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Abstract:  The application of deep learning techniques for detecting and monitoring the progression of osteoarthritis (OA) is rapidly 

expanding. This study explores the predictive potential of MRI data combined with patient demographics and clinical information to 

forecast the onset and progression of knee OA. Specifically, the research focuses on predicting knee OA occurrence within a two-year 

timeframe by analyzing intermediate-weighted turbo spin-echo (IW-TSE) sequences from Osteoarthritis Initiative database. 

We propose a novel methodology that integrates the DenseNet121 architecture with Mixup data augmentation and Channel and Spatial 

Attention mechanisms, aimed at improving image classification accuracy for knee OA incidence prediction. This approach addresses 

challenges associated with high intraclass variance and limited medical imaging datasets, by enhancing feature extraction and improving 

model generalization. We conducted experiments on a dataset comprising 186 MRI images across four classification categories, utilizing 

TensorFlow and Keras frameworks. The proposed methodology achieved a significant validation accuracy of 89.78%, demonstrating its 

effectiveness in predicting knee OA incidence. 

These findings emphasize the potential of our methodology to enhance the accuracy of early-stage OA diagnosis and suggest a promising 

framework for medical image classification tasks. Moreover, the results provide a foundation for future research, optimizing deep learning 

models for clinical applications and advancing automated medical image analysis. 

Keywords: Augmentation, Channel Attention Mechanism, Deep Learning, DenseNet121, Knee Osteoarthritis (OA), Mixup Data, MRI-

based Image Classification, Osteoarthritis Prediction, Spatial Attention Mechanism  

1. Introduction 

Knee osteoarthritis (OA) is a prevalent global health issue, 

affecting millions of adults and significantly diminishing 

their quality of life [1]. As a degenerative joint disease, knee 

OA is characterized by the progressive breakdown of 

articular cartilage and alterations in bone structure, with the 

knee joint being particularly vulnerable due to its weight-

bearing function [2, 3]. As the disease progresses, 

individuals typically experience debilitating symptoms, 

including joint stiffness, chronic pain, and reduced mobility. 

These symptoms often manifest predominantly in the later 

stages of OA, making early diagnosis difficult and delaying 

critical interventions [4, 5]. The delayed onset of symptoms 

hinders timely treatment, which is essential for managing 

the disease's progression and improving patient outcomes. 

Despite advancements in traditional diagnostic methods like 

X-rays, these techniques primarily focus on detecting 

structural changes in the joint. Such methods are limited in 

visualizing soft tissues like cartilage, which is vital in the 

early stages of OA [5, 6]. X-ray imaging falls short in 

capturing early signs of OA, such as subtle changes in 

cartilage or the synovial membrane. Magnetic Resonance 

Imaging (MRI), on the other hand, offers detailed,  

three-dimensional views of the knee’s internal structures, 

including cartilage, subchondral bone, and synovium [5]. 

However, MRI interpretation is often time-consuming and 

requires specialized expertise, posing challenges for 

widespread early diagnosis. 

To address these limitations and the increasing need for 

automation in medical diagnostics, there is a growing 

interest in leveraging deep learning techniques, specifically 

Convolutional Neural Networks (CNNs), for medical image 

analysis. Prior research has demonstrated the potential of 

CNN-based models for detecting early-stage OA, yet these 

approaches still face several challenges. Existing models 

often struggle with feature extraction limitations, especially 

when dealing with the high intraclass variability present in 

medical imaging datasets. Additionally, these models 

frequently fail to effectively integrate attention mechanisms, 

which are essential for focusing on critical image regions. 

Such limitations underscore the need for novel architectures 

and techniques to enhance early OA diagnosis. 

This study aims to bridge this gap by proposing a novel deep 

learning framework that leverages the DenseNet121 

architecture, enhanced with Mixup data augmentation and 

Channel and Spatial Attention mechanisms. This integration 

addresses the aforementioned challenges by improving 

feature extraction capabilities and refining the model's focus 
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on relevant regions within MRI scans. By effectively 

extracting and analysing features from MRI scans, our 

model aims to predict the incidence of knee OA within a 

two-year timeframe. This approach could revolutionize 

early diagnosis, offering a non-invasive, highly accurate, 

and automated solution. The ultimate goal is to pave the way 

for preventive treatment strategies, improving patient 

outcomes and marking a significant advancement in knee 

OA management. 

