
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper  

 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4976 

 

An Integrated Container Monitoring Model Using Machine Learning 

Operations 

Zeinab Shoieb Elgamal1*, Laila Elfangary2, Hanan Fahmy 3 

Submitted: 12/03/2024    Revised: 27/04/2024     Accepted: 04/05/2024 

Abstract: Machine Learning Operations (MLOps) are designed to accelerate the development of high-quality machine 

learning (ML) models by reducing the deployment cycle and improving overall efficiency. Despite its promise, the concept 

of MLOps remains underexplored, with unclear implications for research and practical application. Current research has 

primarily focused on developing individual ML models, overlooking the complexities of deploying and managing integrated 

ML systems in real- world scenarios. A comprehensive understanding of system interactions is crucial, particularly when 

using multi-container services, which necessitate robust and effective monitoring solutions. In response, this study proposes 

a novel model, the Multi-Containers Monitoring Model, which leverages ML techniques such as Bidirectional Long Short-

Term Memory (Bi- LSTM) and State-Action-Reward-State-Action (SARSA) to address these challenges. The proposed 

model enables the effective scaling and monitoring of MLOps systems by interpreting and managing interactions between 

containers. It also expands software deployment capabilities across various settings, enhancing software release 

performance. The results demonstrate that Multi-Containers Monitoring Model improves deployment cycles by up to 

24.55%, reduces build length cycles by up to 13%, and decreases response time by up to 50.03%. This study offers a 

significant advancement in utilizing MLOps for real-world ML system monitoring and deployment. 

Keywords: Machine Learning Operations; Machine Learning; Monitoring; Deployment; Container. 

1. Introduction 

The rapid rise in popularity of ML applications has 

increased the focus on MLOps, which involves 

continuous integration and deployment (CI/CD) of ML- 

powered systems. Unlike traditional software, where 

changes primarily affect code, ML systems also involve 

model parameters and data, requiring CI/CD automation 

to expand and support model retraining in production 

environments [1][2]. However, many real-world ML 

applications fall short of expectations, as ML field has 

concentrated largely on building models rather than 

creating production-ready ML products and coordinating 

their deployment [3][4]. Moreover, these applications 

now generate and manage enormous amounts of 

operational data, requiring real-time monitoring [5]. 

Without careful monitoring of MLOps model selection 

and training, applications risk losing market relevance, 

potentially costing organizations financially and 

damaging their reputation [6]. 

This study proposes a multi-container monitoring 

(MCM) model for software deployment cycles, which 

tracks communication and container behavior to enable 

more frequent releases and reduce production issues. It 

also addresses MLOps methodology to tackle challenges 

in developing and monitoring efficient ML. The study 

adopts a comprehensive perspective to outline key 

principles, responsibilities, and architectural frameworks 

involved. 

This research provides a valuable contribution to the 

software industry through: 

• Ensure a unified understanding of terms 

"container," "DevOps," and "MLOps," along with their 

associated concepts. 

• Highlight a variety of studies on ML-based 

container orchestration techniques and MLOps. 

• Propose a new ML model (MCM) to monitor 

and learn more ML model features based on different 

software systems to improve software performance. 

The structure of this study is as follows: Section 2 

compares various ML methods. Section 3 outlines the 

methodology and introduces the proposed MCM model. 

1 Department of Information Systems-Faculty of Computers and 

Artificial Intelligence, Helwan University, Helwan, Egypt. 

ORCID ID: 0000-0002-9446-0133  

2 Department of Information Systems-Faculty of Computers and 

Artificial Intelligence, Helwan University, Helwan, Egypt. 

3 Department of Information Systems-Faculty of Computers and 

Artificial Intelligence, Helwan University, Helwan, Egypt. 

ORCID ID: 0000-0002-7247-4825 

* Corresponding Author Email: 

zeinab_elgamal@fci.helwan.edu.eg 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4977 

 

Section 4 details dataset, while Section 5 explains model 

setup. Section 6 presents the results, followed by a 

concluding summary in Section 7. 

Software engineering uses models like waterfall and 

agile, aiming to deliver production-ready applications 

[7]. DevOps replaced old models as traditional lifecycles 

are unsuitable for dynamic ML projects, as shown in 

Figure 1. 

 

Figure 1. Software Methodologies and ML pipeline [8]. 

