

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4709

Arithmetic Adders for Approximate Computing

Joshi Viraj Vilas1, Pravin Mane2

Submitted:11/03/2024 Revised: 26/04/2024 Accepted: 03/05/2024

Abstract: When the latest research trends in approximate arithmetic circuits are reviewed, it is observed that importance has been laid out

for the novelty and development of certain architectures, designs, and layouts to make them universally adaptable and applicable in real-

time applications. This area has been explored deeply by discussing various existing architectures and approximation techniques in

arithmetic circuits, novel architectures and techniques, and comparative test reports. There is a huge scope of work to add novel

approximation techniques in arithmetic circuits like adder and multiplier for error resilient and image processing applications. To provide

solutions and guidelines to the existing and novel architectures and applications, this thesis addresses the work at the circuit simulation

and synthesis level of abstractions. Through simulations, this work discusses the comparative resource parameter analysis for energy-

efficient applications, and error analysis for error-resilient applications while introducing a new architecture for both said applications.

Keywords: Approximate Computing, Error Resilient Applications, resource parameter analysis, Error Analysis

1.Introduction

ADDITION is a key operation and basic building block for

approximately all arithmetic circuits. Full adders are

versatile building blocks in approximate adders because the

approximation schemes are mostly applied at full adders [1].

For any fast adder, the key part is its carry network.

Analysis of carry generation and propagation is done with

the help of probability. After ripple carry adder, many

techniques are introduced to design high-performance

adders. Block-based adders are a common approach used in

designing high-performance adders. These adders are

composed of smaller sub-adder units, also called blocks or

stages, which operate in parallel to compute the sum bits of

the output. Each stage can handle smaller numbers of bits

than the full adder, reducing the carry propagation delay and

allowing for faster operation. Additionally, block-based

adders can be optimized for different performance metrics

such as area, power consumption, delay, and error

characteristics. Various approximate adders have been

proposed to improve the overall circuit’s performance by

reducing the delay associated with the carry propagation

problem in conventional adders. Ten approximate adders are

discussed and compared with the exact adder: CLA. All ten

adders have unique architectures and are compared based on

resource parameters analysis.

2.Carry Lookahead Adder

The Carry Look Ahead logic generates two output bits for

each (i) th bit addition using equation (1) to get Genrt_i and

Propgt_i using equation (2). These two bits signify the

carryout from (i)th bit that goes as carry-in for the (i+ 1)th bit.

If Genrt_i is 1 for (i)th bit, the carry-in to the (i + 1)th bit will

always be 1. If the Propgt i is 1, then the carry-in to (i+ 1)th

bit is the same as the carry-in to the (i) th bit.

Genrt_i = Ai × Bi (1)

Propgt_i = Ai ⊕ Bi (2)

where Ai and Bi refer to the two inputs. The Si and Ci+1 for

the ith bit are found using the equations (3) and (4),

respectively.

Si = Propgt_i ⊕ Ci (3)

Ci+1 = Genrt_i + Propgt_i ×

Ci

(4)

As we calculate Propgt_i and Genrt_i for all the values of i

from 0 to the maximum of N-1 for an N-bit adder, these

values are independent of the previous Propagate and

Generate signals by invoking parallelism and opening the

Ci+1 can be directly made dependent on C0 as shown in

equation (5).

Ci+1 = Genrti + Genrti−1 × Propgti + . . . + C0

(5)

An AND-OR circuit can simply form the above equation

and has a delay of 2 gates. Now, we can get the Ci for all the

N bits together in a 3-gate delay, and it will just require

another 1-gate delay to find all the Sum (Si) bits. Equation

(5), which presumably describes the critical path in the CLA

design, has a fan-in of i+2i + 2i+2. This indicates that as you

increase the number of inputs (N) for higher bit-width

adders, the fan-in increases. Real gates typically have a

practical limit on fan-in (often around 5), which can be

exceeded as the bit-width of the adder increases. To build

higher bit-width CLA adders, designers often cascade

smaller CLA adders (e.g., cascading 4-bit CLA adders to

1 Department of Electrical and Electronics Engineering, Birla Institute of

Technology and Science Pilani, Goa, 403726, India
2 Department of Electrical and Electronics Engineering, Birla Institute of

Technology and Science Pilani, Goa, 403726, India
3 * Corresponding Author Email: p20180018@goa.bits-pilani.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4710

create a 32-bit CLA adder). This approach helps to manage

the fan-in and design complexity. Cascading introduces

delays because the carry and sum outputs of each stage must

propagate through the previous stages. For instance, in a 32-

bit CLA composed of 4-bit CLA adders, the delay for

finding C32 (carry out of the 32nd bit) is 17 gates, and S31

(sum of the 31st bit) is settled after 18 gate delays. Despite

these delays, this approach is still superior to a 32-bit ripple-

carry adder, which has significantly higher delays of 63

gates for S31 and 64 gates for C32. Ripple-carry adders

(RCA) have a linear delay proportional to the number of

bits, which makes them less efficient for large bit-widths

due to the long critical path delays [2],[3],[4].

