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Abstract: India's agricultural industry generates more than $375 billion every year. India ranks second in agricultural output. To improve 

the agricultural output Precision Agriculture is used. But one of the most important concerns in Precision Agriculture is crop and weed 

detection. As a result, robotic weeding techniques are utilized to control weeds. In robotic weeding, accurate crop and weed detection and 

localization in the unstructured field remains a substantial challenge, necessitating supervised modeling using annotated data. The 

process of creating annotated data is quite time-consuming. Also, the dataset for all the crops and weeds is not present.  

In this work, an attempt is made to collect a real-time dataset of the Pigeon Pea dataset using a mobile camera and drone. There are a 

total of 1727 images in the dataset. Initially, 137 images are manually annotated using roboflow.com which are then used to train all of 

the YOLOv8 variants for epochs ranging from 10 to 1,000. The YOLOv8n variant has the shortest inference time at 2.8ms which is 

selected to train the remaining 1590 unannotated images. The predicted bounding boxes of YOLOv8n are given input to the segment 

anything model that generates the annotations.  

The manually and automatically annotated images are merged to create the new dataset. Again, all of the YOLOv8 variants are trained 

and tested on the new dataset for epochs ranging from 10 to 1,000. Following the inclusion of automated annotations, the values of 

accuracy, recall, mean average precision@50, and mean average precision@50-95 rose by 9.79%, 38.63%, 13.99%, and 18.43%, 

respectively. The YOLOv8n provides the shortest inference time of 3.8ms on a new data set. Also, using automatically annotated data, 

approximately 132.5 hours required for annotation of unlabelled images are saved. This effort will contribute to the advancement of crop 

and weed detection studies in the pigeon pea production system, including disease prediction, yield prediction, and automated weed 

removal. 
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1. Introduction 

By 2050, the population worldwide is supposed to be 

increased to nine billion. To fulfill the anticipated demand, 

agricultural production must expand by almost 70% [1]. 

Nowadays, the agricultural industry is facing numerous 

difficulties, which include climate change, the depreciation 

of arable land, and water scarcity. Strategies to address 

these problems can be found in precision agriculture or 

smart agriculture. [1][2][3].  

Weeds can negatively affect crop yields and quality and 

spread swiftly and unintentionally [4]. Crops and weeds 

compete for food, water, sunlight, and growth space [5]. 

Farmers must therefore use resources to lessen weeds. 

Numerous factors influence the methods used to reduce the 

effect of weeds.  

Automation of weed management has become attractive as 

labor costs have increased and people's concerns about 

their health and the environment have grown [7]. 

Automatic weed management techniques can be 

advantageous from an economical and environmental 

perspective. Utilizing a machine to eliminate weeds lowers 

labor expenses, and selective spraying methods can reduce 

the quantity of herbicides used [8]. 

Detecting and identifying weeds is the necessary initial 

step in the development of an Autonomous weed 

management system [7]. It is difficult to identify weeds in 

crops since they frequently have similar shapes and colors 

as a crop. Figure 1 depicts different crops with weeds 

growing among them and corresponding problems like 

occlusion, texture, color similarity effect of lighting 

conditions, etc. 

The four main processes of a typical weed detection 
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system are data collection, preprocessing, feature 

extraction, and classification of weeds [10]. The use has 

accomplished these steps of several developing 

technologies. The identification and classification of weeds 

is the most important phase. The automatic detection of 

weed species has been more popular in recent years due to 

advancements in technology, specifically in graphical 

processing units (GPUs), and the application of Machine 

Learning (ML) approaches [11] [12] [13]. 

Deep Learning (DL) is a significant subpart of ML. DL 

models perform better than ML models for image 

segmentation, object detection, etc. It might be challenging 

to identify and choose differentiating traits using ML 

approaches because crops and weeds can sometimes be 

similar. Based on robust feature learning abilities, DL 

models can successfully address this issue. Crop and 

weeds are automatically classified using RGB, 

multispectral, and hyperspectral images. A large number of 

images are required to be collected and then needs to be 

annotated. The dataset of a few crops and weeds is present. 