2.  Literature Review 

2.1. DenseNet in Medical Imaging 

DenseNet121 has gained prominence in medical image 

analysis, particularly for diagnosing knee osteoarthritis 

(OA) using MRI scans. Its effectiveness lies in its deep 

learning architecture, which excels at feature reuse and 

mitigating the vanishing gradient problem—key challenges 

in medical imaging tasks. The model’s densely connected 

layers facilitate efficient feature propagation and gradient 

flow, enhancing its capacity to capture intricate structural 

variations in medical images [1, 3]. Jin et al. [10] utilized a 

3D DenseNet framework to segment knee cartilage from 

MRI scans, outperforming conventional CNN models. Their 

research underscores the depth of DenseNet in capturing 

intricate features from 3D medical images, which is 

essential for accurate segmentation of subtle structural 

changes in cartilage—a critical factor for OA assessment. 

However, their model faced challenges in handling high 

intraclass variability in knee OA images, a limitation that 

needs further improvement. High intraclass variability 

refers to the difficulty in distinguishing between different 

stages of knee OA, as subtle structural changes in cartilage 

can often go undetected or be confused with healthy tissues. 

This can adversely impact the model’s sensitivity in 

detecting early-stage OA and its overall reliability in clinical 

applications. Yu et al. [11] reviewed various deep learning 

methodologies for knee OA diagnosis, highlighting 

DenseNet121's accuracy. They affirmed the model’s 

effectiveness in detecting OA indicators within MRI scans 

and proposed its broader use across diverse medical imaging 

tasks. However, they cautioned about potential overfitting 

due to DenseNet's high parameter count and the complexity 

of interpreting its densely interconnected layers. Overfitting 

in medical imaging can result in a model that performs well 

on training data but fails to generalize to new, unseen data, 

thereby reducing its clinical applicability. To address these 

challenges, several recent studies have explored techniques 

such as data augmentation and attention mechanisms to 

mitigate overfitting and improve interpretability [14, 15]. 

While DenseNet offers advantages in feature reuse and 

gradient flow, alternative deep learning architectures, such 

as ResNet, employ skip connections to address vanishing 

gradients. These residual connections enable the network to 

learn identity mappings, facilitating deeper training and 

potentially delivering comparable performance [2]. 

However, ResNet architectures may fall short in capturing 

subtle structural details in complex medical images, which 

are critical for knee OA diagnosis [16]. Li et al. [12] 

expanded the application of DenseNet121 to classify lung 

nodules in chest X-ray images. They leveraged the model’s 

architectural depth and feature reuse capabilities to detect 

subtle nodules, achieving remarkable accuracy in lung 

pathology detection. This application underscores 

DenseNet121’s versatility beyond musculoskeletal 

imaging, including its utility in thoracic disease diagnosis. 

Recent adaptations of DenseNet, such as those enhanced 

with hybrid attention modules, have demonstrated 

substantial improvements in accuracy and generalization 

[17, 18, 25]. 

Despite DenseNet121's advantages, such as enhanced 

feature reuse and reduced gradient vanishing issues, the 

model has limitations. Its densely connected structure 

increases the parameter count, which raises overfitting risks, 

especially with smaller datasets. Furthermore, its 

complexity may obscure the interpretability of its decisions. 

To address these limitations, we propose a combination of 

MixUp augmentation and attention mechanisms, which 

enhance the model's robustness and interpretability while 

focusing on key features and regions in the images. The use 

of attention mechanisms like CBAM enhances the model's 

ability to focus on the most critical regions within MRI 

scans, improving both sensitivity and specificity. 