Figure 1 shows the detailed architecture of CLA adder.

Fig. 1 Carry Lookahead Adder

3. ACA1: Almost Correct Adder-I

Fig. 2 Almost Correct Adder-I

ACA-I exploits the idea that for most additions the longest

carry propagation chain is smaller compared to the total

number of bits. Hence by using multiple sub-adders of the

length of the maximum carry propagation chain, an accurate

result can be produced. It is proposed to use the multiple

overlapping sub-adders with one resultant bit per sub-adder.

Due to the fixed single-bit shift operation, sub-adder count

increases along with the fan-out of the input, which in turn

increases the area overhead. Error detection and correction

were also proposed for ACA-I [5]. The detailed architecture

of ACA-I is shown in the figure 2.

It is one of the first approximate adders. The ACA-1

architecture exploits optimization in speed from an

assumption that the maximum carry chain propagation

(maximum distance between the carry generation bit

followed by a long propagation chain right up to the

concerned bit) is somehow known to us. If we are concerned

about the result at some mth bit and suppose that the carry is

generated at (m − k) th bit. If the carry generated at the (m −

k)th bit can propagate to the mth bit, then the maximum carry

chain propagation length is k. By considering the above

steps, one assumes that the result at the mth bit is solely

dependent on the value from (m−1)th bit to (m−k)th bit,

which is not the case in reality. To get a 100 percent correct

result, we need to be aware that the result at the mth location

depends on the (m − 1)th location to the 0th location. The

ACA-I, being an approximate adder, assumes and, therefore,

gives incorrect results in a few cases depending on the

length of maximum carry propagation used to select the size

of the sub-adder. If the carry propagates even from (m − k −

1)th bit, in reality, it contributes to an error case for the

ACA-I adder.

Further, ACA-I adder is used in ACA-I Multiplier. ACA-I

has proved to be the fastest approximate adder among

selected adders at the cost of more area utilization. The said

adder can be used in GPUs and will be a great addition to

ML in the hardware domain. The Approximate Circuit

extensions can be implemented on RISC-V ISA to provide

variable frequency operating modes.

4. ACA-II: (Accuracy configurable adder-II)

Approximate adder ACA-II architecture is as shown in

figure 3, that uses multiple overlapping sub-adders with half

of sub-adder length resultant bits per sub-adder. Error

detection and correction scheme was also proposed for

ACA-II [6].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4711

Fig. 3 Proposed approximate adder (ACA-II)- 16 bit adder

case

Each sub-adder within the ACA adder architecture checks

for errors by comparing its output with the carry-in signal

received from the previous sub-adder. This mechanism helps

identify inaccuracies introduced during propagation. Upon

detecting an error, the ACA adder employs a simple error

correction strategy. It adds '1' to the approximate output to

rectify the error. This correction is implemented using an

incrementor circuit, which minimizes the overhead while

ensuring accuracy improvements. The ACA adder utilizes

'AND' gates for error detection, keeping the overhead

minimal. This design choice ensures that the adder remains

efficient even when operating in accuracy-configurable

modes. In the future, the concept of accuracy-configurable

designs isn't limited to adders alone. There are ongoing

efforts to extend this approach to other arithmetic

components such as multipliers and multi-input adders. This

expansion aims to create a flexible framework where

different parts of the arithmetic logic unit (ALU) can adapt

their accuracy dynamically to match the requirements of

diverse computational tasks. In essence, the ACA-II adder

represents a significant advancement in arithmetic circuit

design by offering flexibility in accuracy trade-offs without

compromising performance. It provides a practical solution

for applications where computational accuracy requirements

vary dynamically or can be predefined based on specific

workload characteristics.

