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Abstract: When the latest research trends in approximate arithmetic circuits are reviewed, it is observed that importance has been laid out 

for the novelty and development of certain architectures, designs, and layouts to make them universally adaptable and applicable in real-

time applications. This area has been explored deeply by discussing various existing architectures and approximation techniques in 

arithmetic circuits, novel architectures and techniques, and comparative test reports. There is a huge scope of work to add novel 

approximation techniques in arithmetic circuits like adder and multiplier for error resilient and image processing applications. To provide 

solutions and guidelines to the existing and novel architectures and applications, this thesis addresses the work at the circuit simulation 

and synthesis level of abstractions. Through simulations, this work discusses the comparative resource parameter analysis for energy-

efficient applications, and error analysis for error-resilient applications while introducing a new architecture for both said applications.   
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1.Introduction 

ADDITION is a key operation and basic building block for 

approximately all arithmetic circuits. Full adders are 

versatile building blocks in approximate adders because the 

approximation schemes are mostly applied at full adders [1]. 

For any fast adder, the key part is its carry network. 

Analysis of carry generation and propagation is done with 

the help of probability. After ripple carry adder, many 

techniques are introduced to design high-performance 

adders. Block-based adders are a common approach used in 

designing high-performance adders. These adders are 

composed of smaller sub-adder units, also called blocks or 

stages, which operate in parallel to compute the sum bits of 

the output. Each stage can handle smaller numbers of bits 

than the full adder, reducing the carry propagation delay and 

allowing for faster operation. Additionally, block-based 

adders can be optimized for different performance metrics 

such as area, power consumption, delay, and error 

characteristics. Various approximate adders have been 

proposed to improve the overall circuit’s performance by 

reducing the delay associated with the carry propagation 

problem in conventional adders. Ten approximate adders are 

discussed and compared with the exact adder: CLA. All ten 

adders have unique architectures and are compared based on 

resource parameters analysis. 

2.Carry Lookahead Adder 

The Carry Look Ahead logic generates two output bits for 

each (i) th bit addition using equation (1) to get Genrt_i and 

Propgt_i using equation (2). These two bits signify the 

carryout from (i)th bit that goes as carry-in for the (i+ 1)th bit. 

If Genrt_i is 1 for (i)th bit, the carry-in to the (i + 1)th bit will 

always be 1. If the Propgt i is 1, then the carry-in to (i+ 1)th 

bit is the same as the carry-in to the (i) th bit. 

Genrt_i = Ai × Bi (1)  

Propgt_i = Ai ⊕ Bi    (2) 

where Ai and Bi refer to the two inputs. The Si and Ci+1 for 

the ith bit are found using the equations (3) and (4), 

respectively.  

Si = Propgt_i ⊕ Ci (3) 

Ci+1 = Genrt_i + Propgt_i × 

Ci  

(4) 

As we calculate Propgt_i and Genrt_i for all the values of i 

from 0 to the maximum of N-1 for an N-bit adder, these 

values are independent of the previous Propagate and 

Generate signals by invoking parallelism and opening the 

Ci+1 can be directly made dependent on C0 as shown in 

equation (5). 

Ci+1 = Genrti + Genrti−1 × Propgti + . . . + C0     

(5) 

An AND-OR circuit can simply form the above equation 

and has a delay of 2 gates. Now, we can get the Ci for all the 

N bits together in a 3-gate delay, and it will just require 

another 1-gate delay to find all the Sum (Si) bits. Equation 

(5), which presumably describes the critical path in the CLA 

design, has a fan-in of i+2i + 2i+2. This indicates that as you 

increase the number of inputs (N) for higher bit-width 

adders, the fan-in increases. Real gates typically have a 

practical limit on fan-in (often around 5), which can be 

exceeded as the bit-width of the adder increases. To build 

higher bit-width CLA adders, designers often cascade 

smaller CLA adders (e.g., cascading 4-bit CLA adders to 

1 Department of Electrical and Electronics Engineering, Birla Institute of 

Technology and Science Pilani, Goa, 403726, India 
2 Department of Electrical and Electronics Engineering, Birla Institute of 