Table I. Comparative Analysis Table 

Model 
Key 

Features 

Strength

s 

Limitatio

ns 

Perform

ance 

(Reporte

d AUC) 

3D 

DenseN

et121 

3D 

convolut

ional 

layers, 

feature 

reuse 

Accurat

e 3D 

segment

ation of 

cartilage 

High 

intraclass 

variabilit

y 

0.9 

ResNet5

0 

Residual 

connecti

ons, skip 

layers 

Efficient 

gradient 

flow and 

deep 

learning 

Difficult

y 

capturing 

fine 

structure

s 

0.88 

Propose

d Model 

DenseNe

t121 

with 

MixUp 

and 

CBAM 

integrati

on 

Robust 

feature 

extractio

n and 

attention 

Complex

ity and 

computat

ional 

cost 

0.97 
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3D 

DenseN

et121 

3D 

convolut

ional 

layers, 

feature 

reuse 

Accurat

e 3D 

segment

ation of 

cartilage 

High 

intraclass 

variabilit

y 

0.9 

 

This table provides a comparison of different architectures 

used for knee OA diagnosis. Sensitivity and specificity 

could also be reported alongside AUC scores to give a more 

comprehensive view of model performance. Including F1-

scores would further reflect the balance between precision 

and recall, which is particularly important in medical image 

analysis tasks. 

2.2. MixUp Data Augmentation 

MixUp data augmentation is a versatile technique for 

handling computer vision tasks with limited training data. It 

enhances model performance by creating virtual data points, 

promoting regularization, and implicitly leveraging 

ensemble learning principles. Zhang et al. [7] introduced 

MixUp as a method that linearly interpolates between pairs 

of training data points and their corresponding labels, 

effectively creating new training samples. Recent studies 

have expanded MixUp’s utility in medical imaging by 

integrating it with hybrid attention mechanisms and other 

augmentation strategies to improve model generalization 

[19, 20]. 

By employing a Beta distribution to sample a mixing 

coefficient (λ), typically with an alpha parameter set to 0.2, 

MixUp selects two data points at random. These points, 

along with their labels, are linearly interpolated to produce 

a virtual data point (x̃) and a corresponding label (ỹ), 

ensuring consistency between the data and its label. When λ 

is 0 or 1, the virtual sample mirrors one of the original 

training samples, preserving the original dataset’s 

distribution. 

Virtual Data Point (x̃): MixUp creates virtual data points by 

linearly interpolating selected data points (xi and xj) using 

the sampled λ: 

x̃ = λ * xi + (1 - λ) * xj            (1)                                                                    

Virtual Label (ỹ): The same interpolation strategy applies to 

labels, maintaining consistency: 

ỹ = λ * yi + (1 - λ) * yj   (2) 

Including original data points within the MixUp process 

helps maintain the dataset's original distribution. This 

technique serves as a regularization mechanism, forcing the 

model to learn smoother decision boundaries and mitigating 

overfitting. Additionally, MixUp acts as a form of implicit 

ensemble learning, prompting the model to learn different 

linear combinations of data points, leading to more robust 

representations. 

2.3. Attention Mechanisms: SE and CBAM 

The Squeeze-and-Excitation (SE) block and Convolutional 

Block Attention Module (CBAM) have contributed 

significantly to advancements in medical image 

classification. SE blocks enhance CNNs by recalibrating 

channel-wise features, while CBAM integrates both channel 

and spatial attention. Recent research has emphasized the 

importance of combining SE and CBAM to improve feature 

representation and highlight key image regions [21, 22]. 

Hu et al. [8] showed that incorporating SE blocks into CNN 

architectures significantly boosts accuracy across various 

tasks. The SE block enhances CNNs by recalibrating 

channel-wise features using a series of operations—starting 

with global average pooling to condense spatial information 

into channel-wise statistics. Fully connected layers then 

prioritize critical information, and final sigmoid activation 

scales the feature maps, highlighting the most relevant 

channels. Woo et al. [17] proposed CBAM as a method that 

addresses SE block limitations by incorporating both 

channel and spatial attention mechanisms. The dual-focus 

mechanism of CBAM allows the model to prioritize both 

critical features and their spatial locations within an image, 

offering improved accuracy in tasks with high variability, 

such as knee OA diagnosis [2, 4]. 

While CBAM introduces additional computational 

complexity, its combination with DenseNet121 in this study 

aims to improve interpretability and diagnostic accuracy. 

Integrating channel and spatial attention allows the model to 

better identify key features in complex knee OA images, 

thereby improving sensitivity and specificity in the 

diagnosis. This growing trend of incorporating attention 

mechanisms into CNN architectures is paving the way for 

more precise and interpretable medical image classification 

models [23, 24]. 