DevOps combines software development and IT 

operations, aiming for rapid releases, team 

communication, automation, and continuous integration, 

delivery, and monitoring [9][10]. Continuous integration 

(CI) automates code integration from multiple 

developers, promoting frequent merges to speed 

development and improve quality [11]. Continuous 

delivery (CD) aims to deliver new features quickly by 

ensuring software is always production-ready [12]. 

Continuous deployment (CDE) is commonly mistaken 

for CD. With continuous deployment, all software 

changes are automatically deployed to production. 

Nevertheless, some companies have policies in place to 

get external clearance before making a new version of an 

application available to users. Continuous deployment is 

therefore optional and can be omitted, yet continuous 

delivery is deemed required in specific situations [8]. 

2. Machine Learning Techniques 

The reviewed studies, which published from 2018 to 

2024, covered a variety of ML techniques that have been 

used to container orchestration, including workload 

modeling and reinforcement learning decision-making. 

To improve prediction accuracy and computing 

efficiency, the increasing use of ML solutions seeks to 

Continuous monitoring uses cloud services to evaluate 

app performance against business criteria [13]. The ML 

pipeline automates the ML lifecycle, reducing human 

involvement [14]. 

MLOps integrates DevOps with ML practices, covering 

the entire lifecycle from data design to deployment, with 

a focus on automation and continuous monitoring 

[15][16], as illustrated in Figure 2. 

 

Figure 2. MLOps High-level Process [14]. 

Containerization, dockerizing, and other roles and 

concepts are often associated with MLOps stages 

[14][17]. Containerization is already a common practice 

for settings that provide the on-demand, transient 

execution of computing operations [18][19]. Containers 

can be expanded horizontally and can be transparently 

replaced, reused, and updated [20]. Dockerizing 

simplifies hosting and execution various software 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4978 

 

applications, platforms, middleware, databases and 

provides an efficient way to isolate networks and limit 

container resource usage [21]. 

Microservices architecture (MSA) helps monitor ML 

projects during development, unlike monolithic design 

[22]. Microservices decompose applications into core 

functions, where each function operates as its own 

"service" within a container and communicates with 

other containers over the network [23]. In contrast, 

monolithic design suits only small-scale systems with 

simple internal structures [24]. 

integrate numerous contemporary ML techniques to 

create a complete orchestration pipeline, which includes 

resource provisioning and multi-dimensional behavior 

modeling. The development of ML models also makes it 

easier to expand various cloud infrastructures and 

application designs. Tables 1 and 2 provide the goals 

and matrices for each of these algorithms. 

Table 1. Container orchestration objectives based on ML- approach. 

 

Table 2. Container orchestration matrix based on ML- approach. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4979 

 

3. MCM Model 

Figure 3 illustrates the proposed MCM model, which 

consists of four different layers (Development layer, 

MLOps and container layer, Monitoring layer and Tools 

and Automation layer). 

The proposed model initiates with developer's code 

commit and culminates in its deployment and 

monitoring across multiple environments. Next sections 

present a detailed description of layers’ components. 

3.1 Development Layer 

 

Figure 3. The Proposed MCM Model. 

Multiple containers make up the container layer. 

Consequently, the identical procedures will be followed 

by every container in this 

The development layer, the first component of the MCM 

model, covers application structure (microservices) and 

code lifecycle. Its goal is a well- designed framework, 

with actions focusing on managing code changes and 

implementing CI to minimize conflicts. 

Code lifecycle processes ensure proper versioning and a 

stable code version in the main repository. After a 

successful build, test cases are run, and the system 

artifact is prepared for release and deployment. 

3.2 MLOps and Container Layer 

This layer has two sublayers: MLOps on top, followed 

by container layer. In MLOps, MCM model is developed, 

pipelines are built, tests are prepared, configuration is 

done, and security gates are added. The most important 

stage is determining the application type since it forms 

the foundation for the other steps. Understanding 

application type to identify and analyze the received 

data, is the second step. After data is received, the third 

stage, data transformation, starts. Setting up some 

security validation over the model pipeline and 

configuring all required pipeline deployment 

environments constitute the fourth phase. MCM's model 

training phase is the fifth step. The validation phase 

comes in at number six. The final phase at MLOps 

layer, retraining step, is dependent on MCM model 

validation process results. 

tier. Microservices mesh, image repository, cluster 

management, container security, and container 

orchestration are among the steps. Along with 

deployment, auto-scaling, health monitoring, migration, 

and load balancing, this procedure also includes 

container's network configuration, security, and resource 

allocation. 