Currently, there is no dataset of Pigeon Pea is publicly 

available. So, we collected the dataset of Pigeon Pea. After 

data collection, it needs to be annotated. The annotation 

process is very time-consuming and tedious. Hence it is 

very much required to annotate the dataset automatically.  

Recently, Meta AI proposed the Segment anything model 

in April 2023. It automatically segments the image. But it 

works on the prompt engineering principle. It is not able to 

segment the crop and weed images correctly. There is a 

need to provide objects bounding boxes to the SAM which 

leads to the improvement in the segmentation [14]. These 

bounding boxes are provided by the trained YOLOv8 to 

the SAM. 

The YOLOv8 model was released in January 2023 and it is 

a state-of-the-art model for object detection and image 

segmentation created by Ultralytics. The YOLOv8x model 

attains 53.9 as mAP@50-95 value on the MS COCO 2017 

benchmark dataset [15].  

 

Fig.1.  Problems in Crop and Weed Detection [12] 

In research [16], the YOLOv8 model was trained on 

images from public datasets and the internet. The 

promising results are observed. However, there is a lack of 

diversity of images in the dataset. The authors in the study 

[17] presented CCCS-YOLO as a lightweight model by 

making changes in the YOLOv5 architecture. They 

integrated a faster block with a C3 module in the neck, 

enhanced the context aggregation module, replaced the 

Upsample module with a Lightweight context-aware 

ReAssembly Feature (CARAFE), and replaced the NMS 

and CIoU module with SOFT-NMS-EIOU module. The 

customized model is trained on two publicly available 

datasets Seasame and Sugabeet. The CCCS-YOLO 

achieved 79.5% and 58.6% as mAP and mAP50-95 values 

respectively. The performance of variants of YOLOv7, 

YOLOv8, and Faster RCNN is evaluated in [18]. The 

YOLOv7- tiny model attained the highest mAP of 88.5% 

and lowest inference time of 2.7ms. The improved 

YOLOv7 is proposed in [19]. The author used F-ReLU as 

an activation function of a convolutional module and 

appended the maxpool multihead self-attention (M-

MHSA) module. The precision, recall, and mAP of the 

model were 94.96%, 91.25%, and 96.62% respectively. 

The BSS-YOLOv8 is proposed in [20]. The authors 

modified the YOLOv8 model. The authors integrated the 

BoTNet module into the backbone network, links local and 

global features through multi-head self-attention 

mechanism (MHSA), and attached a detection layer in the 

neck of the model. The model attained a mAP of 92.6%, a 

precision of 91.1%, and a recall of 86.7%. The authors in 

[21] suggested lightweight YOLOv7 model (LW-

YOLOv7). They modified YOLOv7 architecture. They 

used GhostNet as a backbone network and replaced the 

path aggregation network (PAN) with a Bidirectional 

feature pyramid network (Bi-FPN) to enhance location and 

semantic information. The performance of LW-YOLOv7 is 

compared with YOLOv3 to YOLOv8 and Faster RCNN. It 

achieved an 89.3% Precision, an 85.5% Recall, and 93.2% 

mAP. The performance of YOLOv8 is compared with all 

the YOLO models in [22]. Among all the YOLO models 

YOLOv8 reported the highest mAP of 84.7%. 

For a generation of automatic annotation [23] used the 

Segment Anything Model (SAM) and Grounding DINO. 

The authors in [24] used the Hough transform and 

Convolutional neural network to automatically annotate 

the images of Sugar-beet. 

After going through the literature four observations are 

made. First, there is no dataset available for the Pigeon 

Pea. Second, the researchers modified the different YOLO 

architectures. Third, YOLOv8 is the state-of-the-art model 

for object detection. Fourth, automatic annotation is not 

explored by many researchers. 

Based on observations of the literature the main 
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contribution of this paper is finalized which is given 

below: 

1. Collect the dataset of Pigeon Pea and corresponding 

weeds. 