3. Methodology 

3.1. Model Architecture Overview 

The proposed model architecture integrates DenseNet121 

with MixUp data augmentation and attention mechanisms, 

specifically Channel and Spatial Attention Blocks (CBAM). 

This combination is designed to enhance feature extraction, 

address high intraclass variability, and improve 

classification accuracy for knee OA prediction. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4373 – 4380   |  4376 

 

Fig. 1. illustrates the overall architecture of the 

proposed model. 

The architecture consists of three key components: 

3.1.1.  DenseNet121 Backbone 

Serves as the base model for feature extraction from MRI 

images. 

3.1.2. MixUp Data Augmentation 

Applied during preprocessing to generate virtual training 

samples and increase data variability. 

3.1.3. Channel and Spatial Attention (CBAM) 

Module 

Incorporated after key convolutional layers to refine and 

prioritize relevant feature maps. 

3.2.  Training Procedure and Algorithm Steps 

To make the training process reproducible, the following 

stepwise description is provided: 

3.2.1. Data Preprocessing 

MRI scans are resized to a standard input size of 224x224 

pixels and normalized to have values between 0 and 1. 

Apply MixUp augmentation on batches of training data 

using a coefficient sampled from a Beta distribution (α = 

0.2). This step generates interpolated training samples, 

enhancing model regularization. 

3.2.2. Feature Extraction with DenseNet121 

Pass the augmented training samples through the pre-trained 

DenseNet121 model, which extracts deep features from the 

MRI scans. 

Freeze the initial convolutional and batch normalization 

layers of DenseNet121 to retain generalizable feature maps 

learned from ImageNet pre-training. 

3.2.3. Attention Mechanism Integration 

Incorporate the CBAM module to apply channel and spatial 

attention sequentially. The channel attention recalibrates the 

importance of feature maps using global average pooling 

and sigmoid activation, while spatial attention highlights 

key regions in the image through convolutional layers. 

 

3.2.4. Classification and Training 

Feed the refined feature maps into the final fully connected 

layers for classification into four OA categories. 

Train the model using a categorical cross-entropy loss 

function and an Adam optimizer with an initial learning rate 

of 0.001, chosen based on prior studies indicating its 

stability in deep CNN models. 

To simplify the interpretation of classification for knee 

osteoarthritis (OA), the classes are often categorized as 

normal (Class 1), mild (Classes 2), moderate (Class 3), 

and severe (Class 4), reflecting increasing severity of joint 

degeneration and symptom impact, which is useful in both 

clinical and research contexts. 

3.3. Algorithm: Model Training Procedure 

Step 1: Data Preprocessing 

For each batch in the training set: 

Apply MixUp with coefficient λ ∼ Beta (α = 0.2). 

Generate virtual samples and their labels. 

Step 2: Feature Extraction 

Pass the augmented data through DenseNet121: 

Extract feature maps from intermediate convolutional 

layers. 

Step 3: Attention Mechanism 

For each extracted feature map: 

Apply channel attention using global average pooling and 

sigmoid activation. 

Apply spatial attention using convolutional filters. 

Step 4: Classification and Backpropagation 

Flatten the refined features. 

Pass through fully connected layers for classification. 

Calculate categorical cross-entropy loss. 

Update weights using Adam optimizer. 
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3.4. Justification of Parameters 

3.4.1. MixUp Coefficient (α = 0.2) 

The parameter α in the Beta distribution used for MixUp 

was set to 0.2 based on findings from Zhang et al. [7], where 

this value demonstrated an effective balance between 

maintaining original data characteristics and introducing 

variability. Lower values of α emphasize original samples, 

while higher values lead to excessive blending, which can 

distort the data distribution. 

3.4.2. Attention Mechanism Configuration 

The CBAM module was selected due to its effectiveness in 

balancing channel and spatial attention [17]. The channel 

attention component prioritizes critical feature maps by 

computing global statistics (via average pooling), while 

spatial attention leverages these maps to focus on relevant 

regions. This two-step approach aligns with the need for 

precise feature localization in knee OA classification tasks. 