3.3 Monitor Layer 

This layer includes dashboards for monitoring MCM 

model stages, validating and addressing anomalies. It 

stores internal logs for pipeline troubleshooting and 

external logs for data application tracking, helping 

identify malfunctions and ensure smooth operation. 

3.4 Tools and Automation Layer 

This layer provides tools to support MCM model layers, 

ensuring reliable statistics and smooth transitions. It uses 

open- source and automation tools for provisioning and 

container cataloging. 

4. Dataset 

MCM model's dataset gathers unstructured data from 

sources like source control software, software engineers' 

comments, workload patterns, system configurations and 

historical performance data. It involves two phases: 

collecting and organizing data, then determining if 

labeling is needed. K-means clustering is used to label 

the dataset into layers and sub-layers based on unlabeled 

attributes. 

The clustering strategy was described in Algorithm 1. 

Dataset was made up of a set of attributes A = {a1,..., at}, 

and each attribute was given a primary label L as well as 

a set of auxiliary labels P if necessary. A set of labels 

L≠∅ and a set of tuples T with the same cardinality as A, 

that is  

T= {( a1, l1, p1),...,(at, lt, pt)}, where li ∈ L for all 1 < i 

≤ t, are what remains at the end of the operation. Without 

diverting its attention to a different label, the algorithm 

seeks to increase the number of qualities that have the 

same label applied to them consecutively. The goal is to 

reduce the cost of labeling multiple qualities at once and 

aid in model identification by combining attribute 

analysis. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4980 

 

 
 

Dataset was separated into 6 primary layers and 8 sub- 

layers for each of the 158 attributes after the algorithm 

was run. Table 3 displays the algorithm's result. 

Table 3. Cluster labeling algorithm’s result. 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4981 

 

 

5. C

Configuration 

The first major step in MCM model configuration phase 

is developing application, followed by setting up ML 

model. 

5.1 A

Application Development 

Application development divides functionality into 

services, integrates DevOps and MLOps pipelines, and 

uses containerization for scalability, management, and 

automated feature rollout. 

1) T

ransition from Monolithic to Containerized- 

Microservices Applications 

This shift demands careful planning and execution for a 

successful migration. To enable resource scaling for 

microservices, including autoscaling capabilities, RedHat 

OpenShift and Kubernetes were selected as the 

orchestration platforms. Additionally, GitOps tools, the 

platform CLI, and Azure pipelines were utilized to 

execute the deployment process. 

Four primary stages made up the transition process: 

• Determine components: using business 

functionalities as a guide, divide large application into 

more manageable, smaller parts. 

• Define clear interfaces: set up well-defined 

interfaces between microservices. 

• Data management: define how data will be 

handled and shared across microservices. 

• Technology stack: choose the most appropriate 

technologies and frameworks for developing and 

deploying each microservice. 

2) Containerization with Docker 

• Microservice packaging: to ensure consistency 

and portability across many contexts, containerize each 

microservice and its dependencies using Docker. 

• Dependency management: by encapsulating 

dependencies, Docker containers remove conflicts and 

guarantee that every microservice runs independently. 

• Simplified deployment: Docker streamlines 

deployment of microservices. 

3) Orchestration with Kubernetes 

• Automated deployment: Kubernetes automates 

deployment process which includes scheduling, scaling, 

and monitoring. 

• Service discovery and load balancing: 

Kubernetes includes built- in capabilities for service 

discovery and load balancing, ensuring effective 

communication between microservices. 

• Fault tolerance: Kubernetes provides features 

such as self- healing and replication, which guarantee 

high availability and resilience of microservices in the 

event of failures. 

• Scaling: Kubernetes supports horizontal scaling 

of microservices according to resource utilization. 

4) CI/CD Pipelines 

• Implement CI/CD pipelines: to automate build, 

test, and deployment of microservices application to 

guarantee that updates are delivered quickly and reliably. 

• Version control system selection: proposed 

model used Git to manage the source code, facilitating 

collaboration and tracking changes. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4982 

 

𝑖 𝑖 
𝑁 𝑖=1 

• Apply pull request policy over the pipeline. 