5. GeAr : (Generic Accuracy Configurable Adder)

GeAr adder with N=12, R=4, P=4, and k=2

GeAr adder with N=12, R=2, P=6, and k=3

Fig.4 Generic Accuracy Configurable Adder

GeAr (Generic accuracy configurable adder) is a modified

version of ACA-II. As shown in figure 4, the total adder is

divided into sub-adders and the internal sub-adders are

working parallel. All sub-adders are strictly of same size.

The first adder is always an exact adder and remaining

operate in approximate mode. Carry Look ahead Adder

(CLA) is used for addition [7].

If ‘N’ is the total size of the adder , ‘K’ is number of result

bits for each sub adder except the first (lowest) one. Then

the number of sub adders (n) are calculated using this

formula:

n= [N/K – 1] (6)

If ‘p’ is number of prediction/overlap bits and ‘R’ is the

result bits then ACA-II works on the condition of K=P=R

.The sub adder size=2K and should be completely divisible

to total size to produce remainder zero.

 Total adder size (N) = R+P+(n-

1) *R

 (7)

As said above, this adder is the modified version of ACA-II

adder. The architectural difference between ACA-II and

GeAr is that GeAr is flexible to have result bits (R) equal to

prediction bits (P) or not. ACA-II allows only R=P.

The number of sub adders (k) can be calculated as :

 K= ((N-L)/R)+1 (8)

GeAr adder is designed using three key parameters N, R,

and P.

By setting parameters R=1 and P=L−1, GeAr can be

configured to resemble ACA-I, an approximate adder

design. This configuration prioritizes lower latency an d

reduced complexity at the cost of accuracy. Setting R=L/2

and P=L/2 aligns GeAr with ACA-II and ETAII

configurations. These configurations strike a balance

between accuracy and performance by employing moderate

error prediction and correction mechanisms. GeAr can also

mimic GDA adders, where the number of carry prediction

bits is uniform across all sub-adders. This approach ensures

consistency in error prediction and correction strategies

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4712

throughout the adder structure. Implemented with AND

gates, GeAr identifies errors introduced during computation,

ensuring the integrity of results, particularly when high

accuracy is required. For error correction, GeAr employs

sub-adders, OR gates, and multiplexers tailored to the adder

size.

6. 6. GDA (Gracefully degrading adder)

A reconfiguration-oriented design methodology for

approximate circuits is presented in figure 5, which proposes

a reconfigurable approximate adder design that degrades

computation quality gracefully [8].

Fig. 5 Gracefully Degrading Adder (4-bit)

GDA, while offering some configurability in carry

prediction, is constrained by its fixed architectural decisions

and tends to have higher area overhead and potential latency

issues compared to more modern designs like GeAr. The

choice between these designs depends largely on specific

application requirements for accuracy, speed, and resource

utilization. GDA employs a hierarchical carry look-ahead

structure for carry prediction, where the number of carry

prediction bits is constrained to multiples of the sub-adder

length R. It uses ripple carry adders (RCA) for sub-adders

combined with configurable carry prediction circuits akin to

carry look-ahead (CLA) adder components. Error recovery

is facilitated even in configurations like ETAII and GDA,

which originally lack error correction mechanisms. Only

thing is that the complexity of GDA's carry prediction

circuitry, similar to CLA adders, results in significant area

overhead compared to more streamlined designs like GeAr.

GDA's design limits the flexibility in configuring prediction

bits, which must align with the sub-adder length RRR. This

restriction may impact its adaptability across different

computational demands. GDA's performance, particularly in

terms of latency, can be less optimal compared to other

adder types like GeAr, due to its fixed structure and reliance

on hierarchical carry look-ahead techniques.

7. ETA-I: (Error Tolerant Adder-I)

This is the proposed architecture of ETA-I adder [9]. As

described in figure 3.6 and 3.7, ETA-I is a block-based

adder. It is divided into two sub parts, accurate part and

inaccurate part. Out of that the accurate part consists of

ripple carry adder with carry-in always equal to zero and

inaccurate part consists of Modified EXOR gates. Modified

EXOR gates are simple logical EXOR gates working with

the principle of Error Tolerance. The inaccurate part acts as

an EXOR Gate till a combination of two 1’s is found at a

particular bit position. When this combination is detected,

all the trailing bits from that bit position are set to 1

irrespective of their actual value and this is done with the

help of a 2:1 Multiplexer whose select line is controlled set

to 1 when the combination of two 1’s is found in the

operands’ bit stream. The biggest advantage of ETA-I

architecture is that there is no carry propagation in the

inaccurate part. The critical delay path is because of the

circuitry used for generating the control signal for the select

line of the multiplexer. The adder’s critical delay is due to

carry chain propagation. ETA-I uses a lesser number of

accurate bits than the total size of the adder hence carry

propagation chain is significantly reduced. As the ETA-I

uses an exact adder like Ripple Carry Adder for an accurate

part, carry is propagated only through the accurate part

instead of from LSB to MSB. Accurate and inaccurate parts

work parallelly to compute the end results generating lesser

delay compared to the conventional adders.