3.4.3. Optimizer and Learning Rate 

The Adam optimizer was chosen for its adaptive learning 

rate capabilities, which are beneficial when training deep 

CNNs on medical imaging datasets. An initial learning rate 

of 0.001 was selected based on prior empirical studies 

indicating stability and efficient convergence. 

4. Results 

The following section presents the outcomes of our deep 

learning model’s performance in classifying knee 

osteoarthritis (OA) using MRI data. We evaluate the model 

through a series of performance metrics, including Receiver 

Operating Characteristic (ROC) curves, Area Under the 

Curve (AUC) scores, accuracy, and confusion matrices, to 

assess its ability to differentiate between various stages of 

knee OA. The results not only provide insights into the 

model’s strengths but also highlight areas where further 

optimization could enhance its diagnostic precision. 

4.1. In-depth Error Analysis 

While the model demonstrates a strong classification 

performance for Class 1, achieving an AUC score of 0.97, 

the results for Classes 2 and 3 indicate moderate 

classification ability, with AUC scores of 0.65 and 0.63, 

respectively. An in-depth error analysis revealed several 

potential factors contributing to the lower AUC scores in 

these classes: 

4.1.1. Data Quality and Feature Overlap 

The MRI images for Classes 2 and 3 exhibited greater 

variability in structural features and image quality. Many 

images contained overlapping features between early and 

moderate OA stages, making it difficult for the model to 

clearly distinguish between them. This overlap in visual 

characteristics likely contributed to misclassifications in 

these classes. 

4.1.2. Class Imbalance 

The dataset used in this study showed an imbalance in the 

number of samples per class, with fewer samples in Classes 

2 and 3 compared to Class 1. This imbalance may have 

influenced the model’s ability to learn nuanced differences, 

leading to moderate classification performance in these 

classes. 

4.2. Statistical Significance of Improvements 

To validate the observed improvements in model 

performance, we conducted statistical significance tests 

using confidence intervals and paired t-tests. The model’s 

accuracy for each class was compared against a simple 

baseline CNN model without attention mechanisms. 

Confidence intervals for the AUC scores were calculated 

using bootstrapping with 1,000 iterations.  

Table 2. Summarizes the mean AUC scores with their 

95% confidence intervals 

Class Proposed 

Model AUC 

(95% CI) 

Baseline 

CNN AUC 

(95% CI) 

p-

value 

Class 

Class 

1 

0.97 (0.94 - 

0.99)            

0.88 (0.85 - 

0.91)         

<0.01 Class 

1 

Class 

2 

0.65 (0.60 - 

0.70)            

0.55 (0.50 - 

0.60)         

0.02 Class 

2 

Class 

3 

0.63 (0.58 - 

0.68)            

0.54 (0.49 - 

0.59)         

0.03 Class 

3 

Class 

4 

0.75 (0.71 - 

0.79)            

0.68 (0.64 - 

0.72)         

0.01 Class 

4 

The observed improvements in AUC scores for each class 

were statistically significant (p < 0.05), indicating that the 

proposed model provides a meaningful enhancement in 

diagnostic accuracy compared to the baseline CNN. 

4.3. Comparison with Baseline Methods 

To further evaluate the model’s effectiveness, we compared 

its performance with two baseline methods: a simple CNN 

model without attention mechanisms and a ResNet50 model 

pre-trained on ImageNet. The comparative analysis is 

summarized in Table 3 below: 
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Table 3. Comparative Analysis of the model 

Model Class 1 

AUC 

Class 2 

AUC 

Class 3 

AUC 

Class 4 

AUC 

Baseline 

CNN 

0.88 0.55 0.54 0.68 

ResNet 50 0.92 0.58 0.60 0.70 

Proposed  

Model 

0.97 0.65 0.63 0.75 

The proposed model outperformed both the baseline CNN 

and ResNet50 in terms of AUC scores and average 

classification accuracy. These results underscore the utility 

of integrating the DenseNet121 backbone with MixUp data 

augmentation and attention mechanisms for enhanced 

feature extraction and model generalization. 

