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Abstract – Human emotion recognition is a peculiar task. Humans express emotions via facial gestures, body temperature, 

and brain activity. Interestingly, brain activities can be observed via EEG recordings. The DEAP dataset is a rich source 

of multimodal physiological signal representation data including EEG recording encapsulating range of stimulated human 

emotions. In this paper, a novel CNN-RNN architecture is reported to recognize human emotions using the DEAP data. 

The CNN-RNN model utilizes the concepts of two-dimensional convolutions in a time-distributed fashion at first and 

later, recurrence exploits the temporal information. The trained model addresses the issues related to synergistic 
exploitation of temporal and multi-channel information in high- dimensional feature spaces and attempts to improve the 

recognition performance. The impact of the model in classification performance is explained via the concepts of SHAP 

explainable AI (XAI) approach. Results indicate improved classification accuracy and SHAP values from the XAI 

framework indicate the significance of the architecture in achieving satisfactory performance. 

 

Index Terms - Emotion detection, time-distribute convolutions, CNN-RNN, Explainable AI learning. 

 

1. INTRODUCTION 

Emotion is a reaction to an event based on conscious and 

subjective experience such as seeing a video, listening to 

music or sound, reading a book, or expressing by any 

particular biological response. Emotions show an 
individual physiological status which is helpful in some 

medical diagnoses, suspect identification in crime, 

games, marking/gamming, education etc. [1], [2], [3]. 

These reactions may be internal or external biological 

responses [4], [5]. The reactions such as voice change, 

facial expression and body language are identified as 

external reactions however many inner expressions 

(physiological expressions) are also used for emotion 

detection and identification. 

Before using inner expression data, text, facial 

expression and speech were the most common methods 
to detect emotions [5], [6]. Using physiological data 

towards emotion recognition has become an appropriate 

alternative to external expression (facial expressions, 

text, and speech data). Because external expressions-

based emotion detection and classification can be easily 

manipulated. That is why many recent researches have 

focused on physiological data [7].  Physiological data 

models can be utilized in unimodal or multimodal 

approaches for emotion detection.  

However, both unimodal and multimodal emotion 

detection methods have their pros and cons. The 
multimodal method for emotion detection utilizes a 

combination of different physiological signals such as 

electrocardiograms (ECG), electromyogram (EMG), 

electroencephalogram (EEG), electrodermal activity 

(EDA), Photoplethysmogram (PPG), galvanic skin 

response (GSR), respiratory inductive plethysmograph 

(RIP), blood volume pressure (BVP) and temperature 

[8]. The multimodal emotion detection method 

commonly gives better accuracy, compared to the 

unimodal method however multimodal emotion 

detection method needs longer processing time and has 
complex data collection procedure compared to the 

unimodal method [8].  

Among other methods, deep learning methods have 

gained popularity in emotion identification with 

physiological signals. In particular, the use of CNNs and 

RNNs in this regard is worth mentioning. However, 

recently, the combined use of CNNs and RNNs for 

emotion identification is gaining attention. Li et al. [9] 

applied wavelet features to train CNN combined with 

LSTM and the binary classification accuracy reached 

72%. Roy et al. [10] concentrated on natural and 

abnormal brain activities and suggested four different 
DL architectures based on CNN-GRUs. The proposed 

ChronoNet model achieved 90.60% and 86.57% training 

and test accuracies, respectively. Supratak et al. [11] 

proposed a deep learning model, named DeepSleepNet, 

for automatic sleep stage scoring based on raw single-

channel EEG. They utilize CNN to extract time-

invariant features, and Bi-LSTM to learn transition rules 

among sleep stages automatically from EEG epochs. 
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This approach achieved an accuracy of 90%. Bashivan 

et al. [12] proposed a novel approach for learning 
representations from multi-channel EEG time series, and 

demonstrated its advantages in the context of the mental 

load classification task. They train a deep recurrent CNN 

inspired by state-of-the-art video classification to learn 

robust representations from the sequence of images. The 

proposed approach is designed to preserve the spatial, 

spectral, and temporal structure of EEG which leads to 

finding features that are less sensitive to variations and 

distortions within each dimension. They achieved an 

overall accuracy. From the above literature, this current 

study finds motivation to explore and utilize CNN-RNN 
models for emotion identification with multi-channel 

physiological signals including EEGs.  