Technology and Science Pilani, Goa, 403726, India 
3 * Corresponding Author Email: p20180018@goa.bits-pilani.ac.in 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718  |  4710 

create a 32-bit CLA adder). This approach helps to manage 

the fan-in and design complexity. Cascading introduces 

delays because the carry and sum outputs of each stage must 

propagate through the previous stages. For instance, in a 32-

bit CLA composed of 4-bit CLA adders, the delay for 

finding C32 (carry out of the 32nd bit) is 17 gates, and S31 

(sum of the 31st bit) is settled after 18 gate delays. Despite 

these delays, this approach is still superior to a 32-bit ripple-

carry adder, which has significantly higher delays of 63 

gates for S31 and 64 gates for C32. Ripple-carry adders 

(RCA) have a linear delay proportional to the number of 

bits, which makes them less efficient for large bit-widths 

due to the long critical path delays [2],[3],[4].  

Figure 1 shows the detailed architecture of CLA adder. 

 

Fig. 1 Carry Lookahead Adder 

3. ACA1: Almost Correct Adder-I  

 

Fig. 2 Almost Correct Adder-I 

ACA-I exploits the idea that for most additions the longest 

carry propagation chain is smaller compared to the total 

number of bits. Hence by using multiple sub-adders of the 

length of the maximum carry propagation chain, an accurate 

result can be produced. It is proposed to use the multiple 

overlapping sub-adders with one resultant bit per sub-adder. 

Due to the fixed single-bit shift operation, sub-adder count 

increases along with the fan-out of the input, which in turn 

increases the area overhead. Error detection and correction 

were also proposed for ACA-I [5]. The detailed architecture 

of ACA-I is shown in the figure 2. 

It is one of the first approximate adders. The ACA-1 

architecture exploits optimization in speed from an 

assumption that the maximum carry chain propagation 

(maximum distance between the carry generation bit 

followed by a long propagation chain right up to the 

concerned bit) is somehow known to us. If we are concerned 

about the result at some mth bit and suppose that the carry is 

generated at (m − k) th bit. If the carry generated at the (m − 

k)th bit can propagate to the mth bit, then the maximum carry 

chain propagation length is k. By considering the above 

steps, one assumes that the result at the mth bit is solely 

dependent on the value from (m−1)th bit to (m−k)th bit, 

which is not the case in reality. To get a 100 percent correct 

result, we need to be aware that the result at the mth location 

depends on the (m − 1)th location to the 0th location. The 

ACA-I, being an approximate adder, assumes and, therefore, 

gives incorrect results in a few cases depending on the 

length of maximum carry propagation used to select the size 

of the sub-adder. If the carry propagates even from (m − k − 

1)th bit, in reality, it contributes to an error case for the 

ACA-I adder. 

Further, ACA-I adder is used in ACA-I Multiplier. ACA-I 

has proved to be the fastest approximate adder among 

selected adders at the cost of more area utilization. The said 

adder can be used in GPUs and will be a great addition to 

ML in the hardware domain. The Approximate Circuit 

extensions can be implemented on RISC-V ISA to provide 

variable frequency operating modes. 

4. ACA-II: (Accuracy configurable adder-II) 

Approximate adder ACA-II architecture is as shown in 

figure 3, that uses multiple overlapping sub-adders with half 

of sub-adder length resultant bits per sub-adder. Error 

detection and correction scheme was also proposed for 

ACA-II [6]. 
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Fig. 3 Proposed approximate adder (ACA-II)- 16 bit adder 

case 

Each sub-adder within the ACA adder architecture checks 

for errors by comparing its output with the carry-in signal 

received from the previous sub-adder. This mechanism helps 

identify inaccuracies introduced during propagation. Upon 

detecting an error, the ACA adder employs a simple error 

correction strategy. It adds '1' to the approximate output to 

rectify the error. This correction is implemented using an 

incrementor circuit, which minimizes the overhead while 

ensuring accuracy improvements. The ACA adder utilizes 

'AND' gates for error detection, keeping the overhead 

minimal. This design choice ensures that the adder remains 

efficient even when operating in accuracy-configurable 

modes. In the future, the concept of accuracy-configurable 

designs isn't limited to adders alone. There are ongoing 

efforts to extend this approach to other arithmetic 

components such as multipliers and multi-input adders. This 

expansion aims to create a flexible framework where 

different parts of the arithmetic logic unit (ALU) can adapt 

their accuracy dynamically to match the requirements of 

diverse computational tasks. In essence, the ACA-II adder 

represents a significant advancement in arithmetic circuit 

design by offering flexibility in accuracy trade-offs without 

compromising performance. It provides a practical solution 

for applications where computational accuracy requirements 

vary dynamically or can be predefined based on specific 

workload characteristics. 

