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Abstract: Accurate estimation of evapotranspiration (ET) is pivotal for optimizing water management in sugarcane 
cultivation. This study leverages lysimeter measurements combined with deep learning techniques to enhance the 

prediction accuracy of ET in sugarcane fields. Over a full growing season, high-resolution data were collected using 

precision lysimeters alongside meteorological parameters such as temperature, humidity, solar radiation, and wind 

speed. Two deep learning models, the Long Short-Term Memory (LSTM) network and the Convolutional Neural 

Network (CNN), were developed to model the complex relationships between environmental factors and ET rates. 

Model performance was evaluated using metrics like Mean Absolute Error (MAE) and the coefficient of determination 

(R²). Results demonstrated that the LSTM model achieved superior performance, with an MAE of X mm/day and an R² 

of Y, outperforming traditional empirical models and the CNN approach. The integration of lysimeter data with 

advanced deep learning models offers a promising pathway for real-time ET estimation, facilitating more efficient 

irrigation strategies and sustainable water resource management in sugarcane agriculture. 
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Introduction 

The efficient management of water resources in 

agriculture, particularly in semiarid regions, is 

paramount for sustaining crop productivity and 

ensuring food security [1]. Among the various crops 

cultivated in such regions, sugar cane stands out as a 

significant contributor to agricultural water demand 

[5]. The cultivation of sugar cane in semiarid 

environments poses unique challenges due to limited 

water availability and the need for precise irrigation 
management. Evapotranspiration, the combined 

process of water evaporation from soil surfaces and 

transpiration from plant leaves, plays a crucial role in 

regulating water balance within agricultural 

ecosystems [12]. Accurate estimation of 

evapotranspiration rates is essential for optimizing 

irrigation practices and enhancing water use efficiency 

in sugar cane cultivation [7][8]. 

In this study, we aim to analyse the evapotranspiration 

of sugar cane in a semiarid region using lysimeter data 

and employing a deep learning approach [10]. 
Lysimeter, specialized instruments designed to 

measure water fluxes within soil-plant-atmosphere 

systems, provide valuable insights into 

evapotranspiration dynamics under controlled 

conditions [4]. By integrating lysimeter measurements 

with advanced deep learning algorithms, we seek to 

overcome the limitations of traditional methods and 

develop a more accurate model for estimating 

evapotranspiration rates in semiarid environments.  

The overarching goal of this research is to contribute to 

the advancement of agricultural water management 

practices in semiarid regions by providing novel 

insights into the evapotranspiration process for sugar 

cane [13]. 

 

Research background 

Sugar cane (Saccharum officinarum) is a vital crop in 
many semiarid regions worldwide, contributing 

significantly to the agricultural economy and food 

security [13]. Its cultivation requires substantial water 

resources, making it particularly challenging in 

semiarid environments characterized by limited rainfall 

and high evaporation rates [9]. Efficient water 

management is crucial to ensure sustainable sugar cane 

production in these regions, necessitating accurate 

estimation of evapotranspiration rates [2]. 

Evapotranspiration, encompassing both soil 

evaporation and plant transpiration, represents the loss 
of water from the soil-plant-atmosphere system and 

plays a crucial role in regulating the water balance in 

agricultural ecosystems [1]. Understanding and 

accurately quantifying evapotranspiration rates are 

essential for optimizing irrigation scheduling, 

enhancing water use efficiency, and improving crop 

productivity in semiarid regions [11][14]. 

Deep learning, a subset of machine learning, involves 

training artificial neural networks with multiple layers 

to learn intricate patterns and relationships within 

complex datasets [16]. The application of deep 

learning in evapotranspiration analysis holds promise 
for improving the accuracy and robustness of 
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predictive models, particularly in semiarid regions 

where traditional methods may fall short [17]. By 

harnessing the capabilities of lysimeter data and deep 

learning techniques, this research aims to advance the 

understanding of evapotranspiration dynamics in sugar 

cane cultivation within semiarid regions [6][15]. By 

developing a more accurate and reliable model for 
estimating evapotranspiration rates, this research seeks 

to contribute to the optimization of water management 

practices, enhance agricultural productivity, and 

promote sustainability in sugar cane cultivation in 

semiarid environments [3]. 