It is also notable that although studies have shown that 

EEG signal classification via deep learning models can 

achieve high prediction accuracy [13] [14] but, these 

models are still considered “black boxes,” lacking 

interpretability and immediate understanding ability for 

healthcare professionals. In recent years, explainable AI 

or XAI has become increasingly significant tool in the 

AI world because of its application in understanding 

critical decisions as well as the fact that regulators hold 

businesses responsible for the judgments their AI 
models make. Its rapid growth suggests that in the days 

to come, real-time AI deployment and perception may 

change dramatically. An XAI framework's module 

typically consists of two parts, the interpretability model 

and the explainability model. [15]. Explaining the black-

box model's decision output is the main goal of the 

explainability model. Explainability tries to answer the 

‘why an algorithm produces a particular response’ 

question. Therefore, it takes into consideration issues 

like as the weighting of each variable inside the model 

in order to evaluate the relative value of each variable in 
answering the question. Although the procedure that 

takes place within the model may continue to be a 

mystery, we are aware of the reasons why the response 

has been delivered. In the context of understanding 

analytical models and algorithms, interpretability refers 

to the process of identifying how the model or algorithm 

arrived at its results. For example, when a model is 

interpretable, it is easy to comprehend the inputs and 

processes that the model utilized in order to arrive at its 

predictions. Frameworks like GradCAM  [16], [17], 

Local Interpretable Model-Agnostic Explanation 

(LIME) [18], [19], Shapley Additive explanations 
(SHAP) [20] [21], Layer-wise Relevance Propagation 

(LRP)  [22], [23], and others fall under explainability 

models. In order to train an interpretable model that is 

based on the predictions of black-box models, the well-

known Local Interpretable Model-agnostic Explanation 

(LIME) was developed. Under normal circumstances, 

the LIME is capable of rapidly producing superior local 

explanations for any black-box model. Game-theoretic 

elements were included in the Shapley additive 

explanation (SHAP), which resulted in an improvement 

to the LIME model. It tends to attribute characteristic 
elements of the data to the measurement results that are 

significant for making predictions. A more 

comprehensive explanation of learning models is 

provided by the SHAP, which contributes to an overall 

improvement in comprehension. Among the many 

methods that are capable of producing visual 

explanations for the decisions that are made by CNN-
based models, the Grad-CAM approach is yet another 

example. 

This paper highlights the study in which a novel human 

emotion classification model is developed based on the 

concepts of CNNs, RNNs, and XAI. The study proposes 

a novel model for use in human emotion classification. 

In particular, at first, a complete multi-channel/multi-

lead signal is fragmented in time dimension. The CNNs 

act on these time-wise fragments of the entire signal 

whereas the RNNS act on temporally distributed 

transformed features obtained from the CNNs. The 
Shapley Additive Explanations or more commonly 

termed as the SHAP method is used for explainability of 

the significance of the model for the application. This 

paper is divided as follows. Section 1 provides a premise 

for human emotion recognition using physiological 

signals, various sensors used so far to record and 

represent these emotions or plausible indicators, popular 

datasets in the field, and CNN-RNN based models and 

methods popularly reported so far. In section 2, under 

materials and methods, at first, the DEAP dataset 

considered for study is discussed. Further, the proposed 

methodology is discussed describing model 
configuration and impact. Section 3 highlights 

classification performance results obtained using the 

proposed CNN-RNN model on the popular DEAP 

dataset and its comparison with other recent results. This 

section also covers the discussion on the explainability 

of the proposed model performance. Finally, section 4 

concludes the study. 

 

2. MATERIAL AND METHODS 

Dataset 

The DEAP database is a Database for Emotion Analysis 
using the Physiological signals dataset [24]. It includes 