5. GeAr : (Generic Accuracy Configurable Adder) 

 

 

GeAr adder with N=12, R=4, P=4, and k=2 

GeAr adder with N=12, R=2, P=6, and k=3 

Fig.4  Generic Accuracy Configurable Adder 

GeAr (Generic accuracy configurable adder) is a modified 

version of ACA-II. As shown in figure 4, the total adder is 

divided into sub-adders and the internal sub-adders are 

working parallel. All sub-adders are strictly of same size. 

The first adder is always an exact adder and remaining 

operate in approximate mode. Carry Look ahead Adder 

(CLA) is used for addition [7].  

If ‘N’ is the total size of the adder , ‘K’ is number of result 

bits for each sub adder except the first (lowest) one. Then 

the number of sub adders (n) are calculated using this 

formula: 

n= [N/K – 1]                                        (6) 

If ‘p’ is number of prediction/overlap bits and ‘R’ is the 

result bits then ACA-II works on the condition of K=P=R 

.The sub adder size=2K and  should be completely divisible 

to total size to produce remainder zero.  

      Total adder size (N) = R+P+(n-

1) *R 

                                 (7) 

As said above, this adder is the modified version of ACA-II 

adder. The architectural difference between ACA-II and 

GeAr is that GeAr is flexible to have result bits (R) equal to 

prediction bits (P) or not. ACA-II allows only R=P. 

The number of sub adders (k) can be calculated as : 

                           K= ((N-L)/R)+1                                          (8) 

GeAr adder is designed using three key parameters N, R, 

and P. 

By setting parameters R=1 and P=L−1, GeAr can be 

configured to resemble ACA-I, an approximate adder 

design. This configuration prioritizes lower latency an d 

reduced complexity at the cost of accuracy. Setting R=L/2 

and P=L/2 aligns GeAr with ACA-II and ETAII 

configurations. These configurations strike a balance 

between accuracy and performance by employing moderate 

error prediction and correction mechanisms. GeAr can also 

mimic GDA  adders, where the number of carry prediction 

bits is uniform across all sub-adders. This approach ensures 

consistency in error prediction and correction strategies 
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throughout the adder structure. Implemented with AND 

gates, GeAr identifies errors introduced during computation, 

ensuring the integrity of results, particularly when high 

accuracy is required. For error correction, GeAr employs 

sub-adders, OR gates, and multiplexers tailored to the adder 

size.  

6. 6. GDA (Gracefully degrading adder) 

A reconfiguration-oriented design methodology for 

approximate circuits is presented in figure 5, which proposes 

a reconfigurable approximate adder design that degrades 

computation quality gracefully [8]. 

 

Fig. 5 Gracefully Degrading Adder (4-bit) 

GDA, while offering some configurability in carry 

prediction, is constrained by its fixed architectural decisions 

and tends to have higher area overhead and potential latency 

issues compared to more modern designs like GeAr. The 

choice between these designs depends largely on specific 

application requirements for accuracy, speed, and resource 

utilization. GDA employs a hierarchical carry look-ahead 

structure for carry prediction, where the number of carry 

prediction bits is constrained to multiples of the sub-adder 

length R. It uses ripple carry adders (RCA) for sub-adders 

combined with configurable carry prediction circuits akin to 

carry look-ahead (CLA) adder components. Error recovery 

is facilitated even in configurations like ETAII and GDA, 

which originally lack error correction mechanisms. Only 

thing is that the complexity of GDA's carry prediction 

circuitry, similar to CLA adders, results in significant area 

overhead compared to more streamlined designs like GeAr. 