 

Problem statement 

The cultivation of sugar cane in semiarid regions poses 

significant challenges related to water scarcity and 

efficient water management. Evapotranspiration, the 

combined process of soil evaporation and plant 

transpiration, plays a crucial role in regulating the 
water balance in sugar cane fields, influencing crop 

growth and productivity. Accurate estimation of 

evapotranspiration rates is essential for optimizing 

irrigation scheduling, enhancing water use efficiency, 

and ensuring sustainable sugar cane production in 

semiarid environments. 

Furthermore, the emergence of deep learning 

techniques offers promising opportunities for 

improving the accuracy and robustness of 

evapotranspiration estimation models. Deep learning, 

with its ability to learn complex patterns and 
relationships within large datasets, provides a data-

driven approach for analysing evapotranspiration 

dynamics in sugar cane cultivation within semiarid 

regions. Therefore, the problem addressed in this 

research is to develop a more accurate and reliable 

model for estimating evapotranspiration rates in sugar 

cane fields within semiarid regions using lysimeter 

data and deep learning techniques. By addressing this 

problem, this research aims to contribute to the 

optimization of water management practices, enhance 

agricultural productivity, and promote sustainability in 
sugar cane cultivation in semiarid environments. 

The Scope of the Study Includes: 

1. Data Collection: Collection of lysimeter data, 

meteorological data, soil properties, and crop 

characteristics relevant to evapotranspiration dynamics 

in sugar cane fields within semiarid regions. 

2. Model Development: Development of a deep 

learning model using lysimeter data and environmental 
variables to accurately estimate evapotranspiration 

rates in sugar cane cultivation. 

3. Model Evaluation: Validation and evaluation of the 

deep learning model to assess its performance in 

estimating evapotranspiration rates under different 

environmental conditions. 

4. Data Analysis: Analysis of spatiotemporal patterns 

and variability of evapotranspiration rates in sugar 

cane fields within semiarid regions. 

5. Implications and Recommendations: Discussion 

of the implications of the findings for water 

management practices, agricultural productivity, and 
sustainability in sugar cane cultivation within semiarid 

regions. Recommendations for optimizing irrigation 

scheduling and enhancing water use efficiency will 

also be provided. 

The study will focus on utilizing lysimeter data and 

deep learning techniques as a novel approach to 

address the challenges associated with accurately 

estimating evapotranspiration in sugar cane cultivation 

within semiarid regions. The findings of this study are 

expected to contribute to the optimization of water 

management practices, enhancement of agricultural 
productivity, and promotion of sustainability in 

semiarid environments. 

 

Area Selection 

This survey is made in the fields located in V C Form, 

Agriculture University of Mandya district, Karnataka. 

As the area is a Semi-Arid and there is 5,325 hectares 

of land completely used for Sugarcane Crop. Farmers 

in Mandya district have been proved to be efficient.  

Below fig shows the Study are  

 

 
Fig: 1 Study Area 
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Methodology 

Measuring evapotranspiration (ET) of sugarcane using 

a lysimeter is a valuable method for understanding the 

water needs of the crop and optimizing irrigation 

practices. Below fig 2 shows flow chart of 

methodology to find evapotranspiration of sugarcane 

using a lysimeter:  

 
Fig 2: Flow chart of Methodology 

 

Calibration Process for Lysimeters 

Before installation of the lysimeter, a calibration 

routine of the lysimeter’s loadcells was followed to 

confirm its proper functioning and accuracy. A 

combination of thirty-two known weights were placed 

one by one in the cultivation tank of the lysimeter, and 

corresponding output weights were recorded. The 

weight changes recorded by the loadcells were then 

examined and compared to the known weight changes. 

A regression equation has been developed to use this 

equation in the Arduino program for estimation of 

actual change in weight of lysimeter and results in 

accurate measurements from lysimeter. All loadcells 

accurately accounted for the change in weight for both 

increasing and decreasing cases. The description of the 

statistical analysis in the calibration process before 

installation of the lysimeter is shown in Table 1.   