EEG signals and certain other physiological signals of 

32 participants. These signals are recorded while they 

watched 1-minute music videos. Overall, each 

participant watched 40 such videos and corresponding 

physiological responses are stored amounting to 1280 

unique observations. A total of 44 sensors are used to 

record 48 different physiological responses. The raw 

recordings are down-sampled to 512 Hz. The sensors 

consisted of 32 EEG sensors, 12 peripheral sensors, and 

one status signal channel. The dataset description is 

briefly summarized in Table 1. For model development 
in this study, all sensory data except the face videos are 

considered. Each participant’s reported emotional 

responses majorly include arousal, valence, like dislike, 

dominance and familiarity. Preliminary analytics are 

made on the data. Two-dimensional histograms are used 

to visualize sample distribution for each major 

emotional response and are shown in Figure 1. For 

example, it is clear in Figure 1(a) that participant number 

15 showed a ‘high-valence’ response to approximately 

15 videos, a ‘high-arousal’ response to approximately 10 

videos, a ‘high-dominance’ response to only 2 videos 
and, a ‘high-liking’ response to 25 videos. Also, 

participant 15 was not familiar with any of the music 

videos. 
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Table 1 Summary of the DEAP dataset containing 

multi-physiological signal. 

Dataset DEAP 

Participants 32 
Signals 

EEGs, EMGs, EOGs, GSR, 

RR, Plethy, Temperature 

44  

32, 4, 4, 1, 1, 1, 1 

Stimulation Music video clips 

Stimulation duration 1-minute 

Number of stimulations per 
participant 

40 

Emotions 40 emotions based on 

the Arousal-Valence 

map 

Supplementary data Face videos  

   

 

Methodology 

A multimodal emotion classification process has a few 

key steps. Based on those steps, a methodology as shown 

in Figure 2 is opted here in this study. The First step is a 

data acquisition/collection step followed by its 

preprocessing step which removes unwanted noise from 
data. Next is an extraction or selection of features step 

and the final step is the classification of one of the target 

labels. Here a CNN-RNN based model is proposed for 

emotion classification.  

 

CNN-RNN Model: Configuration, training and 

validation 

A classification model is developed using CNNs, RNNs, 

and Dense layers. The CNN layers act on time-wise 

fragments of the entire signal. Each time-wise fragment 

acts as a time stamp. CNN layers extract more complex 

features from the high dimensional input feature space 
of 40 features as discussed in the dataset section above. 

The extracted features from CNNs at any particular 

fragment act as one time-stamp signal for RNNs. The 

RNNs exploit this 10 time-stamp complex signal and 

attempt to extract temporal information from the signal. 

The model gives the advantage of both CNNs which are 

excellent feature extractors and RNNs which can 

represent the entire past in one activation. Based on this 

notion, a CNN-RNN model is developed. Its 

configuration, training, and hyperparameter settings are 

discussed here. Table 2 summarizes the model 

configuration. At first, the input signal with 60 seconds 

and 40 features information is fragmented into signals of 

10 seconds each. These 10 second signals are then 
exploited using several convolutional layers and pooling 

layers. Two-dimensional convolutional filters are used 

for this purpose. Once the features are transformed, these 

are concatenated to be put into a recurrence layer for 

temporal information extraction. Each 10-second 

information acts as a time node. The recurrent layer 

provides extracted features that are finally connected to 

a classification layer with ‘SoftMax’ via a fully 

connected mode. 

 

Model Training and Hyperparameter Settings 

The model is trained and tested on 1280 samples. An 
80/10/10 ratio has opted for training, validation, and 

testing respectively.   

Categorical Cross Entropy is chosen as the loss function 

and Adam method is considered for optimization. A 

batch size of 16 is set as the total sample size is low. The 

model is trained for over 70 epochs and performance 

saturation is achieved. 

 

3. RESULTS AND DISCUSSION 

The CNN-RNN model summarized in Table 2 is applied 

to the DEAP dataset discussed under the Dataset 
section. Classification performance over different 

emotions is listed in Table 3. Classification 

performances of other popular human emotion 

classification methods reported in the literature [25], 

[26], [27]are also listed in Table 3.  

It is clear from the table that the proposed CNN-RNN 

model has performed better than support vector 

machines (SVMs), logistic regression (LR), decision 

trees (DT), K-nearest neighbors (KNN), and linear 

discriminant analysis (LDA).  

In order to understand how the proposed can perform 

well on the DEAP dataset, an XAI framework is opted 
for. Shapley Additive Explanations or more commonly 

known as SHAP method are considered. This method 

tries to explain individual predictions via game 

theoretically optimal SHAP values. SHAP values are 

computed for testing samples of the dataset are reported 

here. Figure 3 depicts the SHAP values for three 

different class labels. It is clear that for the ‘valence’ 

class (in blue), feature 22 is most significant whereas for 

‘Liking’, feature 15 seems more significant. In contrast 

to feature significance, SHAP method also identifies 

signal segments in time that are contributing more 
towards the classification of a particular signal. Figure 4 

depicts parts of an arbitrary signal of the ‘valence’ class. 