 R----Result of previous stage

 PP---Partial Product Terms

 R0---Is always zero

Fig. 6 Error Tolerant Adder-I

Fig.7 Example of ETA-I addition

The accuracy of the addition operation can be adjusted by

changing the number of the accurate bits. Higher the

accurate bits, better the accuracy. By eliminating the carry

propagation path in the inaccurate part and simultaneously

performing addition in two separate parts, the overall delay

time is greatly reduced. So is the power consumption.

Not all digital systems can employ the error-tolerant circuit.

In some digital systems, such as a control system, the

correctness of the output signals is extremely important and

hence eliminating the use of error-tolerant circuit. For small

inputs, ETAI produced inaccurate results as the inaccurate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4713

part of the adder was used. To handle the limitations of

ETAI another adder ETAII was proposed.

8. ETA-II: (Error Tolerant Adder-II)

Different from ETAI, ETAII does not eliminate the entire or

part of the carry propagation path. Instead, it splits the entire

carry

 propagation path into a number of short paths and

completes the carry propagations in these short paths

concurrently as shown in figure 8. In this way, the speed

performance of the adder can be significantly improved and

with almost no degradation in its power consumption [10].

Fig. 8 Error Tolerant Adder-II

ETAII is designed to reduce carry propagation delay by

dividing the total number of bits into multiple sub-adders.

Each sub-adder operates independently with its own carry

generation and propagation, which limits the maximum

carry propagation to twice the length of each sub-adder. This

approach aims to improve performance by reducing overall

delay.

However, ETAII faces challenges related to accuracy,

especially with larger inputs, where its accuracy can

degrade. To address these issues, ETAIIM was proposed as

a modified version. ETAIIM retains the division of the adder

into sub-adders but modifies the carry and sum generation

mechanisms. Notably, the carry generator in ETAIIM does

not receive carry-in signals from the previous block,

whereas the sum generator does, thereby limiting carry

propagation between neighboring blocks rather than across

the entire adder structure [11].

The choice of how to divide the adder into these blocks (M

sub-adders of equal size) affects its performance

characteristics. Fewer blocks (larger sub-adders) can reduce

the likelihood of errors but increase delay, while more

blocks (smaller sub-adders) can improve speed but may

increase error potential.

Both ETAII and ETAIIM utilize different strategies for

carry and sum generation: ETAII uses CLA (Carry Look

Ahead) for carry and RCA (Ripple Carry Adder) for sum,

while ETAIIM appears to modify this approach to address

specific issues encountered in ETAII.

It's also noted that neither ETAII nor ETAIIM include an

error recovery scheme, suggesting that their design assumes

error avoidance rather than correction, which is a critical

consideration in reliable computing systems.

9. SARA (Simple Accuracy Reconfigurable Adder)

Figure 9 represents the basic structure of SARA. SARA

represents a significant advancement in the design of

accuracy configurable adders, leveraging carry-prediction

techniques and efficient use of sub-adders to achieve high

performance with reduced area and power consumption. Its

simplicity, coupled with effective optimization strategies,

positions it as a competitive choice for applications

requiring both speed and accuracy in arithmetic operations

[12].

SARA utilizes a carry-prediction-based approach,

distinguishing it from traditional adder designs like CLA

(Carry Look Ahead). This approach typically aims to predict

carry bits based on previous computations, thereby reducing

delay and potentially improving overall performance. Unlike

some previous designs that use CLA (which can be more

area-intensive and complex),

SARA employs CRA for its sub-adders. CRA is generally

simpler and more area-efficient when compared to CLA,

aligning with SARA's goal of reducing area while

maintaining performance. SARA optimizes its carry

prediction mechanism by reusing parts of the sub-adders

their selves, rather than incorporating dedicated prediction

circuitry. This approach helps to avoid additional overheads

associated with prediction circuits, which can contribute to

both area and power savings.