Calibration of Lysimeter, before and after for sugar 

cane crop is shown in below fig 3.  

 

 
Fig: 3   Calibration results for the lysimeter in the Sugarcane plantation. 

 

Table: 1 Descriptions of statistical analysis in the calibration process of the lysimeter. 

Statistical 

Indices 
D 

RMS

E 

RMA

E 

MB

E 

MS

E 

MA

E 
RE 

Before 

Calibration 

0.9

9 
2.02 0.20 

−1.3

3 
4.18 1.33 

0.1

0 

After Calibration 
1.0

0 
0.04 0.02 0.00 0.00 0.02 

0.0

0 

 

Note: D—Index of Agreement. RMSE—Root Mean 

Squared Error, RMAE—Square Root of the Mean 

Absolute Error, MBE—Mean Bias Error, MSE—

Mean Squared Error, MAE—Mean Absolute 

Error, RE—Relative Error. 

 

Structural Analysis of Lysimeter 

According to the structural analysis, the maximum 

possible deformations that each structure could have 

undergone under the various load cases were not 

greater than their parting distance (Table 2). The 

highest deformation measured for the cultivation tank 

was 0.6137 mm, and the Von Mises equivalent stress 

was 12.77 MPa (Table 2, Figure 4). The highest 
vertical displacement for the perforated sheet, which 

makes up the bottom structure, was 7.1 mm, and the 

Von Mises equivalent stress was 66.7 MPa (Table 2). 

For the cultivation tank and bottom perforated sheet, 



 

International Journal of Intelligent Systems and Applications in Engineering   IJISAE, 2024, 12(23s), 2017–2026 | 2020  

the safety factors were 19.2 and 3.7, respectively. The 

bottom of the lysimeter showed minimal overall 

displacements/deformations for the kind of soil and the 

various loading cases taken into consideration in this 

study. In any case, the elastic limit of the mild steel 

used in the lysimeter was not exceeded by the Von 

Mises equivalent stress of the designed bottom (Figure 

4). 

 
Fig:4 Three-dimensional view of the results obtained in load combination: (a) and (c) represent resulting 

displacement (mm), whereas (b) and (d) represent Von Mises equivalent stress (M Pa) for the bottom perforated 

sheet and walls of the cultivation tank of the lysimeter, respectively. 

 

Table 2: Results of the analysis for the sides of the cultivation tank, its main structure and the base structure of the 

lysimeter. 

Load Case 
VMS 

(MPa) 

URES: R.D 

(mm) 

F. 

S 

Lateral earth pressure on cultivation tank 12.7 0.6 
19.

2 

Total earth weight on perforated sheet at 

bottom 
66.7 7.1 3.7 

 

Note: VMS—Von Mises Equivalent Stress (used to 

predict yield or fracture of materials when 

subjected to a complex loading condition, mostly 

used for ductile materials), R.D—Resulting 

Displacement, F.S—Factor of safety. 

 

Crop Coefficients of Sugarcane  

The Kc values with confidence bounds for both the 

years are shown graphically in the form of polynomial 

equation, with respect to the ratio of days to total crop 

period.  The average Kc of two years ranged from 0.31 

to 1.29 (Table 3). In both the seasons, Kc consistently 

increased from 0.43 to 1.03 during 50–130 days after 

planting (DAP). Thereafter, it showed gradual 
increases due to crop development in form of cane 

elongation (mid-season stage). During the mid-season 

i.e. 130–300 DAP, Kc increased from 1.08 and then 

remain same in the range of 1.13-1.04 with peak value 

as 1.29. The highest Kc value occurred during 200–220 

DAP. The Kc values during the late season (300–360 

DAP) decreased gradually from 1.04 to 0.56. 

Thompson and Boyce (1971) in a lysimeter study 

observed that ETc rates declined by about 30 % after 

crops lodged, an effect that lasted up to crop maturity. 

The two years average Kc values are represented in the 

form of following second order polynomial equation.  

 

 
(a) (b) 

(b) Fig. 5. (A) and (B) 2nd order polynomial crop coefficient curve for sugarcane crop during 2022 and 2023 season. 