The segments highlighted in orange are time segments 

contributing more in comparison to other parts towards 

classification. 

 

CONCLUSION 

The study presented here establishes the potential of 

synergistic exploitation of CNNs and RNNs in achieving 

improved emotion classification performance with 

multi-modality physiological signals. In order to use the 

best of both models, the complete signal is first 

fragmented in the time dimension. From the 60 - second 

recorded signal, 10 fragments of 1 second each are made. 

The CNNs are firstly deployed to extract complex 

features from high- dimensional multi-physiological 

DEAP data. Two-layer architecture is employed to 

obtain transformed feature space. Every 1-second 

transformed feature further acted as a time node for a 
recurrence layer to exploit temporal information 

underlying the features. Two-dimensional convolutions 

in the convolutional layers and LSTM units in the 

recurrence layer are used. The CNN-RNN model 

proposed here achieved satisfactory classification 

accuracy for all major emotions namely valence, 

arousal, liking, and dominance classes. The SHAP 

method-based feature importance plots are drawn from 

the CNN-RNN model. The SHAP values and analytics 

helped explain the better performance of the proposed 

model.   
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(a)          (b) 

 
(c) 

 
(d)      (e) 

Figure 1 Participant ratings two-dimensional histogram: (a). Participant -Valence, (b). Participant-Arousal, (c). 

Participant-Dominance, (d). Participant-Liking, and (e). Participant-Familiarity. 

  

 
Figure 2 Flowchart for the proposed CNN-RNN based emotion classification model 
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TABLE 2 CNN-RNN model configuration 

Input 

signal 
shape 

Fragmentat

ion stage  

Convolution stage 1: 

2D convolution + 2D 
Pooling 

(For each of the 10 

fragments) 

Convolution stage 

2: 2D convolution 
(For each of the 

10 fragments) 

Concatena

tion 
Concatena

te all 10 

fragments 

Recurrence stage: 

LSTMs 

Classification  

stage  

  Configura

tion  

 

Output 

shape  

Configura

tion 

Outp

ut 

shap

e 

Shape: 

10*40 (10 

being time 

stamps 

and 49 

being 

features) 

Configura

tion 

Outp

ut 

Number of 

labels: 4 

• Activ

ation: Softmax 
8064X

40 

10 

fragments 

in time 

creating 

each 

fragment 
of shape 

806X40  

Filter 

shape: 

130*10 

Number 

of filters: 

20 
Pooling 

size: 2*2 

337*15

*20 

Filter 

shape: 

337*15 

Number 

of filters: 

40 
 

1*40 Number 

of filters: 

20 

Recurrenc

e shape: 

10 
Signal 

flow: 

Bidirectio

nal. 

Strategy = 

Many to 

one 

1*20 

Hyperparame

ter settings 

Loss: categorical cross entropy 

Batch size: 46 

Number of epochs: 40 

Optimizer Adam 

 

 

 
Figure 3 SHAP values for each feature for an arbitrary sample. 

 

Table 3 Classification accuracies of popular algorithms in human emotion classification with DEAP dataset [27]. 

Class Method Accuracy (%) 

 CNN-RNN 69.10 

 Perm-Feature-CNN 67.10 

 LDA 63.12 

Arousal LR 64.82 

 DT 64.53 

 KNN 63.35 

 SVM 63.86 

 CNN-RNN 74.25 

 Perm-Feature-CNN 71.25 

 LDA 67.34 

Liking LR 68.08 
 DT 67.78 

 KNN 63.12 
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 SVM 67.18 

 CNN-RNN 69.54 

 Perm-Feature-CNN 68.54 

 LDA 56.25 

Valence LR 63.12 

 DT 64.6 

 KNN 57.68 

 SVM 63.59 

 CNN-RNN 68.5 

 Perm-Feature-CNN 69.5 

 LDA 66.67 

Dominance LR 67.73 

 DT 71.73 

 KNN 63.12 

 SVM 66.25 

 

 
 

 
Figure 4 EEG signal segments in time from each feature, contributing to the classification of the ‘Valence’ class. 
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