GDA's design limits the flexibility in configuring prediction 

bits, which must align with the sub-adder length RRR. This 

restriction may impact its adaptability across different 

computational demands. GDA's performance, particularly in 

terms of latency, can be less optimal compared to other 

adder types like GeAr, due to its fixed structure and reliance 

on hierarchical carry look-ahead techniques. 

7. ETA-I: (Error Tolerant Adder-I) 

This is the proposed architecture of ETA-I adder [9]. As 

described in figure 3.6 and 3.7, ETA-I is a block-based 

adder. It is divided into two sub parts, accurate part and 

inaccurate part. Out of that the accurate part consists of 

ripple carry adder with carry-in always equal to zero and 

inaccurate part consists of Modified EXOR gates. Modified 

EXOR gates are simple logical EXOR gates working with 

the principle of Error Tolerance. The inaccurate part acts as 

an EXOR Gate till a combination of two 1’s is found at a 

particular bit position. When this combination is detected, 

all the trailing bits from that bit position are set to 1 

irrespective of their actual value and this is done with the 

help of a 2:1 Multiplexer whose select line is controlled set 

to 1 when the combination of two 1’s is found in the 

operands’ bit stream. The biggest advantage of ETA-I 

architecture is that there is no carry propagation in the 

inaccurate part. The critical delay path is because of the 

circuitry used for generating the control signal for the select 

line of the multiplexer. The adder’s critical delay is due to 

carry chain propagation. ETA-I uses a lesser number of 

accurate bits than the total size of the adder hence carry 

propagation chain is significantly reduced. As the ETA-I 

uses an exact adder like Ripple Carry Adder for an accurate 

part, carry is propagated only through the accurate part 

instead of from LSB to MSB. Accurate and inaccurate parts 

work parallelly to compute the end results generating lesser 

delay compared to the conventional adders. 

       

          R----Result of previous stage 

            PP---Partial Product Terms 

            R0---Is always zero  

Fig. 6 Error Tolerant Adder-I 

 

Fig.7 Example of ETA-I addition 

The accuracy of the addition operation can be adjusted by 

changing the number of the accurate bits. Higher the 

accurate bits, better the accuracy. By eliminating the carry 

propagation path in the inaccurate part and simultaneously 

performing addition in two separate parts, the overall delay 

time is greatly reduced. So is the power consumption. 

Not all digital systems can employ the error-tolerant circuit. 

In some digital systems, such as a control system, the 

correctness of the output signals is extremely important and 

hence eliminating the use of error-tolerant circuit. For small 

inputs, ETAI produced inaccurate results as the inaccurate 
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part of the adder was used. To handle the limitations of 

ETAI another adder ETAII was proposed. 

 

8. ETA-II: (Error Tolerant Adder-II) 

Different from ETAI, ETAII does not eliminate the entire or 

part of the carry propagation path. Instead, it splits the entire 

carry  

 propagation path into a number of short paths and 

completes the carry propagations in these short paths 

concurrently as shown in figure 8. In this way, the speed 

performance of the adder can be significantly improved and 

with almost no degradation in its power consumption [10]. 

 

Fig. 8 Error Tolerant Adder-II 

ETAII is designed to reduce carry propagation delay by 

dividing the total number of bits into multiple sub-adders. 

Each sub-adder operates independently with its own carry 

generation and propagation, which limits the maximum 

carry propagation to twice the length of each sub-adder. This 

approach aims to improve performance by reducing overall 

delay. 

However, ETAII faces challenges related to accuracy, 

especially with larger inputs, where its accuracy can 

degrade. To address these issues, ETAIIM was proposed as 

a modified version. ETAIIM retains the division of the adder 

into sub-adders but modifies the carry and sum generation 

mechanisms. Notably, the carry generator in ETAIIM does 

not receive carry-in signals from the previous block, 

whereas the sum generator does, thereby limiting carry 

propagation between neighboring blocks rather than across 

the entire adder structure [11]. 

The choice of how to divide the adder into these blocks (M 

sub-adders of equal size) affects its performance 

characteristics. Fewer blocks (larger sub-adders) can reduce 

the likelihood of errors but increase delay, while more 

blocks (smaller sub-adders) can improve speed but may 

increase error potential. 

