learned feature vector, and the feature vector 

Eig(Hess)-HOG-PCA are combined, resulting in an 

effective image feature with a dimension of 1 × 128. 

For clarity, a brief description of AlexNet CNN, 

Eig(Hess)-HOG, and PCA is provided as follows: 

➢ The PCA (Principal Component Analysis) 

algorithm serves as a dimensionality-reduction 

technique commonly applied to large datasets. Its 

primary purpose is to transform a set of numerous 

variables into a smaller set while preserving the 

significant information contained in the original 

dataset. PCA is employed for various purposes, 

including reducing computational demands, 

shortening training times, and simplifying models 

[57]. 

➢ The AlexNet CNN architecture consists of 25 

layers, and for our enhanced AlexNet model, the 

last three layers from the original AlexNet CNN 

are removed, while the remaining layers are 

retained. Subsequently, we add a fully connected 

(FC) layer with dimensions 1 × 64 to the end of 

the adapted AlexNet CNN. This improved 

AlexNet CNN not only reduces the total number 

of parameters and the proportion of parameters in 

the fully connected layer but also enhances the 

automatic detection of critical and high-level 

features without human intervention [56]. 

➢ The Eig(Hess)-HOG algorithm is a modification 

of the original HOG (Histogram of Oriented 

Gradients) algorithm that focuses on the gradient 

calculation step. This method initially calculates 

the Hessian matrix of the image. Then, it 

computes the eigenvalues ⋋1 and ⋋2 of the 

Hessian matrix. A key characteristic of Hessian 

eigenvalues is their invariance under rotation, 

which makes the Eig(Hess)-HOG algorithm 

rotation-invariant. This algorithm, utilizing the 

magnitude of eigenvalues, achieves more stable 

and precise classification results and exhibits 

continuous rotation invariance, further enhancing 

its performance [56]. 
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Fig. 1. Proposed method 

 

3.2. Plant village Dataset  

In our study, we utilize the PlantVillage dataset, containing 

a comprehensive number of 54,305 images distributed 

across 38 categories. These classes encompass 14 different 

plant species, with 12 classes representing healthy plants 

and 26 classes corresponding to diseased plants [59]. The 

dataset comprises colored images of varying sizes, and it 

includes an additional class for identifying 1,143 

background images. Therefore, the dataset's overall image 

count reaches 55,448. In Figure 2, you can observe 

representations of the 38 distinct leaf types from the 

dataset. 

 

Fig 2. Images from the PlantVillage dataset 

 

 

3.3. Plant Disease Dataset  

We recreated this dataset through offline augmentation 

based on the original dataset, which is accessible on this 

GitHub repository. The augmented dataset comprises 

approximately 87,000 RGB images featuring both healthy 

and diseased crop leaves, categorized into 38 distinct 

classes. The entire dataset is partitioned into a training set 

and a validation set, maintaining an 80/20 ratio, while 

preserving the directory structure. 

 

Fig 2. Images from the PlantDisease dataset 

3.4. Performance indictors 

Evaluating the performance of the proposed method 

involves assessing correct detections (true positives), 

detection errors (false negatives), accurate negatives, and 

erroneous positives. Various metrics and signs, such as 

precision, sensitivity, and particularity, are utilized to 

gauge the method's effectiveness, as expressed in the 

ensuing mathematical formulas. 

Precision = (TP + TN)/(TP + TN + FP + FN)           (1)  

 Sensitivity = TP/(TP + FN)                                        (2)  

Specificity = TN/(FP + TN)                                         (3) 

These metrics are calculated based on the following 

indices: 

True Positives (TP): The count of instances that truly 

belong to class C and are correctly identified by the 

classifier. 

True Negatives (TN): The count of instances that do not 

belong to class C in reality and are correctly identified as 

such. 

False Positives (FP): The count of instances that do not 

belong to class C but are erroneously classified as such. 

False Negatives (FN): The count of instances that belong 

to class C but are inaccurately classified as something else.  

4. Results and discussions 

To evaluate the performance of our proposed approach, we 

conducted experiments using two databases, namely 

Plantvillage and PlantDisease. The testing accuracy of our 

approach is summarized in Table 1. As shown in Table 1, 

after 10 epochs of training on the Plantvillage database, the 

proposed approach achieved a validation accuracy of 
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92.3%, a training accuracy of 94.96% and a loss of 0.1875. 