SARA offers significant advantages over previous designs

like GDA and RAP-CLA. It claims to achieve 50% less

Power Delay Product (PDP) compared to GDA while

maintaining a comparable Peak Signal-to-Noise Ratio

(PSNR). Additionally, SARA demonstrates better accuracy-

power-delay trade-offs than RAP-CLA, showcasing its

efficiency in balancing these critical metrics. SARA

incorporates a delay-adaptive reconfiguration technique,

which enhances its ability to adjust and optimize

performance characteristics based on operational

requirements. This technique likely contributes to its

improved accuracy-power-delay trade-off, making it

adaptable to varying computational needs.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4714

Fig.9 Simple Accuracy Reconfigurable Adder (SARA)

Fig.10 Carry-prediction-based-configurable adder

As shown in fig.10, an N-bit adder is composed of K

segments of L-bit sub-adders, where K = [N/L]. Each sub-

adder is almost the same as a CRA except that the MSB

(Most Significant Bit) of a sub-adder, which is bit i,

provides a carry prediction as:

 c prdt i = gi (9)

For the LSB (Least Significant Bit) of the higher-bit sub-

adder, which is bit i + 1, its carry-out ci+1 can be computed

using one of two options: either by the conventional:

ci+1 = gi+1 + pi+1 · ci (10)

 or by using the carry prediction as:

The selection between the two options is realized using

MUXes and the MUX selection result is denoted as cˆi. The

carry prediction is a truncation-based approximation to carry

computation.

Therefore, cˆi can be configured to either accurate mode or

approximation mode, i.e., cˆi ← (c prdt i , if approximation

mode ci , if accurate mode. It should be noted that the carry

prediction c prdt i reuses gi in an existing full adder instead

of introducing an additional dedicated circuit. This

prediction scheme makes a very simple modification to the

conventional full adder. One can connect cˆi to its higher bit

i + 1 to compute both carry ci+1 and sum si+1, as in GDA

and RAP-CLA.

SARA achieves improved accuracy in sum computation

with minimal additional overhead compared to GDA and

RAP-CLA. This is advantageous because it enhances

computational reliability without significantly increasing

design complexity or area usage.

SARA's overhead mainly consists of MUXes, which are

essential for its configurability. This overhead is minimal

compared to more complex adders like CLA and is

optimized to be as efficient as possible for configurable

adders.

When c^i is configured to equal ci for all K sub-adders,

SARA operates similarly to a CRA. In this mode, the critical

path extends along N-bit full adders. Configuring c^i to be

cprdt_i across all sub-adders shortens the critical path to

approximately L-bit full adders. This reduction in critical

path length not only improves performance by reducing

delay but also enables potential power savings through

supply voltage scaling. In worst-case scenarios where the

predicted carry (cprdt_i) differs from the actual carry (ci),

errors can occur. The likelihood of errors typically increases

with the number of sub-adders K, which introduces a trade-

off between error rate, area, power consumption, delay, and

accuracy. Larger values of K imply smaller values of L,

leading to shorter critical paths and potentially reduced

power consumption. However, this needs to be balanced

against the increased error rate and area overhead associated

with more sub-adders. The goal is to find an optimal

configuration that maximizes accuracy while minimizing

power consumption and delay. When faced with multiple

configurations with the same critical path length, prioritizing

the configuration that offers higher accuracy becomes

crucial. This ensures that the design meets performance

requirements while maintaining reliability in computations.

SARA represents a versatile approach to configurable adder

design, leveraging efficient configurations and carry-

prediction techniques to enhance accuracy and performance.

Its ability to adapt critical path lengths and configurations

based on operational needs makes it a competitive choice in

modern computing systems where efficiency and reliability

are paramount.

SARA is area efficient than RAP_CLA and GDA.

SARA's self-configuration technique recognizes that the

worst-case path delay in adder operations often depends on

the specific values of the addends being processed. When

the actual carry propagation chain is short due to addend

values , there is no necessity to activate the approximation

configuration. The approximation configuration typically

aims to shorten the carry propagation chain to reduce delay

and potentially save power, but it introduces a risk of

introducing errors. SARA-DAR (Delay-Adaptive

Reconfiguration) builds upon this principle. It extends the

self-configuration concept by dynamically adjusting its

configuration based on real-time assessment of the addends'

impact on carry propagation. By implementing self-

configuration, SARA and its derivative SARA-DAR

enhance flexibility and adaptability in adder design. They

mitigate the complexity associated with static configuration

ci+1 = gi+1 + pi+1 · c prdt i = gi+1 + pi+1 · gi (11)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4715

decisions and ensure that computational resources are

utilized optimally based on actual operational conditions

[12] In conclusion, SARA's self-configuration technique,

particularly in the context of SARA-DAR, represents a

significant advancement in the field of reconfigurable adder

design.