2. Annotate the Pigeon Pea dataset. 

3. Train the YOLOv8 variants on annotated data. 

4. Automatically generate the annotations for unannotated 

data using the trained YOLOv8 model and Segment 

Anything Model. 

5. Evaluate the performance of YOLOv8 variants on 

manually annotated images and automatically generated 

images. 

This paper is organized into five sections. Section 2 has 

details of dataset collection, preparation, and models used 

for training. The experimental result and discussion are 

covered in section 3. The conclusion is presented in section 

4. 

2. Material and Methods 

This section covers details of dataset collection, 

preprocessing, experimental environment, and the 

proposed methodology. 

2.1. Dataset 

In India, the Pigeon Pea is one of the important crops. So, 

the pigeon pea crop is selected for data collection. 

Afterwards, three fields are selected from the Vidharbha 

region. Then the devices' mobile camera and drone are 

finalized for data acquisition. After which the data is 

prepossessed and annotated. In this section data collection, 

prepossessing, and data annotation process are described in 

detail. 

2.1.1. Data acquisition 

For flexibility drone, DJI Mavic Air 2S and mobile camera 

are selected for data acquisition. The drone has a 20-

megapixel CMOS camera sensor. The images are captured 

by drone at 20 cm height. The images are captured using a 

drone on 19th July 2023. The number of captured images is 

93. The mobile has a 64-megapixel camera. The images 

are captured using a mobile camera on the 16th, 17th, 18th, 

20th, and 22nd of July 2023. The number of images captured 

by mobile cameras is 1634. The image captured at 

different height ranging from 10 cm to 30 cm. Three 

different fields are selected for data collection. Their 

details are given in Table 1. The sample images collected 

in different fields are given in Figure 2. 

 

 

 

Fig. 2 a.  Crop Images from different fields. 

     

Fig. 2 b.  Weed Images from different fields. 

     

Fig.2 c.  Three different fields were selected for data 

collection. 

       

2.1.2. Data Preprocessing 

The raw images have resolutions 2016 x 4480, 4480 x 

2016, and 5472 x 3648. The raw images are preprocessed. 

The various preprocessing operations performed are given 

below: 

2.1.2.1. Noise removal 

Image denoising is an essential image processing technique 

that may be used as a standalone procedure or as a 

component in another. There are several methods for 

denoising a picture. It is solved using several algorithms. 

As a result, noises are identified with nearby information 

and eliminated utilizing optimum filtering algorithms that 

do not degrade picture quality while also enhancing the 

smoothness of the image collected for analysis. In this 

work Gaussian filter is used for noise removal. 

2.1.2.2. Image Normalization 

In image normalization pixel intensity range is modified. It 

helps in reducing the execution time. For grayscale images, 

the intensity range is 0 to 255. It contains one channel. So, 

the range is changed from 0 to 1. On the other hand, RGB 

images contain three channels having a pixel intensity 

range of 0 to 255. In this case, the three channels' pixel 

intensity value range is changed from 0 to 1. 

2.1.2.3. Image resizing 

The images captured using a mobile camera have 

resolutions as 

2016 x 4480 and 4480 x 2016. The drone-captured images 

have a resolution of 5472 x 3648. All the images are 
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resized to 640 x 640. 

Fig. 3.  DJI MAVIC AIR 2S Drone. 

 

Table 1. Distribution of images collected 

SN Date Quantity 

 

Capturing 

Device 

1 16th July 

2023 

137 Mobile 

Camera 

2 17th July 

2023 

422 Mobile 

Camera 

3 18th July 

2023 

440 Mobile 

Camera 

4 19th July 

2023 

93 Drone 

5 20th July 

2023 

256 Mobile 

Camera 

6 22nd July 

2023 

379 Mobile 

Camera 

 

2.2. Data Annotation 

Initially, 137 images are annotated using roboflow.com. 

Then these images are used to train YOLOv8 variants. The 

data is annotated using a smart polygon tool. After 

annotating the images annotation file is downloaded in 

YOLOv8 format. The sample annotated images are given 

in Figure 4. 