Similarly, after 30 training epochs, the validation accuracy 

remained at 93.5%, while the training accuracy increased 

to 98.64%, with a constant loss of 0.0623 and a Validation 

loss of 0 ,2016. In the case of PlantDisease database, the 

proposed approach also achieved validation accuracy of 

83.11%, training accuracy of 82.25% and loss of 0.3247 

after 10 training epochs and for 30 training epochs the 

proposed approach achieved validation accuracy of 

87.26%, training accuracy of 85.43% and loss of 0.1543 

and Validation loss of 0.2803.

Additionally, the validate the efficiency of our offered 

solution, we conducted comparative experiments involving 

five influential CNN architectures, namely DenseNet, 

VGGNe, Inception V3, and ResNet. The examination 

precision for these various methods are detailed within 

Table . 

As depicted in the table, our offered solution performs 

better than other leading methods examined on the public 

dataset, even when employing the best classifiers. The 

primary think for this superior performance lies in our 

approach's utilization of a combination of Alexnet 

pretrained with Eig(Hess)-HOG, which harnesses the 

strengths of both techniques.  

When considering the validation accuracy values obtained 

after 30 epochs by the various approaches, our proposed 

method achieved an accuracy of 98.64%. In comparison, 

DenseNet-201, ResNet-50, Inception V3, VGGNet-19, and 

INC-VGGN obtained validation accuracy values of 

84.13%, 70.41%, 92.14%, 74.20%, and 97.57%, 

respectively. 

Regarding validation precision values, our proposed 

method exhibited the best performance with a precision of 

93.5%, followed by INC-VGGN with 91.83%, Inception 

V3 with 85%, DenseNet-201 with 79.00%, VGGNet-19 

with 74.83%, and ResNet-50 with 69.67%. 

5. Conclusions 

Plant diseases have long been a pressing issue in 

agriculture, posing a significant threat to food 

manufacturing security. in extreme instances, these illness 

can result in complete crop failure. There is a compelling 

need for early detection of plant diseases within the realm 

Table 1. Precision and loss of approach proposed after 30 training periods for the two databases  

 Training precision 

% 

Validation precision 

% 

Training loss Loss of validation 

Plantvillage 

database 

10 Iterations 94.96 92,3 0,1875  

30 Iterations 98,64 93,5 0,0623 0,2016 

PlantDisease 

Dataset 

10 Iterations 82,25 83,11 0.3247  

30 Iterations 85,43  87,26 0.1543 0.2803 
 

Table 2.  Perforance and error of various methods after 30 training sessions. 

  

10 Iterations 30 Iterations 

Training 

precision % 

Validation 

precision % 

Training 

loss 

Training 

precision % 

Validation 

precision % 

Training 

loss 

Validation 

loss 

DenseNet-201 80,27 76,3 0 ,5726 84,2 79 0,4451 0,4987 

ResNet-50 65,2 64,7 1,0028 70,4 69,7 0,8338 0,8442 

Inception V3 85,6 82,3 0,4087 92,1 85 0,2576 0,3717 

VGGNet-19 65,2 66,7 1,1640 74,2 74,8 0.,9162 0,9026 

INC-VGGN 93,9 90,2 0,2122 97,6 91,8 0 ,0856 0,2409 

Proposed method 94.96 92,3 0,1875 98,64 93,5 0,0623 0,2016 
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of agricultural information. Presently, deep learning 

techniques, particularly Convolutional Neural Networks 

(CNNs), have displayed remarkable capabilities in 

addressing the myriad challenges associated with disease 

detection. This paper introduces an innovative approach 

that amalgamates a Convolutional Neural Network (CNN) 

known as AlexNet with the Hessian matrix to compute 

eigenvalues of the image surface. Additionally, the 

Principal Component Analysis (PCA) algorithm is 

harnessed for dimensionality reduction in the context of 

image-based plant disease identification, mitigating 

practical limitations. 

Our experimental results affirm the efficacy of the 

proposed descriptor, with a remarkable detection accuracy 

of 91.83% on the PlantDisease dataset and an impressive 

accuracy of 93.67% on the Plantvillage dataset. These 

findings lead us to the conclusion that our approach 

surpasses other existing methods in this domain. 

For our future endeavors, we aspire to adapt our approach 

for deployment on mobile devices to enable automated 

monitoring and identification of a wider spectrum of plant 

diseases, with a specific focus on disease detection at 

diverse locations within the plant and at different stages of 

disease development. Simultaneously, we aim to extend 

the application of our approach to real-world scenarios, 

including computer-aided diagnosis (CAD), thereby 

contributing to advancements in agricultural information 

systems. 
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