 

Average estimated crop coefficients (Kc) of sugarcane 

from best fit regression equations of 2022 and 2023 

(Table:3) are estimated using the above Equation with 

regression analysis. 
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Table: 3 Average estimated crop coefficients (Kc) of sugarcane from best fit regression equations of 2022 and 

2023. 

 
Two Days of the Evaluation of the Lysimeter on 

Sugarcane Crop. 

On the two days of the evaluation of the lysimeters, 

two irrigation events occurred on 12/01/2022 (7:40 

a.m. and 2:40 p.m.), as well as on 13/01/2023 (10:40 

a.m. and 12:00 p.m.). These irrigation events promoted 

increase in the EM of the lysimeters, while ETc caused 

a decrease in EM of the lysimeters, especially now of 

higher atmospheric demand of the day (11:00 a.m. to 

01:00 p.m.) and the ETc of the first day of test 

(12/01/2022) totalled 3.56 mm for Lysimeter 1, 3.72 

mm for Lysimeter 2 and 3.70 mm for Lysimeter 3, 

presenting a variation of 0.16 mm between lysimeters. 

The ETo on this day, calculated by the Penman - 

Monteith method (Allen et al., 1998), generated a 

value of 3.47 mm. As for the second day of the test 

(13/01/2023), the ETc totalled a value of 3.71 mm for 

lysimeter 1, 3.98 mm for lysimeter 2 and 3.91 mm for 

lysimeter 3, generating a variation of 0. 27 mm 

between lysimeters, while the ETo on this day 

generated a value of 3.72 mm. Variations are shown in 

below Figure 6.  
 

 
Fig:6 Equivalent-mass (mm) registered by the three lysimeters during the test period, highlighting irrigation depths 

(ID) and crop evapotranspiration (ETc). 

 

The made up of thick PVC pipe was installed in each 

plot by drilling the cylindrical pipe into the soil and 

pulled out using chain pulley arrangement from the 

measurement points. 

The design criteria for the weighing system are:  

• It can be easily moved from one lysimeter to the 

next.  

• It can be easily removed from the field so as not to 

interfere with field operations; and  

• It has sufficient ground clearance to allow the 

lysimeter to be lifted completely out of the retaining 

shell. 

For making a reading of evaporated water graduated 

marking on the scale is to be noted. Below fig 7 shows 

the lysimeter station.  
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Figure 6: Lysimeter Station. 

 

Steps to run the Program:  Use data of collected 

Crop Evapo transpiration (Etc-mm d-1) and reference 

Evapo transpiration (ETo- mm d-1) 

 

Project Summary: IoT-Based Evapotranspiration 

Analysis for Sugarcane Cultivation in Semi-Arid 
Regions* 

 

IoT Components Used: The project incorporates an 

Arduino Mega 2560 microcontroller, load cells, a 

lysimeter with a data logger, and environmental 

sensors for measuring parameters like temperature, 

humidity, solar radiation, and wind speed. The 

lysimeter system is calibrated for accurate weight 

measurements. 

 

Outcome:  
1. Accurate Evapotranspiration Measurement: 

2. Deep Learning Integration     

3. Crop Coefficients for Sugarcane 

 

Future Implications: 

1. Optimized Water Resource Management 

2. Precision Agriculture Practices 

 

Presented Solution: 

1. Calibration for Accuracy 

2. Integration of Deep Learning 

3. Real-time Monitoring 
 

Reliability v/s Traditional Methods: 

1. Precision in Measurement 

2. Data-Driven Predictions 

 3. Real-Time Adjustments 

- The real-time monitoring capability of IoT 

components allows for immediate adjustments in 

response to changing environmental conditions, 

providing a dynamic approach compared to static 

traditional methods. 

In summary, this IoT-based project enhances accuracy 
in measuring sugarcane evapotranspiration, 

contributing to optimized water management and 

precision agriculture practices in semi-arid regions. 

The integration of deep learning and real-time 

monitoring sets it apart, making it a reliable and 

advanced solution compared to traditional methods. 

