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Abstract: Optimization algorithms for combinatorial problems play a critical role in a wide range of applications, from 

logistics and scheduling to cryptography and artificial intelligence. Traditional classical methods, such as simulated anneal-

ing, genetic algorithms, and branch-and-bound techniques, have been widely employed to solve these problems, but they 

often face limitations in terms of computational efficiency and scalability as problem complexity grows. In recent years, 

quantum computing has emerged as a promising alternative, with quantum annealing offering a novel approach to solving 

combinatorial optimization problems. This study provides a comparative analysis of quantum annealing and classical opti-

mization methods, highlighting their respective strengths and limitations. We explore how quantum annealing, through 

leveraging quantum tunnelling and superposition, has the potential to outperform classical algorithms in specific problem 

domains and Noisy Mean Field Annealing (NMFA) is used to comparisons of all algorithms. Benchmarking various com-

binatorial problems, such as the Traveling Salesman Problem (TSP), Max-Cut, Knapsack, and Quadratic Assignment Prob-

lem (QAP), this paper discusses performance metrics, computational time, and scalability. The findings suggest that while 

classical methods remain robust and practical for many real-world problems, quantum annealing holds significant promise, 

especially as quantum hardware continues to mature. However, there remain challenges in terms of noise, coherence, and 

problem mapping, which currently limit the full realization of quantum annealing's potential. This study offers insights into 

the future directions of optimization techniques and the evolving role of quantum computing in solving complex combina-

torial problems. 

Keywords: Combinatorial optimization, quantum annealing, classical optimization algorithms, simulated annealing, genet-

ic algorithms, branch-and-bound, traveling salesman problem, graph partitioning, quantum computing. 

Introduction 

Combinatorial optimization problems are fundamental in 

various fields such as operations research, computer sci-

ence, artificial intelligence, and engineering. These prob-

lems involve finding an optimal solution from a finite 

but vast set of possible solutions, often with constraints 

that make them computationally challenging. Classic 

examples include the traveling salesman problem (TSP), 

graph partitioning, and vehicle routing. As the complexi-

ty and size of these problems increase, traditional com-

putational methods face significant challenges in terms 

of efficiency and scalability[1]. 

Classical optimization algorithms, such as simulated 

annealing, genetic algorithms, and branch-and-bound 

methods, have been extensively studied and applied to 

solve combinatorial problems. These algorithms employ 

different strategies, such as probabilistic exploration, 

evolutionary principles, and systematic search, to ap-

proximate solutions. While they are effective in many 

practical applications, they tend to struggle with large-

scale problems, often requiring excessive computational 

resources or leading to suboptimal solutions[2]. 

In recent years, the advent of quantum computing has 

introduced new possibilities for tackling combinatorial 

optimization problems. Quantum annealing, in particular, 

leverages quantum mechanical principles like superposi-

tion and quantum tunneling to explore solution spaces in 

ways that classical algorithms cannot. Companies like D-

Wave Systems have pioneered the development of quan-

tum annealers, machines specifically designed to solve 

optimization problems through quantum processes. The 

promise of quantum annealing lies in its potential to find 

better solutions faster than classical methods, especially 

for specific types of problems[3]. 

However, the field of quantum computing is still in its 

early stages, with many technological challenges, such as 

decoherence, noise, and problem mapping, limiting the 
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practical use of quantum annealing. Despite these hur-

dles, research comparing the effectiveness of quantum 

annealing to classical methods is rapidly advancing, of-

fering insights into the future of optimization technolo-

gies[4]. 

This study aims to provide a comprehensive comparison 

between quantum annealing and classical optimization 

methods in show in figure.1. By analyzing performance 

across several benchmark combinatorial problems, we 

evaluate the advantages and limitations of each ap-

proach[5]. We explore the conditions under which quan-

tum annealing outperforms classical algorithms, as well 

as scenarios where classical methods remain more prac-

tical. The goal of this study is to inform researchers and 

practitioners about the current capabilities and future 

potential of quantum annealing in solving combinatorial 

optimization problems[6]. 

 