Fig.4.  Annotated of images 

           

2.3. Experimental Environment 

The YOLOv8 variants are designed by considering 

different training environments and inference speeds. They 

are trained and tested on commodity hardware as well as 

high-end servers. The environment used in this work is 

presented in Table 2.  

Table 2. System configuration 

  

Item Description 

  

CPU Intel Xeon-S 4210R Kit for 

DL380 Genl0 

GPU HPE NVIDIA Tesla T4 

Operating System Ubuntu 22.04 LTS 

Accelerated 

Environment 

CUDA 10.2 CUDNN 7.6.0 

Development 

Environment 

Visual Studio code, 

Python 3.9 

Random Access 

Memory 

224 GB 

  

2.4. Model Training 

In this experiment, the image pixels of the input network 

were set to 640 × 640.  Adam was used as the model 

optimizer. While gradient descent optimizations, the 

updating of model parameters is based on the learning rate. 

Hence, the learning rate is one of the important 

hyperparameters. The initial learning rate was 0.01. The 

batch size indicates the number of images processed 

simultaneously in each iteration of training. An increase in 

batch size may lead to a decrease in training time. 

Sometimes overfitting may occur. Here batch size of 8 is 

selected. The other parameters are given in the Table 3. 

Table 3. Training Parameters 

  

Parameter Name Value of Range 

  

Image Size 640x640 

Learning Rate 0.01 

Learning rate 

frequency 

0.1 

Momentum 0.937 

Batch Size 

Patience 

8 

100 

Maximum 

Training Epochs 

500 

Decay 0.0005 

  

 

2.5. YOLOv8 Model  

You only look once version 8 was released in January 

2023. It can be used for segmentation, classification, and 

object detection. The detailed architecture of YOLOv8 is 

given in Figure 5. There are two major networks present in 

it i.e., backbone, and head. The 
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The backbone part contains five Convolutional layers, four 

coarse-to-fine (C2F) modules, and one Spatial pyramid 

pooling fast (SPPF) layer. The head module contains four 

C2F modules, four Concat layers, two Convolutional 

layers, two Upsample layers, and three detect modules. 

Three C2F modules of the backbone part are connected to 

three Concat layers of the head part. The three C2F 

modules of the head part are connected to three 

Convolutional layers of the detect module. In the C2F 

module, two bottleneck layers are present in which 

concatenation of output occurs. It leads to a speed-up of 

the training process and improvement in gradient flow. In 

the SPPF layer, two Convolutional, three Maxpooling, and 

one Concat layer are present. This is an optimized version 

of the spatial pyramid pooling (SPP) layer. Due to this 

same output size images are generated for the different 

input size images. Multiple factors contribute to improving 

the performance of the YOLOv8 model which includes 

Mosaic Data Augmentation, decoupled head, C2F module, 

and SPPF module. There are five different variants of 

YOLOv8 are available. The variants are nano, small, 

medium, large, and extra-large. The number of parameters 

and number of floating-point operations (FLOPS) present 

in each variant is given in Figures 6 and 7. The parameters 

and FLOPS are increasing from nano to extra-large variant. 

2.6. Segment Anything Model (SAM) 

The SAM was proposed by Meta AI in April 2023. It has 

been trained on a dataset having 11 million images and 1.1 

billion masks. Due to this large dataset SAM’s 

performance on zero-shot for different segmentation tasks. 

The SAM takes points or boxes as input and produces 

masks for a variety of objects. The architecture of SAM is 

given in Figure 8. The SAM has three components which 

are an image encoder, prompt encoder, and mask decoder. 

The Image Encoder is a pre-trained model that generated 

Fig.5. YOLOv8 Architecture 

 

 

Fig. 6.  Number of parameters in YOLOv8 variants 

 

Fig. 7. Floating point operations in YOLOv8 variants 

 

one-time embedding. These embedding can be used before 

prompting the model. The Prompt Encoder is responsible 

for encoding background points, text, and masks into an 

embedding vector. The Mask Decoder takes input as 

embedding from the both Image Encoder and Prompt 

Encoder and produces segmentation masks. The generated 

segmentation masks are used to improve the model by 

updating model weights. In this way, with time model 

improves and becomes efficient. 