• Store Artifact: The outcomes of running CI/CD 

pipeline called “Artifact”. Artifact contains container 

images which will be used for different environments’ 

deployments. Storing process depends on pushing locally 

produced image to shared registry (RedHat Quay and/ or 

Docker Hub) by using image ID. 

Application development process illustrates how the 

refactored microservices code can be automatically built 

using Docker as shown in Figure 4. 

 

Figure 4. Microservice-Container Based Application 

Development. 

5.2 Setting Up 

The MCM model integrates Bi-LSTM with SARSA 

algorithms to improve ML performance and reduce 

deployment times for containerized applications. Bi- 

LSTM, a recurrent neural network with multiple LSTM 

layers, works with SARSA reinforcement learning to 

optimize container performance. This approach is 

embedded in CI/CD pipelines and monitoring systems 

for continuous optimization. By processing streaming 

data, Bi- LSTM and SARSA adjust to workload changes, 

optimizing resource use. Performance is evaluated with 

backpropagation through time (BPTT) and the adaptive 

moment estimation (Adam) optimizer. The integration 

architecture is shown in Figure 5. 

 

 

Figure 5. Proposed Model Integration Architecture. 

 

The integrated operation in MCM's model architecture is 

represented mathematically by the following equations: 

5) Define state xt at time t as a vector 

containing performance metrics and resource usage data: 

xt = [CPU utilizationt, memory utilizationt, network 

throughputt, latencyt, request ratet, error ratet]. 

6) Initialize Bi-LSTM Model with BPTT 

• Forward Pass is denoted in Eq. from (1) to 

(3) 

By given a sequence of input states xt-k+1, xt-k+2, …, xt 

where k is the sequence length. For each time step i, 

compute hidden states hi using Bi-LSTM is denoted as in 

Eq. (1): 

hi =BiLSTM (xi, hi-1) (1) 

Where Wo is the wight matrix and bo is the bias of the 

output layer, the output y’ at each time step is computed 

as in Eq. (2) and loss L is computed as the mean squared 

error (MSE) between the predicted y’ and the actual y is 

denoted as in Eq. (3):y’i =Wohi + bo (2)𝐿 = 
1 

4
𝑁 

( 𝑦𝑖 − 𝑦’𝑖 ) 2 (3)Backward Pass is denoted 

in Eq. from (4) to (6)For updating model weights, 

backpropagate the gradient through time hence the 

gradient of Loss with the consideration of the output is 

computed as in Eq. (4): 𝛛𝐿  = 2 (𝑦′ − 𝑦 )(4) 

𝛛𝑦’𝑖 

3) For each time step i from t to t-k+1, the 

gradients of the loss with the consideration of Bi-LSTM 

parameters θ are computed as in Eq. (5): 

Integration of Bi-LSTM and SARSA 

• At each time step t, predict future state 

by use Bi- LSTM is computed in Eq. (12): 

S’t+1=BiLSTM (xt, ht-1) (12) 

• SARSA agent uses predicted state S’t+1 

to select action and update M-values as denoted in Eq. 

(13): 

at=arg maxa M(S’t+1,a) (13) 

• Collect new sequences of data 

periodically and retrain Bi-LSTM using BPTT. 

6. Discussion 

Initially, experiments were conducted on a local Windows 

Server 22 OS machine with 32 GB RAM to train and test 

MCM model. MCM model was applied on different code 

bases (Java and .Net) projects. Java projects have been 

developed with SpringBoot and .Net applications have 

been developed with .net framework versions 4.8.0, 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4983 

 

𝛛𝜃 
: 

4.8.1, and 6. Lift-and-Shift and refactoring migration 

methods were chosen for MCM model. 

The pipelines are implemented by YAML. CD pipeline 

included integration, quality control, security testing, 

UAT, load testing, packaging, and pre- production 

environments. RedHat-OpenShift and Kubernetes were 

chosen as orchestration platforms for MCM 

𝛛𝐿 
= 

𝑡=𝑡–𝑘+1 𝛛𝐿 
. 
𝛛𝑦’𝑖 . 