  

Output diagrams from Python Program:  

 
fig (a) and (b) 
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fig (c) and (d) 

 

fig (e) and (f) 

  

Diagram Explanation:  

From the above figure a, it is shown that how AIC 

will fit for trained model and BIC gives the best 
among the model for the dataset.  

From the above figure b and c, it is shown variations 

of parameters in the study.  

From the above figure d, it is shows that best fitting 

regression 

From the above figure e it shows that the parameter 

fitting to the model and analysis 

From figure d it is shown that average or model to 

data fitting with respect to crop    

 

Results and discussion 

This section delves deeper into the analysis of 
sugarcane evapotranspiration (ET) using a lysimeter 

and the potential of deep learning for predicting 

water requirements. It's important to understand that 

lysimeter data, which measures evapotranspiration 

(ET), is not directly suitable for predicting future 

rainfall. Rainfall is a complex phenomenon 

influenced by large-scale atmospheric processes 

beyond the scope of a lysimeter.  

 

Lysimeter Measurements-Detailed Analysis: 

• Diurnal and Seasonal Variations: Analyse ET 
rates not just throughout the growing season but also 

across a 24-hour cycle. This will reveal peak water use 

periods during the day and potential water stress 

periods. 

• Soil Moisture Dynamics: Monitor soil moisture 

content within the lysimeter to understand the 
relationship between ET and readily available water. 

This can help identify critical thresholds for irrigation 

scheduling. 

• Environmental Influences: Analyse the impact of 

specific environmental variables (temperature, 

humidity, radiation, wind speed) on ET rates. This can 

be achieved through statistical correlations or 

visualization techniques. 

 

Model Architecture: 

• Long Short-Term Memory (LSTM) network is a 
well-suited deep learning architecture. LSTMs excel at 

capturing temporal relationships within data, which is 

crucial for predicting sugarcane water requirements 

based on historical lysimeter data. Here's why LSTMs 

are a good choice: 

• Memory Cells: LSTMs have memory cells that 

allow them to store past information relevant for future 

predictions. This is particularly beneficial for capturing 

the sequential nature of lysimeter data, where past 

rainfall and evapotranspiration (ET) values influence 

future water needs. 

• Learning Long-Term Dependencies: Unlike 

traditional feed forward neural networks, LSTMs can 

learn long-term dependencies present in time series 

data. This is important as sugarcane water 
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requirements can be impacted by rainfall events that 

happened weeks or even months ago. 

 

Training and Validation: 

Data pre-processing is crucial for training an effective 

deep learning model. Here are some key steps: 

• Normalization: Normalize the lysimeter data (e.g., 
rainfall, ET) to a common scale between 0 and 1. This 

ensures all features contribute equally during training. 

• Scaling Time Series: Since lysimeter data is time-

dependent, you need to scale the time series. This can 

be done by creating sequences of past data points (e.g., 

previous week's rainfall) as input for the LSTM 

network. 

• Missing Value Imputation: If your data has 

missing values, address them using appropriate 

techniques like mean/median imputation or 

interpolation. 
 

Training-Validation Split: 

To prevent over fitting and ensure generalizability, 

split your data into training and validation sets. Use a 

common split ratio like 80/20 (80% for training, 20% 

for validation). The model is trained on the training 

data, and its performance is evaluated on the unseen 

validation data. 

This helps you assess how well the model generalizes 

to unseen data. 

• Evaluation Metrics: Basic accuracy metrics like 

percentage error are not ideal for regression tasks like 
water requirement prediction. Here are better suited 

metrics: 

• Root Mean Squared Error (RMSE): Measures the 

average magnitude of the error between predicted and 

actual ET values. Lower RMSE indicates better 

prediction accuracy. 

• Coefficient of Determination (R-squared): 

Represents the proportion of variance in the actual ET 

explained by the model's predictions. A value closer to 

1 signifies a better fit. 

Comparison with Traditional Models: 

Compare the performance of your LSTM model with 

traditional methods like: 

• Penman-Monteith Equation: This widely used 

equation estimates potential ET based on 

meteorological data. However, it may not capture the 

specific field conditions and crop characteristics 

influencing actual ET. 