4.4. Receiver Operating Characteristic (ROC) Curves 

ROC curves for individual classes, depicted in Figure 2, 

illustrate the model's ability to distinguish between classes 

by plotting the True Positive Rate (TPR) against the False 

Positive Rate (FPR). The TPR, represented on the y-axis, 

indicates the proportion of actual positive cases correctly 

identified by the model, providing insights into its 

sensitivity. On the x-axis, the FPR reflects the proportion of 

actual negative cases that were incorrectly classified as 

positive, shedding light on the model’s specificity. ROC 

curves are valuable visual tools for evaluating the trade-offs 

between true positives and false positives across different 

classes. 

 

Fig. 2. ROC Curve for Multiclass Label Classification 

5. Conclusion 

This study demonstrates that integrating DenseNet121 with 

custom attention mechanisms and MixUp augmentation 

significantly improves image classification performance, 

particularly for multi-class knee osteoarthritis (OA) 

prediction using MRI scans. By employing these advanced 

techniques, we achieved notable improvements in the Area 

Under the Curve (AUC) scores, which are key indicators of 

the model’s discriminative power. Our model's AUC 

performance for Class 1 reached an exemplary level, with 

an AUC of 0.97, showcasing its strong capability to 

accurately classify instances within this category. However, 

Classes 2 and 3, with AUC scores of 0.65 and 0.63 

respectively, suggest areas for further improvement. These 

results indicate that while the model effectively 

distinguishes moderate stages of knee OA, there is room to 

enhance its precision and reliability. Class 4, with an AUC 

of 0.75, demonstrates a robust ability to classify severe 

stages of knee OA accurately. 

5.1. Addressing Study Limitations 

Despite the encouraging results, this study has some 

limitations that should be addressed in future research. The 

dataset used, sourced from the Osteoarthritis Initiative 

database, may not fully represent the variability present in a 

broader population, which introduces the risk of bias. 

Additionally, the preprocessing steps involved in resizing 

MRI images could lead to the loss of critical spatial 

information, potentially affecting the model's performance. 

Future work could explore adaptive image preprocessing 

techniques or the integration of multi-resolution inputs to 

mitigate these issues. Moreover, while the DenseNet121 

architecture with MixUp and CBAM has shown improved 

classification accuracy, the model’s complexity and high 

parameter count may limit its interpretability and 

deployment in clinical practice. Exploring lightweight 

versions of the model or incorporating interpretability 

mechanisms could help address these challenges. 

5.2. Clinical Relevance 

The proposed model holds significant potential for clinical 

application in early OA diagnosis. By accurately identifying 

early stages of knee OA, healthcare providers can initiate 

timely preventive treatment strategies, such as lifestyle 

modifications, physical therapy, or targeted interventions, to 

slow or halt disease progression. This capability is crucial, 

as the delayed onset of OA symptoms often leads to late-

stage diagnoses and worsened patient outcomes. 

Additionally, the integration of automated diagnostic tools 

like this model could alleviate the workload on radiologists, 

enhancing diagnostic consistency and reducing human error 

in high-volume clinical settings. Such advancements could 

have far-reaching implications for improving patient 

outcomes, lowering healthcare costs, and optimizing 

resource allocation within the healthcare industry. 

5.3. Future Directions for Research 

This study serves as a foundation for future research to 

further optimize deep learning applications in medical 

imaging. One promising direction is to incorporate 

additional patient data types, such as genomic or metabolic 

profiles, which could provide complementary information 
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for predicting OA progression. Developing multimodal 

models that combine imaging data with patient-specific 

attributes could enhance the model’s predictive power and 

uncover novel biomarkers for OA diagnosis. Another 

important area for future research is the exploration of 

lightweight model versions, which would facilitate 

deployment in resource-constrained environments, such as 

mobile health applications or rural healthcare centers with 

limited computational infrastructure. Additionally, 

extending the current study to include longitudinal MRI data 

analysis could allow for more precise monitoring of OA 

progression over extended periods. 

5.4. Final Remarks 

In summary, the advancements made in this study highlight 

the potential of our methodology as a sophisticated tool for 

the early and accurate diagnosis of knee OA, which could 

be highly beneficial in clinical settings. The improvements 

in AUC scores reflect the model's enhanced ability to 

differentiate between various stages of knee OA, offering a 

promising foundation for future research. This study paves 

the way for scaling this approach to larger datasets, 

exploring its application across other deep learning 

architectures, and ultimately improving patient outcomes in 

knee OA diagnosis and management. 
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