𝛛ℎ𝑖 

𝛛 𝑦’𝑖  𝛛ℎ𝑖  𝛛𝜃 

(5) model to scale resources for microservices and even to 

simply enable 

autoscaling. Platform CLI and Azure pipelines were 

used for deployment execution. RedHat Quay and 

Docker Hub registries were 

Where 𝛼 is the learning rate, the model weights are 

updating using Adam’s optimizer as in Eq. (6): 

used to push images using image ID to be ready for 

deployment. 

MCM model performance was evaluated and evaluated 

using BPTT. Adam optimizer was selected to improve 

performance and 

=  = − α 𝛛𝐿 

𝛛𝜃 

(6) accelerate convergence of Bi-LSTM. Further, Adam's 

optimizer was selected to modify Bi-LSTM weights 

during training to minimize the 

3) Initialize SARSA agent algorithm 

• Initialize M-values is computed as in Eq. (7): 

M (s,a) = 0 ∀s ∈S, ∀a ∈A (7) 

• Select action by using ϵ-greedy policy as 

denoted in Eq. (8): 

loss function. Experiments are implemented using 

Python 3.9.12. Some of Python libraries is imported into 

the MCM model code to build it as shown in Figure 6. 

 mrandom action with probability ϵ 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝑀(𝑠𝑡, 𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − ] 

(8) 

•  Execute action at, observe reward rt+1 and 

next state st+1. 

Select next action by using the same ϵ-greedy policy as 

denoted in Eq. (9): 

𝑎t + 1 

 

Figure 6. Example of Python Libraries. 

Figure 7. examines how the build and deployment 

frequencies have improved in seconds across the various 

environments, with build 

random action with probability ϵ 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝑀(𝑠t + 1, 𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − ] 

(9) 

durations reaching up to 13% and deployment durations 

reaching up to 24.55%. 

• Where discount factor is denoted by η and 

learning rate by 𝛼, update M-values is computed in Eq. 

(10): 

M (st, at) ←M (st, at) +α [rt+1 +ηM (st+1, at+1) −M (st, 

at)] (10) 

• Gradually reduce exploration rate as denoted 

in Eq. (11): 

]  max(]min , ]. ]decay) (11) 

methodologies or results. Thus, to fill this gap, this 

research proposes an integrated ML model using Bi-

LSTM and SARSA algorithms, which leverages 

automated multi-container architecture and microservices 

principles throughout build and deployment stages of 

application development lifecycle. 

 

Figure 7. Model Enhancements for Build and 

Deployment Duration. 

The ability to extend the number of containers in the case 

of a failure was quick, as shown in Figure 8. Figure 9 

summarizes the average improvements for the 

performance metrics used by the MCM model. 

𝑎𝑡 = B 

= B 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4984 

 

 

Figure 8. MCM Model AVG Containers Deployed. 

 

Figure 9. MCM Model AVG Improvements. 

7. Conclusions and Future work 

The increasing demand for innovation has led to the 

development of more ML systems than ever, 

necessitating enhanced monitoring and analysis skills for 

ML models. Despite this, only a limited number of 

proofs of concept advance to production deployment. In 

practice, data scientists continue to manage most ML 

operations manually. MLOps paradigm seeks to address 

these challenges. Existing literature highlights some 

approaches to monitoring MLOps applications, but it 

lacks studies that specifically address multi- container 

and microservices architectures, making it difficult to  

directly  compare  proposed  MCM  model  with  

similar MCM model aims to increase frequency of 

software deployments across various environments, 

enhance software release performance, and reduce the 

need for redevelopment and redeployment. By 

employing MLOps, MCM model improves software 

deployment cycles by up to 24.55%, reduces build 

duration cycles by up to 13%, and decreases response 

times by up to 50.03%. The findings improve 

deployment rates of existing methods in software 

systems. Also, provides an effectively monitoring 

approach for ML model features using MLOps. 

Additionally, the research highlights broader implications 

for optimizing software development processes, 

enhancing operational efficiency, and supporting 

scalable, robust solutions for industry-wide adoption. 

Future work should involve more experimental studies to 

assess MLOps pipelines and their impact on the overall 

software development cycle. It is also important to 

implement MCM model on various datasets to monitor 

its effectiveness and conduct further experiments to 

compare its performance against baseline approaches or 

alternative optimization strategies. 

Data Availability 

The data presented in this study are available on request 

from the corresponding author. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

[1] F. Calefato, et al., A Preliminary Investigation of 

MLOps Practices in GitHub, Association for 

Computing Machinery,2022, 

doi:10.1145/3544902.3546636. 