Figure. 1 The Elements of Quantum Optics 

Literature Survey 

Combinatorial optimization problems have long been the 

subject of extensive research due to their complexity and 

widespread applicability across diverse fields such as 

logistics, cryptography, machine learning, and network 

design. Traditional classical methods, including simulat-

ed annealing, genetic algorithms, and branch-and-bound 

techniques, have been instrumental in addressing these 

problems, albeit with notable limitations as problem siz-

es scale[7]. The recent advent of quantum computing, 

particularly quantum annealing, has sparked renewed 

interest in optimization algorithms, providing a novel 

approach that may surpass classical techniques in certain 

scenarios. This literature review provides an overview of 

the key works in the field, focusing on the comparative 

performance of classical and quantum methods in solv-

ing combinatorial problems like Classical Optimization 

Methods: Simulated Annealing: Simulated annealing 

(Boixo, S. et al., 2014)[1] is one of the most well-known 

heuristic optimization algorithms. Inspired by the anneal-

ing process in metallurgy, it employs a probabilistic ap-

proach to escape local minima by allowing occasional 

uphill moves[8]. Numerous studies (Inagaki, T. et 

al.2016)[2] have demonstrated its effectiveness for a 

wide variety of combinatorial problems, including the 

traveling salesman problem (TSP), job scheduling, and 

the knapsack problem. However, simulated annealing's 

performance often degrades as the problem size increas-

es, and it is sensitive to parameter tuning, such as tem-

perature schedules and cooling rates. Genetic Algo-

rithms: Genetic algorithms (GA) (Lambora, A., et al., 

2019)[3] use principles of natural selection and evolution 

to search for optimal solutions. They have been applied 

to various combinatorial problems, including graph parti-

tioning and vehicle routing (Goldberg, 1989; Micha-

lewicz, 1996). GAs are robust and versatile but often 

require extensive computation due to their population-

based approach and reliance on crossover, mutation, and 

selection operations. While GAs are effective for moder-

ate-sized problems, their performance can deteriorate 

when applied to high-dimensional search spaces. 

Branch-and-Bound: Branch-and-bound (Poulsen, P. N., 

et al.2024)[4] is an exact method that systematically ex-

plores the solution space by dividing it into smaller sub-

problems (branches) and calculating upper and lower 

bounds[9]. It guarantees finding the optimal solution but 

can be computationally expensive for large combinatori-

al problems due to its exhaustive search process. Over 

the years, advancements in pruning strategies and relaxa-

tion techniques have improved its efficiency, but scala-

bility remains a critical challenge[10]. Other Heuristics: 

Beyond these primary methods, other classical algo-

rithms like tabu search  and ant colony optimization have 

been explored. These metaheuristic techniques excel in 

specific problem domains and often outperform simpler 

heuristics when problem complexity rises. However, 

their effectiveness largely depends on problem-specific 

customizations and tuning[11]. 

Goemans, M. X. Goemans et al.(1995)[12]: The work of 

Goemans and Williamson (1995) introduced improved 
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approximation algorithms for the maximum cut and sat-

isfiability (MAX SAT) problems using semidefinite pro-

gramming (SDP). Their approach notably achieved ap-

proximation ratios of 0.878 for MAX CUT and 0.632 for 

MAX 2-SAT, surpassing previous methods. This 

groundbreaking work demonstrated the power of SDP in 

combinatorial optimization, inspiring further research in 

approximation algorithms. 

K. A. Smith et al.(1999)[13]: Neural networks have been 

widely explored for combinatorial optimization problems 

over the past decade, leveraging their ability to model 

complex patterns and relationships. Early efforts (Hop-

field & Tank, 1985) introduced the use of neural net-

works to solve problems such as the traveling salesman 

problem (TSP), employing energy minimization frame-

works to approximate solutions. While initial results 

were promising, challenges related to convergence, local 

minima, and scalability limited their practical applica-

tion[14-21]. 

Methodology 

This study employs a comparative approach to analyze 

the performance of quantum annealing and classical op-

timization algorithms in solving combinatorial problems. 

The methodology is structured into four key phases: 

problem selection, algorithm implementation, perfor-

mance metrics, and analysis[22]. 

In the context of optimization algorithms for combinato-

rial problems, both classical and quantum approaches 

aim to minimize or maximize a given objective function 

f(x), where x represents a solution vector in a large dis-

crete search space[23] . 

1. Objective Function for Combinatorial Optimiza-

tion 

For a general combinatorial optimization problem, the 

objective is: 

𝑚𝑖𝑛
𝑥∈𝑋

𝑓(𝑥) 

where: 

• X is the set of all possible solutions (finite but 

often very large). 

• f(x) is the objective function to be minimized 

(or maximized). 

Example: Traveling Salesman Problem (TSP) 

For the Traveling Salesman Problem (TSP), the objective 

function f(x)f(x)f(x) represents the total distance of a 

tour: 

f(x)= ∑ 𝑑(𝑥𝑖, 𝑥𝑖 + 1) + 𝑑(𝑥𝑛, 𝑥1)𝑓(𝑥)𝑛
𝑖=1   

where: 

• x=(x1,x2,…,xn) is a permutation of cities. 

• d(xi,xi+1) is the distance between city xi and 

city xi+1. 

n is the number of cities. 

2. Quantum Annealing Formulation 

Quantum annealing translates the combinatorial optimi-

zation problem into a QUBO (Quadratic Uncon-

strained Binary Optimization) form[24]. The objective 

function for the QUBO problem can be written as: 

f(x)=∑ 𝑎𝑖𝑥𝑖 + 𝑏𝑖𝑗𝑥𝑖𝑥𝑗𝑛
𝑖=1  

where: 

• xi∈{0,1} are binary variables. 