 

Fig. 8.  Segment Anything Model Architecture [17] 

2.7. Proposed Methodology 

Initially, the 137 images were manually annotated using 

roboflow.com, and YOLOv8 was trained on those images. 

Then, the remaining 1590 unannotated images are given 

input to the trained YOLOv8 model which generates the 

bounding boxes of prediction. It is then fed to the segment 

anything model which generates the annotations for the 

remaining images in YOLOv8 format. The new dataset is 

created by merging manual annotation and automatic 

annotations. Later the YOLOv8 is trained and tested on the 

new dataset. The detailed workflow is given in Figure 9. 
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Fig. 9. Proposed Methodology 

2.8. Performance Metrics 

The five variants of YOLOv8 are trained on the dataset 

and their performance is evaluated based on metrics such 

as Precision(P), Recall(R), Mean Average Precision, Mean 

Average Precision at 50% Intersection of Union 

threshold(mAP@50), and Mean Average Precision at 50 to 

95% Intersection of Union threshold(mAP@50-95). 

Precision: It represents the percentage of correct positive 

predictions. 
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Recall: It represents the percentage of actual positive 

correct predictions. 
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Intersection of Union (IoU): It measures the accuracy of 

an object detector's localization on a given dataset. It 

determines how much the predicted bounding box 

coordinates overlap the ground truth box coordinates. 

Fig. 10. Intersection Over Union 

 

Fig.11. PR-Curve 

 

Average Precision: Average Precision is calculated as the 

weighted mean of precision at each threshold, where the 

weight represents the increase in recall over the previous 

threshold. 

Mean Average Precision(mAP): The mAP is calculated 

by calculating the average precision (AP) for each class 

and then averaging it over many classes. 


=

=
N

K
kAPN

mAP
1

1   (3) 

mAP@50: The mAP@50 is calculated by calculating the 

average precision (AP) for each class where the threshold 

of IoU is 50%. 

mAP@50-95: The mAP@50-95 is calculated by 

calculating the average precision (AP) for each class where 

the threshold of IoU ranges from 50%. to 95% at an 

interval of 5%. 

Precision-Recall Curve (PR-curve): There is a trade-off 

between precision and recall. So, the PR curve is plotted 

for different values of the threshold of IoU ranging from 

50 to 95%. There is an interval of 5%. 

3. Experimental Results 

Initially, the 137 images are manually annotated using the 

roboflow website tool and the YOLOv8 model is trained 

on those images.  The five different variants of YOLOv8 

are used for the training. The different version of YOLOv8 

are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x. The training is carried out for different values 

of epochs such as 10,20,50,100,200,500, and 1000.  

3.1. Performance evaluation of YOLOv8 variants on a 

manually annotated dataset 

To evaluate the performance of YOLOv8 variants, they are 

trained on the manually annotated dataset for different 

values of epochs ranging from 10 to 1000. The training 

parameters used are given in Table 3. The experimental 

results are presented in Table 4. It shows that the epoch 

value has a significant effect on the performance of 

detection results. The various variant is compared based on 

inference time. Among all the variants, YOLOv8n has the 

least inference time 2.8ms after training for 500 epochs. 

The model starts overfitting after the 500 epochs. The 

YOLOv8m achieves highest recall of 0.422, mAP@50 of 

0.486, and mAP@50-95 of 29.3. The YOLOv8m starts 

overfitting after 100 epochs. The least inference time of 

YOLOv8m is 10.7 ms for epoch value 500. The highest 

precision 0.6467 is attained by YOLOv8l after training for 

200 epochs. Based on the results YOLOv8n weights are 

used in the prediction of unlabelled dataset. 