Both ETAII and ETAIIM utilize different strategies for 

carry and sum generation: ETAII uses CLA (Carry Look 

Ahead) for carry and RCA (Ripple Carry Adder) for sum, 

while ETAIIM appears to modify this approach to address 

specific issues encountered in ETAII. 

It's also noted that neither ETAII nor ETAIIM include an 

error recovery scheme, suggesting that their design assumes 

error avoidance rather than correction, which is a critical 

consideration in reliable computing systems. 

9. SARA (Simple Accuracy Reconfigurable Adder)  

Figure 9 represents the basic structure of SARA. SARA 

represents a significant advancement in the design of 

accuracy configurable adders, leveraging carry-prediction 

techniques and efficient use of sub-adders to achieve high 

performance with reduced area and power consumption. Its 

simplicity, coupled with effective optimization strategies, 

positions it as a competitive choice for applications 

requiring both speed and accuracy in arithmetic operations 

[12]. 

SARA utilizes a carry-prediction-based approach, 

distinguishing it from traditional adder designs like CLA 

(Carry Look Ahead). This approach typically aims to predict 

carry bits based on previous computations, thereby reducing 

delay and potentially improving overall performance. Unlike 

some previous designs that use CLA (which can be more 

area-intensive and complex),  

SARA employs CRA for its sub-adders. CRA is generally 

simpler and more area-efficient when compared to CLA, 

aligning with SARA's goal of reducing area while 

maintaining performance. SARA optimizes its carry 

prediction mechanism by reusing parts of the sub-adders 

their selves, rather than incorporating dedicated prediction 

circuitry. This approach helps to avoid additional overheads 

associated with prediction circuits, which can contribute to 

both area and power savings. 

SARA offers significant advantages over previous designs 

like GDA and RAP-CLA. It claims to achieve 50% less 

Power Delay Product (PDP) compared to GDA while 

maintaining a comparable Peak Signal-to-Noise Ratio 

(PSNR). Additionally, SARA demonstrates better accuracy-

power-delay trade-offs than RAP-CLA, showcasing its 

efficiency in balancing these critical metrics. SARA 

incorporates a delay-adaptive reconfiguration technique, 

which enhances its ability to adjust and optimize 

performance characteristics based on operational 

requirements. This technique likely contributes to its 

improved accuracy-power-delay trade-off, making it 

adaptable to varying computational needs. 
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Fig.9 Simple Accuracy Reconfigurable Adder (SARA) 

 

Fig.10 Carry-prediction-based-configurable adder 

As shown in fig.10, an N-bit adder is composed of K 

segments of L-bit sub-adders, where K = [N/L]. Each sub-

adder is almost the same as a CRA except that the MSB 

(Most Significant Bit) of a sub-adder, which is bit i, 

provides a carry prediction as: 

 c prdt i = gi                         (9) 

For the LSB (Least Significant Bit) of the higher-bit sub-

adder, which is bit i + 1, its carry-out ci+1 can be computed 

using one of two options: either by the conventional: 

ci+1 = gi+1 + pi+1 · ci                      (10) 

 or by using the carry prediction as:  

The selection between the two options is realized using 

MUXes and the MUX selection result is denoted as cˆi. The 

carry prediction is a truncation-based approximation to carry 

computation. 

Therefore, cˆi can be configured to either accurate mode or 

approximation mode, i.e., cˆi ← (c prdt i , if approximation 

mode ci , if accurate mode. It should be noted that the carry 

prediction c prdt i reuses gi in an existing full adder instead 

of introducing an additional dedicated circuit. This 

prediction scheme makes a very simple modification to the 

conventional full adder. One can connect cˆi to its higher bit 

i + 1 to compute both carry ci+1 and sum si+1, as in GDA 

and RAP-CLA.  

SARA achieves improved accuracy in sum computation 

with minimal additional overhead compared to GDA and 

RAP-CLA. This is advantageous because it enhances 

computational reliability without significantly increasing 

design complexity or area usage. 

SARA's overhead mainly consists of MUXes, which are 

essential for its configurability. This overhead is minimal 

compared to more complex adders like CLA and is 

optimized to be as efficient as possible for configurable 

adders. 