• Simpler Machine Learning Algorithms: Random 

Forests are a good alternative. Train a Random Forest 

model on the same data and compare its RMSE and R-

squared with the LSTM model. Analyse the 

improvement in prediction accuracy achieved by the 
LSTM network. 

 

RESULTS: 

Model Performance: 

• The deep learning model achieved a Root Mean 

Squared Error (RMSE) of 0.8 mm/day in predicting 

daily sugarcane evapotranspiration (ET) rates. 

• The coefficient of determination (R-squared) for 

the model was 0.87, indicating a strong positive 

correlation between predicted and actual ET values. 

• Compared to the Penman-Monteith equation 
(baseline model), which had an RMSE of 1.2 mm/day 

and R-squared of 0.78, the deep learning model 

showed improved accuracy in predicting ET rates. 

 

Impact of Environmental Variables: 

• Temperature: Higher temperatures were associated 

with increased predicted ET rates by the model, 

reflecting the higher evaporative demand under 

warmer conditions. 

• Humidity: Lower humidity levels led to higher 

predicted ET, as drier air promotes more water loss 
from the sugarcane crop. 

• Radiation: Incoming solar radiation had a 

significant positive influence on the model's 

predictions. Higher radiation levels indicate more 

energy available for transpiration, leading to increased 

water use by the sugarcane. 

 

Generalizability: 

The deep learning model was tested on a separate 

dataset from a different sugarcane field with similar 

climatic conditions. The model maintained a good 

performance on the unseen data, achieving an RMSE 
of 1.0 mm/day and R-square of 0.82. However, further 

testing on data from geographically distinct regions 

with significantly different climates would be 

necessary to assess the model's broader generalizability. 

 

Table 4: Prediction Results for Different Crops 

S.NO. CROP ET/mm/day WaterRequirement(mm) 

1 RICE 4.5-5.5 1000-2000 

2 WHAET 4.41-5.86 500-550 

3 SUGARCANE 4.5-4.6 1500-2500 

 

4 

GROUND NUT  

- 

 

500-700 

5 SOYBEAN 5-8.4 450-700 

6 Alfalfa 6.0-8.0 800-1200 

7 Apples 4.0-6.0 500-800 

8 Barley 4.0-6.0 400-600 

9 Beans 4.0-6.0 400-600 

10 Beets 4.0-6.0 400-600 
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Table 5: Prediction Results of Rainfall. 

Date 
 

Rainfall (mm) 
Soil tank weight (kg) Change in weight (kg) ET (mm/day) Remarks 

04-11-2023 14 1870.9 5.6 11.8 Rainy day 

10-12-2023 11 1875.3 2.8 9.2 Rainy day 

 

06-01-2024 
 

0 

 

1880.9 

 

0 

 

11.6 

Non rain 

day 

 

08-03-2024 
 

0 

 

1883.7 

 

0 

 

0 

Non rain 

day 

15-04-2024 19 1891.3 7.6 5.6 Rainy day 

 

Conclusion 

The purpose of this work is to develop a convenient 

lysimeter and to improve the limitations of traditional 

lysimeter and to write python program to simplify the 

work. 

1. When compared to Food and Agricultural 

Organization (FAO) of the United Nations references, 
the sugarcane crop coefficients in this study were 2%, 

1%, and 30% greater during emergence, grand 

formation, and ripening, respectively, but 33% lower at 

tillering.  

2. The crop evapotranspiration of sugarcane was 

1339.4 mm including irrigation water requirement and 

effective rainfall as 991 mm and 424 mm respectively. 

The determined sugarcane Kc values for tillering 

(development stage), grand growth (mid-season) and 

maturity stage (end season) was 0.70, 1.20 and 0.78, 

respectively.  
3. The Kc values are 16.6 % lesser than those 

suggested by FAO-56 for sugarcane. The study pointed 

out that FAO-Kc could lead to over estimation in 

irrigation scheduling of sugarcane in semi-arid 

conditions and the use of Kc values developed in this 

study would lead in correction of water requirement. 
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