10. SARA-DAR: (Simple Accuracy Reconfigurable

Adder with Delay-Adaptive Reconfiguration)

Fig.11: Design of DAR for SARA operating in two different

modes

The SARA-DAR (Simple Accuracy Reconfigurable Adder

with Delay Adaptive Reconfiguration) introduces a Delay

Adaptive Reconfiguration (DAR) technique to optimize

performance and accuracy dynamically based on the

characteristics of carry propagation through adder circuits.

As shown in figure 11, a MUX determines whether to

operate in approximation mode or accurate mode based on

detected carry propagation characteristics. The MUX

switches to approximation mode only when a potentially

long carry chain is detected, which helps in reducing delay

and power consumption. By dynamically switching modes,

SARA-DAR can avoid errors that may occur in

approximation mode for short carry chains, while still

benefiting from delay and power reduction for longer carry

chains that can be shortened. The MUX adjusts its detection

window based on the presence of false propagate bits. If a

false propagate bit is detected, the MUX remains in accurate

mode to maintain the carry chain length effectively. The

detection mechanism involves minimal overhead, typically

just one NAND gate per MUX. This ensures efficient

operation with minimal additional hardware.

In approximate mode, it limits the effective carry chain

length to no greater than L+1 bits, where L is the length of

the full adder. In accurate mode, it allows for carry chain

lengths within L+2 bits, providing higher accuracy. The size

of the detection window W determines the trade-off between

accuracy and the effective carry chain length in accurate

mode. A larger W reduces error rates but increases the

critical path length in accurate mode.

SARA-DAR is primarily designed for unpipelined

implementation, though it can support pipelined operation.

Unpipelined designs simplify performance evaluation

compared to pipelined designs, which require additional

clock cycles for error correction and computation. The

addition of DAR hardware introduces some area overhead,

mainly due to the NAND gates used for detection. However,

this overhead is kept minimal to maintain efficiency.

SARA-DAR’s ability to dynamically adjust its configuration

based on real-time carry propagation characteristics

optimizes both performance and accuracy. By utilizing

simple detection mechanisms and minimal additional

hardware, SARA-DAR achieves effective delay reduction

without compromising accuracy unnecessarily. SARA-DAR

represents a sophisticated approach to accuracy configurable

adder design, leveraging Delay Adaptive Reconfiguration to

enhance performance and maintain reliability in varying

computational scenarios. Its focus on dynamic mode

switching and minimal overhead makes it a compelling

choice for applications where both speed and accuracy are

critical [12].

11. RAP-CLA (Reconfigurable approximate-Carry

lookahead adder)

Fig. 12 Reconfigurable approximate-Carry lookahead adder

The GDA and RAP-CLA methods represent two different

approaches to designing accuracy configurable adders, each

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4716

with its own strengths and trade-offs. RAP-CLA builds upon

the accurate Carry Look-Ahead (CLA) adder design by

incorporating reconfigurable elements. It uses a portion of

the CLA circuitry for carry prediction, which helps in

reducing overall area compared to a full CLA

implementation. RAP-CLA benefits from the accuracy of

CLA during normal operation. It utilizes the reconfigurable

carry prediction to switch to approximate mode when

necessary, thereby balancing performance and power

efficiency. RAP-CLA achieves a smaller area footprint

compared to a full CLA adder, yet it typically occupies more

area than simpler adder designs like basic CLA due to the

added complexity of reconfigurable elements. RAP-CLA

manage errors through carry prediction mechanisms

eliminating the need for traditional error correction codes

and minimizing data stalls. RAP-CLA, while more complex

due to its reconfigurable nature, offers a balance between

accuracy and area efficiency by leveraging the existing CLA

architecture. RAP-CLA is preferred for applications

demanding finer control over accuracy and area efficiency

[13].