Figure 14,15. and16 represents the confusion matrix, PR-

Curve, and validation and training loss for the YOLOv8n. 

From the confusion matrix, it can be concluded that the 
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background class is reducing the performance. So, there is 

a need to add more instances of background in the dataset. 

The PR-Curve indicates that the AP for different classes 

and mAP@50. The mAP@50 for all the classes is 0.486.  

The effect of epoch values on training time and inference 

time is represented in Figures 12 and 13. Training time 

increases with the epochs. The patience value is 100 

epochs is used. It indicates that if there is no change in 

losses for the last 100 epochs, then it stops training. So, in 

some cases for higher epoch value has less training time as 

compared to the lower epoch value. In Table 4, the training 

time YOLOv8m for 1000 epochs is 0.25 hrs which is less 

than the training time for 500 epochs i.e., 0.269 hrs.  

The inference time starts decreasing with the increase in 

epoch value. But it starts increasing if overfitting occurs. 

From Figure 14, it can be observed that the inference time 

of the YOLOv8n model starts decreasing till epoch value 

50, and then it starts increasing. 

Fig. 12.  Inference time for YOLOv8 variants in different 

epochs 

 

Fig. 13.  Training time of YOLOv8 variants in different 

epochs 

 

3.2. Performance evaluation of YOLOv8 variants on 

manually and automatically annotated dataset 

The manually annotated dataset and automatically 

annotated dataset by YOLOv8n and SAM are merged to 

create the new dataset. The different YOLOv8 variants are 

trained and tested on the newly created dataset. The 

corresponding experimental results are given in Table 5. 

Also, the training parameters used are given in Table 3.  

Table 5 describes the impact of epochs on the performance 

of various YOLOv8 variants. The least inference time of 

3.8 ms is attained by YOLOv8n after training for 50 

epochs. After 50 epochs, YOLOv8m starts overfitting. 

Among all the YOLOv8m performs better. The precision 

of 0.71, recall of 0.58, mAP50 of 0.556, and mAP50-95 of 

0.358 is attained by it. The least time of inference for 

YOLOv8m is 6.3 ms for epoch value 50. After 50 epochs, 

YOLOv8m starts overfitting.  

Table 4. YOLOv8 variants result in a manually annotated dataset 

SN Variants Epochs Precision Recall mAP@50 

mAP@50-
95 

1 YOLOv8n 

10 0.546 0.35 0.327 0.209 

20 0.568 0.371 0.39 0.257 

50 0.583 0.381 0.399 0.262 

100 0.541 0.394 0.402 0.265 

200 0.5906 0.36126 0.38012 0.24888 

500 0.5711 0.35674 0.486 0.25127 

1000 0.503 0.383 0.383 0.255 

2 YOLOv8s 

10 0.558 0.375 0.381 0.244 

20 0.573 0.388 0.408 0.268 

50 0.543 0.386 0.409 0.279 

100 0.573 0.384 0.409 0.274 

200 0.551 0.419 0.411 0.27 

mailto:mAP@50
mailto:mAP@50-95
mailto:mAP@50-95
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500 0.565 0.393 0.411 0.27 

1000 0.582 0.39 0.408 0.271 

3 YOLOv8m 

10 0.51 0.364 0.38 0.24 

20 0.542 0.422 0.419 0.283 

50 0.557 0.37 0.411 0.285 

100 0.588 0.422 0.486 0.293 

200 0.568 0.411 0.419 0.282 

500 0.602 0.392 0.421 0.28 

1000 0.59009 0.36679 0.39134 0.26479 

4 YOLOv8l 

10 0.473 0.365 0.36 0.229 

20 0.539 0.387 0.403 0.27 

50 0.529 0.409 0.416 0.287 

100 0.553 0.387 0.405 0.283 

200 0.64677 0.34524 0.36899 0.25552 

500 0.6123 0.34955 0.37664 0.26428 

1000 0.571 0.35 0.386 0.272 

5 YOLOv8x 

10 0.511 0.36 0.364 0.235 

20 0.552 0.397 0.407 0.271 

50 0.563 0.387 0.419 0.287 

100 0.538 0.397 0.419 0.281 

200 0.63127 0.40565 0.38556 0.26203, 

500 0.53 0.402 0.398 0.269 

1000 0.55998 0.36456 0.36805 0.24509 

 