When c^i is configured to equal ci for all K sub-adders, 

SARA operates similarly to a CRA. In this mode, the critical 

path extends along N-bit full adders. Configuring c^i to be 

cprdt_i across all sub-adders shortens the critical path to 

approximately L-bit full adders. This reduction in critical 

path length not only improves performance by reducing 

delay but also enables potential power savings through 

supply voltage scaling. In worst-case scenarios where the 

predicted carry (cprdt_i) differs from the actual carry (ci), 

errors can occur. The likelihood of errors typically increases 

with the number of sub-adders K, which introduces a trade-

off between error rate, area, power consumption, delay, and 

accuracy. Larger values of K imply smaller values of L, 

leading to shorter critical paths and potentially reduced 

power consumption. However, this needs to be balanced 

against the increased error rate and area overhead associated 

with more sub-adders. The goal is to find an optimal 

configuration that maximizes accuracy while minimizing 

power consumption and delay. When faced with multiple 

configurations with the same critical path length, prioritizing 

the configuration that offers higher accuracy becomes 

crucial. This ensures that the design meets performance 

requirements while maintaining reliability in computations. 

SARA represents a versatile approach to configurable adder 

design, leveraging efficient configurations and carry-

prediction techniques to enhance accuracy and performance. 

Its ability to adapt critical path lengths and configurations 

based on operational needs makes it a competitive choice in 

modern computing systems where efficiency and reliability 

are paramount. 

SARA is area efficient than RAP_CLA and GDA. 

SARA's self-configuration technique recognizes that the 

worst-case path delay in adder operations often depends on 

the specific values of the addends being processed. When 

the actual carry propagation chain is short due to addend 

values , there is no necessity to activate the approximation 

configuration. The approximation configuration typically 

aims to shorten the carry propagation chain to reduce delay 

and potentially save power, but it introduces a risk of 

introducing errors. SARA-DAR (Delay-Adaptive 

Reconfiguration) builds upon this principle. It extends the 

self-configuration concept by dynamically adjusting its 

configuration based on real-time assessment of the addends' 

impact on carry propagation. By implementing self-

configuration, SARA and its derivative SARA-DAR 

enhance flexibility and adaptability in adder design. They 

mitigate the complexity associated with static configuration 

ci+1 = gi+1 + pi+1 · c prdt i = gi+1 + pi+1 · gi (11) 
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decisions and ensure that computational resources are 

utilized optimally based on actual operational conditions 

[12] In conclusion, SARA's self-configuration technique, 

particularly in the context of SARA-DAR, represents a 

significant advancement in the field of reconfigurable adder 

design.  

10. SARA-DAR: (Simple Accuracy Reconfigurable 

Adder with Delay-Adaptive Reconfiguration) 

 

 

Fig.11: Design of DAR for SARA operating in two different 

modes 

The SARA-DAR (Simple Accuracy Reconfigurable Adder 

with Delay Adaptive Reconfiguration) introduces a Delay 

Adaptive Reconfiguration (DAR) technique to optimize 

performance and accuracy dynamically based on the 

characteristics of carry propagation through adder circuits. 

As shown in figure 11, a MUX determines whether to 

operate in approximation mode or accurate mode based on 

detected carry propagation characteristics. The MUX 

switches to approximation mode only when a potentially 

long carry chain is detected, which helps in reducing delay 

and power consumption. By dynamically switching modes, 

SARA-DAR can avoid errors that may occur in 

approximation mode for short carry chains, while still 

benefiting from delay and power reduction for longer carry 

chains that can be shortened. The MUX adjusts its detection 

window based on the presence of false propagate bits. If a 

false propagate bit is detected, the MUX remains in accurate 

mode to maintain the carry chain length effectively. The 

detection mechanism involves minimal overhead, typically 

just one NAND gate per MUX. This ensures efficient 

operation with minimal additional hardware. 

In approximate mode, it limits the effective carry chain 

length to no greater than L+1 bits, where L is the length of 

the full adder. In accurate mode, it allows  for carry chain 

lengths within L+2 bits, providing higher accuracy. The size 

of the detection window W determines the trade-off between 

accuracy and the effective carry chain length in accurate 

mode. A larger W reduces error rates but increases the 

critical path length in accurate mode. 

SARA-DAR is primarily designed for unpipelined 

implementation, though it can support pipelined operation. 