The structure of RAP-CLA was based on some

modifications to the structure of the conventional CLA as

shown in figure 12. RAP-CLA uses CLA as its baseline

architecture. In CLA, each bit's carry-out is computed in

parallel by considering the carry-in from lower-order bits,

making it efficient for high-speed addition. RAP-CLA

optimizes area efficiency by reusing a portion of the CLA

circuitry for carry prediction rather than introducing

dedicated prediction circuitry. The reconfigurable carry

prediction mechanism in RAP-CLA dynamically adjusts

based on input conditions or configuration settings, enabling

the adder to switch between accurate and approximate

modes as needed. By integrating reconfigurable carry

prediction within the CLA framework, RAP-CLA achieves a

practical balance between performance, area efficiency, and

flexibility. This makes it suitable for applications where

both speed and adaptability are crucial factors.

In summary, RAP-CLA stands out as a robust solution for

configurable adder design, providing superior accuracy,

performance efficiency, and versatility compared to GeAr.

Its ability to operate effectively in both approximate and

exact modes ensures optimal performance across a range of

computational tasks and application requirements.

12. Modified RAP-CLA

Proposed modified RAP-CLA architecture is as shown in

figure 13. It makes use of PG technique in a same way like

RAP-CLA I with more architectural flexibility. Proposed

circuit is a well combination of CLA with cognizance to

error resilience. When compared with RAP-CLA described

by A. Omid et.al, proposed RAP-CLA has a small

architectural difference w.r.t. multiplexer component.

Multiplexer select line is controlled by external signal

instead of circuit generated signal. Mux select line is

generated by lower 4 bits valency black cell in each

individual group with size equal to (groupsize-windowsize).

In proposed adder architecture

 1. the multiplexer select line is independently set/reset by

external signal (ApproxRCON). ApproxRCON signal which

is equal to Adder Size/Group Size.

 2. parallel computations of carries to reduce the delay of the

n-bit additions.

3. carry prediction circuit reuses a part of look ahead circuit

rather than building extra dedicated prediction circuitry.

4. while operating in approximate mode, part of a circuit is

getting bypassed which will reduce hardware complexity

with improved resource parameters.

Other than this, proposed approximate adaptive carry-

lookahead adder for error resilient applications is flexible to

work in approximate as well as exact mode. Proposed

architecture differs from previous RAP-CLA design. The

architectural differences are highlighted as: 1. The

multiplexer input ”1” is fed by output of higher 4 bits

valency black cell and input ”0” is fed by gray cell output

connected at highest bit-position in lower group of group

size. Inputs to this gray cell are one from lower 4 bits

valency black cell and another from output of previous

group or Cin in case of lowest group. 2. Select line of

multiplexer is defined as ”ApproxRCON” and it is

controlled by external signal either 0/1. Proposed adder

works in exact mode when select line signal set to zero and

in approximate mode when ApproxRCON set to 1. During

approximate mode, part of circuit is bypassed [3 bits at LSB

side in each group] due to which resource parameters

improve with reduced hardware complexity but error rate

exceeds at some extent [13].

Fig.13 Modified RAP-CLA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4717

13. Results and discussion

The role of approximation in arithmetic circuit like adder

was demonstrated through a comparative analysis of the ten

approximate adders with different architectures and one

exact adder for bit width of 16 bits and tabulated in table no.

1. The simulation results expressed in figure number 14, 15

and 16 illustrate that area wise ETA-I shows the best

performance with least area requirement of 95.418 um2 and

it is 35.41% efficient when compared with CLA. When

power consumption is considered, again ETA-I utilizes the

least power of 2.8584 uW and 30.30% power efficient than

CLA. In case of delay, ACA-I proved to be the fastest

among all with 847 pS. It is 63.64% faster than CLA. It

concludes the importance of approximate adders for

resource parameter improvements over accurate adders.

Fig.14 Area plot for selected adders

0

5

10

15

Power (uW)

Fig.15 Power plot for selected adders

0

1000

2000

3000

Delay (pS)

Fig.16 Delay plot for selected adders

Table 1. TAP Analysis of Different adder’s architectures

Parame

ter

Exact

Adder
Approximate Adders

 CLA
AC

A-I

ACA-

II
GeAr GDA

ETA

-I

ETA-

II

SAR

A

SAR

A-

DAR

RAP-

CLA

Modified

RAP-CLA

N=16,
N=1

6,

N=16

, K=8

N=16

, R=8,

P=8

N=16,K=4,

T=8 N=1

6,

A=8,

IA=8

,

K=9

N=16

,

G.S.=

8

N=16

, G.S.