[2] D. Kreuzberger,et al., “Machine Learning 

Operations (MLOps): Overview, Definition, and 

Architecture,” 2022, [Online], 

http://arxiv.org/abs/2205.02302. 

[3] Wiggerthale and Julius, “Explainable Machine 

Learning in Critical Decision Systems: Ensuring 

Safe Application and Correctness ”, MDPI, 2024. 

[4] Z.Shoieb et al., “The Impact of using MLOps and 

DevOps on Container based Applications: A 

Survey”,Informatics Bulletin,Faculty of Computers 

and Artificial Intelligence,2024. 

[5] E. Calikus, Self-Monitoring using Joint Human- 

Machine Learning: Algorithms and Applications, 

no. 69. 

[6] P. Liang et al., “Automating the training and 

deployment of models in MLOps by integrating 

systems with machine learning”, Proceedings of 

the 2nd International Conference on Software 

Engineering and Machine Learning, 2024, doi: 

10.54254/2755- 2721/67/20240690. 

[7] B. Karlaš et al., “Building Continuous Integration 

Services for Machine Learning,” Proc. ACM 

SIGKDD Int. Conf. Knowl. Discov. Data Min., 

2020, doi: 10.1145/3394486.3403290. 

[8] P. Ruf, M. Madan, C. Reich, and D. Ould- 

Abdeslam, “Demystifying mlops and presenting a 

recipe for the selection of open-source tools,” 

Appl. Sci., 2021, doi: 10.3390/app11198861. 

[9] Z. Shoieb et. al,“Enhancing Software Deployment 

Release Time Using DevOps Pipelines”, IJSER, 

vol.11, no. 3, 2020, ISSN: 2229-5518. 

[10] M. Rowse and J. Cohen, “A survey of DevOps in 

the South African software context,” Proc. Annu. 

Hawaii Int. Conf. Syst. Sci., 2021, doi: 

http://arxiv.org/abs/2205.02302


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4985 

 

10.24251/hicss.2021.814. 

[11] A. Sajid et al., “AI-Driven Continuous Integration 

and Continuous Deployment in Software 

Engineering” 2nd International Conference on 

Disruptive Technologies (ICDT), 2024. 

[12] Bollineni and Satyadeepak, “Devops Approaches 

To Managing And Deploying Machine Learning 

Devops Approaches To Managing And 

Deploying Machine,” International Journal of 

Business Quantitative Economics and Applied 

Management Research, 2024. 

[13] Buttar, Ahmed Mateen et.al “Optimization of 

DevOps Transformation for Cloud-Based 

Applications,” Electronics (Switzerland),2023. 

[14] N. Hewage and D. Meedeniya,“Machine Learning 

Operations: A Survey on MLOps Tool Support,” 

2022, doi:10.48550/arXiv.2202.10169. 

[15] S. Alla and S. K. Adari, Beginning MLOps with 

MLFlow, 2021, doi:10.1007/978-1-4842- 6549-9. 

[16] G. Recupito et al., “A Multivocal Literature Review 

of MLOps Tools and Features,” 2023, doi: 

10.1109/seaa56994.2022.00021. 

[17] L. E. L. B, I. Crnkovic, R. Ellinor, and J. Bosch, 

“From a Data Science Driven Process to a 

Continuous Delivery Process for Machine Learning 

Systems,” Proceedings- PROFES- 21st Int. Conf., 

2020. 

[18] C. Segarra et al., “Serverless Confidential 

Containers: Challenges and Opportunities” 2024. 

[19] C. Segarra et al., “Serverless Confidential 

Containers: Challenges and Opportunities” 2024. 

[20] B. Burns,“Design patterns for container- based 

distributed systems”. 

[21] E.Summary,“PRINCIPLES OF

 CONTAINER- BASED”. 

[22] Abhishek M Nair et al., “Dockerized Application 

with Web Interface,” International Journal of 

Scientific Research in Computer Science, 

Engineering and Information Technology, 2023. 

[23] J. Brier and lia dwi jayanti, “DevSecOps 

of Containerization,”2020,[Online].http://journal.um- 

surabaya.ac.id/index.php/JKM/article/View/2203. 