Fig. 14. Confusion Matrix after training YOLOv8 on 

sample images 

 

 

 

 

 

 

 

 

Fig. 15. PR-Curve after training YOLOv8 on sample 

images 

 

Fig. 16. Results training YOLOv8 on sample images 

 

Figures 17,18 and 19 represent the confusion matrix, PR-
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Curve, and validation and training loss for the YOLOv8n. 

From the confusion matrix, it can be concluded that the 

background class is reducing the performance. So, there is 

a need to add more instances of background in the dataset. 

The PR-Curve indicates that the AP for different classes 

and mAP@50. The mAP@50 for all the classes is 0.534.  

The effect of epoch values on training time and inference 

time is represented in Figures 20 and 21. Training time 

increases with the epochs. The patience value is 100 

epochs is used. It indicates that if there is no change in 

losses for the last 100 epochs, then it stops training. So, in 

some cases for higher epoch value has less training time as 

compared to the lower epoch value. The inference time 

starts decreasing with the increase in epoch value. But it 

starts increasing if overfitting occurs. From Figure 22, it 

can be observed that the inference time of the YOLOv8n 

model starts decreasing till epoch value 50, and then it 

starts increasing. 

Table 5.  YOLOv8 variants result in manually and 

automatically annotated dataset 

S

N 
Variant Epochs 

Prec

ision 
Recall 

mAP
@50 

mAP@
50-95 

1 
YOLO

v8n 

10 0.71 0.426 0.458 0.288 

20 
0.55

2 
0.519 0.512 0.335 

50 
0.59

8 
0.484 0.534 0.351 

100 
0.60

7 
0.514 0.554 0.347 

200 0.67 0.52 0.55 0.33 

500 0.6 0.54 0.56 0.34 

1000 0.58 0.56 0.57 0.36 

2 
YOLO

v8s 

10 
0.59

3 
0.46 0.467 0.303 

20 
0.59

8 
0.453 0.524 0.335 

50 
0.56

9 
0.483 0.516 0.331 

100 
0.59

6 
0.489 0.512 0.327 

200 
0.67

7 
0.412 0.515 0.329 

500 0.65 0.42 0.52 0.33 

1000 0.63 0.45 0.53 0.34 

3 
YOLO

v8m 

10 
0.71

7 
0.408 0.446 0.297 

20 
0.56

9 
0.489 0.498 0.331 

50 
0.54

8 
0.511 0.54 0.348 

100 
0.52

5 
0.585 0.544 0.358 

200 
0.64

6 
0.46 0.556 0.352 

500 0.62 0.48 0.56 0.37 

1000 0.6 0.51 0.55 0.36 

4 
YOLO

v8l 

10 
0.69

7 
0.432 0.461 0.302 

20 
0.57

5 
0.558 0.52 0.343 

50 
0.64

6 
0.549 0.531 0.338 

100 
0.52

8 
0.52 0.521 0.345 

200 0.55 0.4 0.38 0.38 

500 0.54 0.45 0.423 0.39 

1000 
0.53

2 
0.47 0.421 0.381 

5 
YOLO

v8x 

10 
0.70

8 
0.418 0.463 0.308 

20 
0.72

2 
0.409 0.487 0.32 

50 
0.51

7 
0.573 0.536 0.348 

100 
0.55

9 
0.519 0.516 0.334 

200 
0.57

8 
0.491 0.563 0.342 

500 0.54 0.53 0.58 0.36 

1000 0.52 0.57 0.556 0.35 

 

Fig. 17. Confusion Matrix after training YOLOv8 on all 

the images 

 

Fig. 18. PR-Curve after training YOLOv8 on all the 

images 

 

mailto:mAP@50
mailto:mAP@50
mailto:mAP@50-95
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Fig. 19. Results after training YOLOv8 on all the images 