=8

N=16

,

G.S.=

8,

W=4

N=16

,

G.S.=

8,

W=4

N=16,

G.S.=8,

W=4,

Valency

=4

K=8

,

P=7,

K=G.S.
ApproxRco

n=1

R=1

T=CLA

_approximation

_bits

Area 147.744
468.

5

181.9

44

181.9

44
138.51

95.4

18

146.0

34

152.5

32

154.9

26

186.7

32
172.368

Power

(uW)
4.089

11.4

4
5.311 5.311 4.17

2.85

84
4.44 4.266 4.324 5.601 5.04

Delay

(pS)
2330 847 1444 1444 2337 1257 1359 2604 1916 1584 1152

14. Conclusion

Approximate circuits itself designed to produce inaccurate

results which are not wrong but slightly deviated from

accurate one. The purpose is to improve system’s

performance parameters. Arithmetic adders are the integral

parts of digital circuits. The comparative study concludes

with the use of a particular arithmetic adder for a specific

application. But in few situations it is mandatory to switch

from inaccurate to accurate results during run time

applications and usually it is called as dynamic approximate

computing. This is the future scope of the approximate

adders.

References

[1] S. Purohit and M. Margala , "Investigating the Impact

of Logic and Circuit Implementation on Full Adder

Performance," in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 20, no. 7, pp.

1327-1331, July 2012, doi:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4709 - 4718 | 4718

10.1109/TVLSI.2011.2157543

[2] V. Vijay et al. “A Review on N-bit Ripple Carry

Adder, Carry Select Adder, and Carry-Skip Adder”.

Journal of VLSI Circuits and Systems,2022, vol. 4, no.

1, pp. 27-32.

[3] Singh, Gurinder & Nidhi,. (2014). Efficient Design of

Ripple Adder and Carry Skip Adder with Low

Quantum Cost and Low Power Consumption. Int.

Journal of Engineering Research and Applications. 4.

[4] Hamacher, C., Vranesic, Z., Zaky, S., Manjikian, N.

“Computer Organization and Embedded Systems”,

2012, (6th ed.), McGraw Hill; Standard Edition (9

January 2023); McGraw Hill Education (India).

[5] Verma, A. K., Brisk, P., Ienne, P. “Variable Latency

Speculative Addition: A New Paradigm for Arithmetic

Circuit Design”. 2008 Design, Automation and Test,

Europe, 2008, pp. 1250-1255.

[6] B. Kahng and S. Kang. “Accuracy-configurable adder

for approximate arithmetic designs”. DAC Design

Automation Conference 2012, San Francisco, CA,

USA, 2012, pp. 820-825.

[7] M. Shafique, W. Ahmad, R. Hafiz and J. Henkel, "A

low latency generic accuracy configurable

adder," 2015 52nd ACM/EDAC/IEEE Design

Automation Conference (DAC), San Francisco, CA,

USA, 2015, pp. 1-6, doi: 10.1145/2744769.2744778.

[8] R. Ye, T. Wang, F. Yuan, R. Kumar and Q. Xu, "On

reconfiguration-oriented approximate adder design and

its application," 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), San

Jose, CA, USA, 2013, pp. 48-54, doi:

10.1109/ICCAD.2013.6691096.

[9] Kyaw, K. Y., Goh, W. L., and Yeo, K. S. (2010). Low-

power high-speed multiplier for error tolerant

application. In 2010 IEEE International Conference of

Electron Devices and SolidState Circuits (EDSSC),

pages 1–4.

[10] Zhu, N., Goh, W. L., and Yeo, K. S. (2009). An

enhanced low-power high-speed adder for error-

tolerant application. In Proceedings of the 2009 12th

International Symposium on Integrated Circuits, pages

69–72.

[11] R. Ye, T. Wang, F. Yuan, R. Kumar and Q. Xu, "On

reconfiguration-oriented approximate adder design and

its application," 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), San

Jose, CA, USA, 2013, pp. 48-54, doi:

10.1109/ICCAD.2013.6691096.

[12] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet

efficient accuracy configurable adder design,”

Transactions on Very Large Scale Integration (VLSI)

Systems, IEEE vol. 26, no. 6, pp. 1112–1125, 2018.

[13] O. Akbari, M. Kamal, A. Afzali-Kusha and M.

Pedram, "RAP-CLA: A Reconfigurable Approximate

Carry Look-Ahead Adder," in IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 65, no. 8,

pp. 1089-1093, Aug. 2018, doi:

10.1109/TCSII.2016.2633307.