[24] A. Mahesar et al., “Efficient microservices 

offloading for cost optimization in diverse MEC 

cloud networks”. J Big Data, 2024. 

https://doi.org/10.1186/s40537-024-00975-w. 

[25] Z. Zhong et al.,“Machine Learning-based 

Orchestration of Containers: A Taxonomy and 

Future Directions,” ACM Comput. Surv., 2022, 

doi: 10.1145/3510415. 

[26] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and B. 

Delimitrou, “Sinan: ML- based and QoS-aware 

resource management for cloud microservices,” 

Int. Conf. Archit. Support Program. Lang. Oper. 

Syst.- ASPLOS, 2021, doi: 

10.1145/3445814.3446693. 

[27] S. Venkateswaran and S. Sarkar, “Fitness- Aware 

Containerization Service Leveraging Machine 

Learning,” IEEE Trans. Serv. 

Comput.,2021,doi:10.1109/TSC.2019.2898666. 

[28] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, 

“FScaler: Automatic Resource Scaling of 

Containers in Fog Clusters Using Reinforcement 

Learning,”Int. Wirel. Commun. Mob. Comput. 

IWCMC,2020, 

doi:10.1109/IWCMC48107.2020.9148401. 

[29] Lasitha Maduranga, and Gayan Dharmaratne, 

“Leveraging Generative Adversarial Networks to 

Improve LSTM and GRU Models Performances 

for Stock Price Prediction,” International Statistics 

Conference, 2024. 

[30] H. Qiu et al.,“Firm: An intelligent fine- grained 

resource management framework for SLO- 

Oriented microservices,” Proc. 14th USENIX 

Symp. Oper. Syst. Des. Implementation, OSDI 

2020. 

[31] J. E. Dartois et al., “Investigating Machine 

Learning Algorithms for Modeling SSD I/O 

Performance for Container-Based Virtualization,” 

IEEE Trans. Cloud Comput., 2021, doi: 

10.1109/TCC.2019.2898192. 

[32] Y. Bao et al.,“Deep Learning-Based Job Placement 

in Distributed Machine Learning Clusters With 

Heterogeneous Workloads,”IEEE/ACMTrans. 

Netw.,2023,doi:10.1109/TNET.2022.3202529. 

[33] Elina Guzueva et al.,“Optimisation tool: Q- 

learning and its application in various fields,” E3S 

Web of Conferences 515, 2024. 

[34] F. Rossi, M. Nardelli, and V. Cardellini, 

“Horizontal and vertical scaling of container- based 

applications using reinforcement learning,” IEEE 

Int. Conf. Cloud Comput. CLOUD,2019, 

doi:10.1109/CLOUD.2019.0006. 

[35] H. Dawid, CORDIC Algorithms and Architectures, 

2018, doi:10.1201/9781482276046- 22. 

[36] X. Tang et al.,“Fisher: An efficient container load 

prediction model with deep neural network in 

clouds,” IEEE Int. Symp. Parallel Distrib. Process. 

http://journal.um/
https://doi.org/10.1186/s40537-024-00975-w


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4976–4986  |  4986 

 

with Appl. 17th IEEE Int. Conf. Ubiquitous 

Comput. Commun. 8th IEEE Int. Conf. Big Data 

Cloud Comput. 2018, 

doi:10.1109/BDCloud.2018.00041. 

[37] M. Yan et al.,“HANSEL: Adaptive horizontal 

scaling of microservices using Bi- LSTM,”Appl. 

Soft Comput., 

2021,doi: 10.1016/j.asoc.2021.107216. 

[38] David Jobst,“Gradient-Boosted Mixture Regression 

Models for Postprocessing Ensemble Weather 

Forecasts,” arxiv, 2024, doi: 

10.48550/arXiv.2412.09583. 

[39] K. Ye and Y. Kou,“Modeling Application 

Performance in Docker Containers Using Machine 

Learning Techniques,” Proc. Int. Conf. Parallel  

Distrib. Syst.- ICPADS,

 2018, 

doi:10.1109/PADSW.2018.8644581. 

[40] Hongrong Cheng and Miao Zhang, “Predictive 

Performance Evaluation of ARIMA and Hybrid 

ARIMA-LSTM Models for Particulate Matter 

Concentration,” JOIN (Jurnal Online Informatika), 

2024. 