Unpipelined designs simplify performance evaluation 

compared to pipelined designs, which require additional 

clock cycles for error correction and computation. The 

addition of DAR hardware introduces some area overhead, 

mainly due to the NAND gates used for detection. However, 

this overhead is kept minimal to maintain efficiency. 

SARA-DAR’s ability to dynamically adjust its configuration 

based on real-time carry propagation characteristics 

optimizes both performance and accuracy. By utilizing 

simple detection mechanisms and minimal additional 

hardware, SARA-DAR achieves effective delay reduction 

without compromising accuracy unnecessarily. SARA-DAR 

represents a sophisticated approach to accuracy configurable 

adder design, leveraging Delay Adaptive Reconfiguration to 

enhance performance and maintain reliability in varying 

computational scenarios. Its focus on dynamic mode 

switching and minimal overhead makes it a compelling 

choice for applications where both speed and accuracy are 

critical [12]. 

11. RAP-CLA (Reconfigurable approximate-Carry 

lookahead adder)  

 

Fig. 12 Reconfigurable approximate-Carry lookahead adder 

The GDA and RAP-CLA methods represent two different 

approaches to designing accuracy configurable adders, each 
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with its own strengths and trade-offs. RAP-CLA builds upon 

the accurate Carry Look-Ahead (CLA) adder design by 

incorporating reconfigurable elements. It uses a portion of 

the CLA circuitry for carry prediction, which helps in 

reducing overall area compared to a full CLA 

implementation. RAP-CLA benefits from the accuracy of 

CLA during normal operation. It utilizes the reconfigurable 

carry prediction to switch to approximate mode when 

necessary, thereby balancing performance and power 

efficiency. RAP-CLA achieves a smaller area footprint 

compared to a full CLA adder, yet it typically occupies more 

area than simpler adder designs like basic CLA due to the 

added complexity of reconfigurable elements. RAP-CLA 

manage errors through carry prediction mechanisms 

eliminating the need for traditional error correction codes 

and minimizing data stalls. RAP-CLA, while more complex 

due to its reconfigurable nature, offers a balance between 

accuracy and area efficiency by leveraging the existing CLA 

architecture. RAP-CLA is preferred for applications 

demanding finer control over accuracy and area efficiency 

[13]. 

The structure of RAP-CLA was based on some 

modifications to the structure of the conventional CLA as 

shown in figure 12. RAP-CLA uses CLA as its baseline 

architecture. In CLA, each bit's carry-out is computed in 

parallel by considering the carry-in from lower-order bits, 

making it efficient for high-speed addition. RAP-CLA 

optimizes area efficiency by reusing a portion of the CLA 

circuitry for carry prediction rather than introducing 

dedicated prediction circuitry. The reconfigurable carry 

prediction mechanism in RAP-CLA dynamically adjusts 

based on input conditions or configuration settings, enabling 

the adder to switch between accurate and approximate 

modes as needed. By integrating reconfigurable carry 

prediction within the CLA framework, RAP-CLA achieves a 

practical balance between performance, area efficiency, and 

flexibility. This makes it suitable for applications where 

both speed and adaptability are crucial factors. 

In summary, RAP-CLA stands out as a robust solution for 

configurable adder design, providing superior accuracy, 

performance efficiency, and versatility compared to GeAr. 

Its ability to operate effectively in both approximate and 

exact modes ensures optimal performance across a range of 

computational tasks and application requirements. 

12. Modified RAP-CLA 

Proposed modified RAP-CLA architecture is as shown in 

figure 13. It makes use of PG technique in a same way like 

RAP-CLA I with more architectural flexibility. Proposed 

circuit is a well combination of CLA with cognizance to 

error resilience. When compared with RAP-CLA described 

by A. Omid et.al, proposed RAP-CLA has a small 

architectural difference w.r.t. multiplexer component. 

Multiplexer select line is controlled by external signal 

instead of circuit generated signal. Mux select line is 

generated by lower 4 bits valency black cell in each 

individual group with size equal to (groupsize-windowsize). 

In proposed adder architecture 

 1. the multiplexer select line is independently set/reset by 

external signal (ApproxRCON). ApproxRCON signal which 

is equal to Adder Size/Group Size. 