 

Fig. 20. Effect of epochs on training time in the case of the 

new dataset 

 

 

Fig. 21. Effect of epochs on inference time in the case of 

the new dataset 

 

3.3. Effect of addition of automatically annotated 

dataset 

The new dataset is created by merging the manually 

annotated images and automatically annotated images. Due 

to the increase in the number of images the performance of 

the YOLOv8 variant improves. In this process, the large 

amount of annotation time is saved. To annotate an image 

an average of 5 minutes is required. To annotate 1590 

images, it will take approximately 132.5 hours. Due to the 

automatic annotation, 132.5 hours of annotations are 

saved. After the addition of automatic annotations, the 

values of precision, recall, mean average precision@50, 

and mean average precision@50-95 are increased by 

9.79%, 38.63%., 13.99%, and 18.43% respectively. The 

change in performance after the addition of automatically 

annotated images is depicted in Figure 22. The values of 

precision, recall, mAP@50, and mAP@50-95 obtained 

after training on the two datasets are given in Table 6.  

Table 6. Comparison of performance of YOLOv8 on two 

datasets 

 

Metrics Manually 

Annotated 

Dataset 

Manually + 

Automatically 

Annotated Dataset 

Precision 0.6467 71 

Recall 0.422 58.5 

mAP@50 0.486 55.4 

mAP@50-

95 

0.293 34.7 

   

 

Fig. 22. Percentage change in performance metrics after 

training on the new dataset 

 

3.4. Visualization of results 

Two random images are selected and given input to the 

best performing YOLOv8 variant i.e., YOLOv8n. of both 

the cases. The actual and predicted images are given in 

Figure 25. From the prediction images, it can be inferred 

that YOLOv8n trained on the new dataset performs better 

than the YOLOv8n trained on manually annotated datasets.  

Fig. 23 a. Actual images 
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Fig. 23 b Prediction results of YOLOv8n trained on a 

manually annotated dataset 

      

Fig. 23 c. Prediction results of YOLOv8n trained on the 

new dataset 

    

4. Conclusion 

To address the challenge of annotation of crops and weeds 

in Pigeon Pea, this study first collected the corresponding 

real-time data from the three different fields on different 

days using a mobile camera and drone. Secondly, the 137 

images are annotated manually. These images are used to 

train different YOLOv8 variants.  

The training is carried out for epoch values ranging from 

10 to 1000. Among all the variants YOLOv8n attains the 

least inference time as 2.8ms. On the other hand, 

YOLOv8m achieves the highest recall of 0.422, mAP@50 

of 0.486, and mAP@50-95 of 0.293. The weights of 

YOLOv8n are selected for prediction bounding boxes of 

the unlabelled data. The trained YOLOv8n and SAM 

generated the annotations for the unlabelled data. The 

manually annotated and automatically created datasets are 

merged to create a new dataset. By using automatically 

annotated data approximately 132.5 hours are saved. 

After training YOLOv8 variants on the new dataset, 

YOLOv8n again achieved the least inference time at 

3.8ms. Again, the highest precision of 0.71, recall of 0.558, 

mAP@50 of 0.554, and mAP@50-95 of 0.347 is attained 

by YOLOv8m. The performance is improved after adding 

the automatically annotated dataset. After the addition of 

automatic annotations, the values of precision, recall, mean 

average precision@50, and mean average precision@50-

95 are increased by 9.79%, 38.63%., 13.99%, and 18.43% 

respectively. Also, approximately 132.5 man-hours are 

saved due to automatic annotation. 

After analyzing the confusion matrix, it has been observed 

that the background is impacting the overall performance. 

So, there is a need to add more background images to the 

dataset. This work can be extended further by performing 

augmentation on the newly created dataset to increase the 

instances of various classes. This work will help to 

improve the research in crop and weed detection in the 

pigeon pea production system for disease prediction, yield 

prediction, automatic weed removal, etc.  
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