• Ai and bij are coefficients that encode the prob-

lem into the QUBO matrix. 

The goal in quantum annealing is to minimize this 

QUBO objective function by mapping it onto an Ising 

Hamiltonian: 

H=∑ ℎ𝑖𝜎𝑖
𝑧 + 𝐽𝑖𝑗𝜎𝑖

𝑧𝜎𝑗
𝑧

𝑖  

where: 

• 𝜎𝑖
𝑧 are the Pauli-Z operators representing the 

spin of qubit i. 

• hi and Jij are coefficients derived from the 

QUBO problem. 

3. Classical Algorithm: Simulated Annealing 

Simulated annealing mimics a physical process where a 

material is cooled to reach a low-energy state[25]. The 

probability of transitioning from one solution xxx to an-

other x′x'x′ is determined by the Metropolis criterion: 

P(x→x′)=exp⁡(−(f(x′)−f(x))/T) 

where: 

• f(x) and f(x′) are the objective function values 

for the current and new solutions. 

• T is the temperature, which decreases over time. 

The algorithm iteratively updates the solution x until it 

converges to a near-optimal value as T→0. 

2. Algorithm Implementation 

Two categories of optimization algorithms are imple-

mented: classical algorithms and quantum annealing[26]. 

Classical Algorithms: 

The following classical algorithms are implemented us-

ing well-established libraries and algorithms: 

• Simulated Annealing (SA): A probabilistic 

method that simulates the annealing process in 
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metallurgy, used to find approximate solutions 

by escaping local minima. 

• Genetic Algorithm (GA): A population-based 

evolutionary algorithm that uses crossover, mu-

tation, and selection to iteratively improve solu-

tions. 

• Branch-and-Bound (B&B): A systematic 

search method that guarantees finding the opti-

mal solution by dividing the problem into sub-

problems and pruning unproductive branches. 

Quantum Annealing: 

The quantum annealing algorithm is implemented using 

the D-Wave Quantum Annealer. This quantum compu-

ting platform specifically designed for optimization 

problems uses quantum mechanical effects like tunneling 

and superposition to explore the solution space. The 

combinatorial problems are mapped to an Ising model or 

a Quadratic Unconstrained Binary Optimization (QUBO) 

form, which is the input format required by the quantum 

annealer. 

3. Performance Metrics 

To compare the effectiveness of classical and quantum 

methods, the following performance metrics are used: 

• Solution Quality: The optimal or near-optimal 

solution found by each algorithm, measured as a 

percentage of the best-known or exact solution 

for each problem. 

• Computation Time: The total time taken by 

each algorithm to arrive at a solution, including 

any preprocessing (problem mapping for quan-

tum annealing). 

• Scalability: The performance of each algorithm 

as problem size increases, analyzed by incre-

mentally increasing the number of nodes (e.g., 

cities in TSP or vertices in graph partitioning). 

• Robustness: The ability of the algorithm to 

consistently find good solutions across multiple 

runs, tested by running each algorithm several 

times with different initial conditions. 

4.  Results and Analysis 

The results are analysed by comparing the performance 

of classical algorithms and quantum annealing across all 

metrics. we are used to evaluate the significance of dif-

ferences in performance. This study focuses on the com-

parative performance of Quantum Annealing (QA) and 

Classical Optimization Algorithms in solving combi-

natorial optimization problems, such as the Traveling 

Salesman Problem (TSP), Max-Cut, Knapsack, and 

Quadratic Assignment Problem (QAP). The results indi-

cate significant differences in efficiency, solution quali-

ty, scalability, and robustness between the two approach-

es, driven largely by the underlying computational para-

digms. 

 

 

(a) (b) 

Figure.2 Comparison of different Algorithms  (a) and (b) 

6. Experimental Setup 

All experiments are conducted using standard computa-

tional resources for classical algorithms, while quantum 

annealing experiments are run on the D-Wave Leap plat-

form. The combinatorial problems are coded in Python, 

and libraries such as SciPy and Qiskit are used to imple-

ment classical algorithms and facilitate problem mapping 

to quantum hardware. 

 

 

Conclusion  

In this study comparing Quantum Annealing (QA) and 

Classical Optimization Algorithms for combinatorial 

problems, QA demonstrated speed advantages in solving 

small to medium-sized problems, particularly when 

mapped to quantum-compatible models like QUBO. 

However, its performance declines as problem sizes 

grow, primarily due to current hardware limitations in 

qubit count and connectivity. Classical methods such as 

Simulated Annealing and Genetic Algorithms, while 

slower for small problems, proved more scalable and 
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reliable for larger, more complex tasks. Classical ap-

proaches offer greater flexibility, adaptability, and acces-

sibility, as they can be implemented on standard hard-

ware. Thus, despite the potential of QA, classical algo-

rithms remain more practical for large-scale real-world 

optimization problems. 
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