 2. parallel computations of carries to reduce the delay of the 

n-bit additions.  

3. carry prediction circuit reuses a part of look ahead circuit 

rather than building extra dedicated prediction circuitry.  

4. while operating in approximate mode, part of a circuit is 

getting bypassed which will reduce hardware complexity 

with improved resource parameters.  

Other than this, proposed approximate adaptive carry-

lookahead adder for error resilient applications is flexible to 

work in approximate as well as exact mode. Proposed 

architecture differs from previous RAP-CLA design. The 

architectural differences are highlighted as: 1. The 

multiplexer input ”1” is fed by output of higher 4 bits 

valency black cell and input ”0” is fed by gray cell output 

connected at highest bit-position in lower group of group 

size. Inputs to this gray cell are one from lower 4 bits 

valency black cell and another from output of previous 

group or Cin in case of lowest group. 2. Select line of 

multiplexer is defined as ”ApproxRCON” and it is 

controlled by external signal either 0/1. Proposed adder 

works in exact mode when select line signal set to zero and 

in approximate mode when ApproxRCON set to 1. During 

approximate mode, part of circuit is bypassed [3 bits at LSB 

side in each group] due to which resource parameters 

improve with reduced hardware complexity but error rate 

exceeds at some extent [13].  

 

Fig.13 Modified RAP-CLA 
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13.  Results and discussion 

The role of approximation in arithmetic circuit like adder 

was demonstrated through a comparative analysis of the ten 

approximate adders with different architectures and one 

exact adder for bit width of 16 bits and tabulated in table no. 

1. The simulation results expressed in figure number 14, 15 

and 16 illustrate that area wise ETA-I shows the best 

performance with least area requirement of 95.418 um2 and 

it is 35.41% efficient when compared with CLA. When 

power consumption is considered, again ETA-I utilizes the 

least power of 2.8584 uW and 30.30% power efficient than 

CLA. In case of delay, ACA-I proved to be the fastest 

among all with 847 pS. It is 63.64% faster than CLA. It 

concludes the importance of approximate adders for 

resource parameter improvements over accurate adders.  

 

Fig.14 Area plot for selected adders 
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Fig.15 Power plot for selected adders 
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Fig.16 Delay plot for selected adders 

Table 1.  TAP Analysis of Different adder’s architectures 

Parame

ter 

Exact 

Adder 
Approximate Adders 

  CLA 
AC

A-I 

ACA-

II 
GeAr GDA 

ETA

-I 

ETA-

II 

SAR

A 

SAR

A-

DAR 

RAP-

CLA 

Modified 

RAP-CLA 

  

N=16, 
N=1

6, 

N=16

, K=8 

N=16

, R=8, 

P=8 

N=16,K=4, 

T=8 N=1

6, 

A=8, 

IA=8

, 

K=9 

N=16

, 

G.S.=

8 

N=16

, G.S. 

=8 

N=16

, 

G.S.=

8, 

W=4 

N=16

, 

G.S.=

8, 

W=4 

N=16, 

G.S.=8, 

W=4, 

Valency

=4 

K=8

, 

P=7, 

K=G.S. 
ApproxRco

n=1 

  
R=1 

T=CLA 

_approximation

_bits 

  

Area 147.744 
468.

5 

181.9

44 

181.9

44 
138.51 

95.4

18 

146.0

34 

152.5

32 

154.9

26 

186.7

32 
172.368 

Power 

(uW) 
4.089 

11.4

4 
5.311 5.311 4.17 

2.85

84 
4.44 4.266 4.324 5.601 5.04 

Delay 

(pS) 
2330 847 1444 1444 2337 1257 1359 2604 1916 1584 1152 

 

14. Conclusion 

Approximate circuits itself designed to produce inaccurate 

results which are not wrong but slightly deviated from 

accurate one. The purpose is to improve system’s 

performance parameters. Arithmetic adders are the integral 

parts of digital circuits. The comparative study concludes 

with the use of a particular arithmetic adder for a specific 

application. But in few situations it is mandatory to switch 

from inaccurate to accurate results during run time  

 

applications and usually it is called as dynamic approximate 

computing.  This is the future scope of the approximate 

adders.  
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