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Abstract Transactional Memory (TM) offers a high-level synchronization abstraction for parallel programming, improving scalability, 

reliability, and productivity. It addresses challenges in multicore and distributed systems, surpassing traditional methods like locks and 

semaphores. TM implementation strategies—Software Transactional Memory (STM), Hardware Transactional Memory (HTM), and 

Hybrid Transactional Memory (HyTM)—present trade-offs in performance, scalability, and adaptability, catering to diverse workloads. 

Advanced features, including Nested Transactions, enhance fault tolerance and minimize rollback costs through modular transaction 

management.TM’s lock-free synchronization finds applications in concurrent data structures, graph algorithms, scalable systems, and real-

time computing, boosting reliability and system performance. Performance analyses of STM, HTM, and HyTM highlight their strengths 

and limitations in handling varying workloads. However, challenges persist, such as programming model integration, contention 

management, and efficiently managing large or nested transactions. Innovations like Dynamic STM, Adaptive Conflict Resolution, and 

extended HTM support tackle these issues, advancing TM capabilities. Frameworks such as TCC and LogTM, along with STM and HTM 

implementations, illustrate TM's evolution. Future research aims to overcome current limitations, ensuring TM’s role in high-performance 

computing, real-time systems, and large-scale data processing. TM simplifies synchronization, empowering parallel programming to meet 

modern and future system requirements efficiently. 

Index Terms: Concurrency Management, Nested Transactions, Parallel Programming, Software Transactional Memory (STM), 

Transactional Memory (TM) 

I.INTRODUCTION 

This section introduces the challenges of synchronization 

in multicore systems and presents Transactional Memory 

(TM) as a scalable solution, highlighting its principles, 

motivations, and potential to simplify parallel 

programming [1]. 

The shift from single core to multicore processors has 

fundamentally transformed the landscape of computing, 

enabled the parallel execution of tasks and delivered 

substantial performance improvements [2]. However, this 

transition introduces new challenges in parallel 

programming, particularly in managing access to shared 

resources. Effective synchronization among concurrent 

threads is critical, but ensuring correctness and efficiency 

in this context remains a complex task. Traditional 

synchronization mechanisms, such as locks and 

semaphores, have been widely used but often come with 

significant drawbacks. These include issues like 

deadlocks, livelocks, priority inversion, and poor 

composability, which can severely hinder scalability and 

complicate the development of reliable parallel programs 

[3] [4]. To overcome these challenges, more advanced 

techniques have been introduced, with Transactional 

Memory (TM) emerging as a leading solution [5]. TM 

provides a novel abstraction that simplifies 

synchronization in parallel programming, making it 

especially suited for the needs of multicore systems. This 

survey examines the core concepts, motivations, and 

practical applications of TM, highlighting its potential to 

revolutionize parallel programming by offering a more 

efficient and manageable synchronization model. 

A. TRANSACTIONAL MEMORY 

This section introduces Transactional Memory (TM) as a 

solution to overcome the limitations of traditional 

synchronization methods in parallel programming. 

 As multicore processors become the norm in modern 

computing, parallel programming has become a necessity. 

However, traditional synchronization methods like locks 

and semaphores often fall short when faced with 

challenges such as deadlocks, priority inversion, and 

reduced composability. These limitations create 

significant bottlenecks, impacting scalability and the 

reliability of parallel programs. Transactional Memory 

(TM) presents an innovative alternative to these 

conventional synchronization methods by replacing locks 

with transactional execution. TM ensures that critical 

sections of code are executed atomically and in isolation, 

simplifying synchronization, reducing contention, and 
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improving overall reliability. This survey provides an in-

depth exploration of the foundational principles and 

practical implications of TM, synthesizing insights from 

key research to offer a comprehensive analysis of its 

capabilities. 

B. CORE PRINCIPLES AND MOTIVATION 

This section highlights the core principles 

of Transactional Memory (TM), focusing on its ability to 

simplify synchronization and improve scalability in 

multicore systems. 

The core idea behind Transactional Memory is to treat a 

series of operations on shared data as a single atomic 

transaction. In this model, transactions 

either commit (complete fully) or abort (revert all 

changes), ensuring atomicity, consistency, and isolation of 

operations. Unlike traditional lock-based approaches, TM 

abstracts away the complexities of manual 

synchronization, providing a model that is more 

composable and scalable. This abstraction is especially 

important as the adoption of multicore systems continues 

to rise. Traditional synchronization models struggle to 

meet the demands of these systems, leading to errors, 

performance bottlenecks, and challenges in maintaining 

modularity. TM provides an elegant solution to these 

issues by ensuring safe concurrency and improved 

performance, making it a highly relevant tool in modern 

parallel programming. 

 In conclusion, Transactional Memory represents a 

fundamental shift in how parallel programming 

challenges are addressed in multicore systems. By 

simplifying synchronization and offering a more scalable 

and composable approach, TM enhances both the 

reliability and performance of concurrent applications. Its 

ability to abstract synchronization complexities allows 

developers to focus on higher-level program logic instead 

of dealing with low-level implementation details, 

ultimately reducing development time and minimizing 

errors. As multicore architectures continue to dominate 

computing, the relevance and importance of TM will only 

increase. However, challenges related to hardware 

implementation, performance overhead, and integration 

with existing programming models remain areas of active 

research. This survey lays the groundwork for 

understanding TM's principles, motivations, and potential, 

providing a foundation for exploring its practical 

applications and future developments in the realm of 

parallel computing. 

II. IMPLEMENTATION APPROACHES 

This section explores the implementation approaches for 

Transactional Memory (TM): Hardware (HTM), Software 

(STM), and Hybrid (HyTM). It highlights their trade-offs, 

suitability for different workloads, and the importance of 

selecting the right approach based on application needs. 

The successful implementation of Transactional Memory 

(TM) is crucial for realizing its potential to improve 

performance, scalability, and applicability in parallel 

computing systems. There are several ways to implement 

TM, each with its own advantages, limitations, and 

suitability for different use cases. Understanding these 

implementation strategies is essential for selecting the 

most appropriate solution based on the workload, system 

architecture, and specific requirements of the application. 

Before examining the individual approaches, it's 

important to consider the fundamental trade-offs between 

hardware-centric and software-centric solutions. 

Hardware-based implementations prioritize performance, 

offering low latency and high throughput. In contrast, 

software-based solutions emphasize flexibility and 

portability, as they can be deployed on various hardware 

platforms. A hybrid approach combines the strengths of 

both, offering a balance of performance and adaptability 

for a range of workloads. 

There are three primary TM implementation 

approaches—Hardware Transactional Memory 

(HTM), Software Transactional Memory (STM), 

and Hybrid Transactional Memory (HyTM). Each 

approach provides unique solutions to address the 

challenges of synchronization in multicore systems, with 

distinct considerations for efficiency, scalability, and ease 

of use. 

A. HARDWARE TRANSACTIONAL MEMORY 

(HTM) 

This section highlights Hardware Transactional Memory 

(HTM's) use of specialized hardware for efficient 

transaction management. 

 HTM uses specialized hardware to manage transactions 

efficiently. First introduced by Herlihy and Moss [6], 

HTM offers several key features: 

1) TRANSACTIONAL CACHE  

Temporary changes made during a transaction are stored 

in a dedicated cache until the transaction commits, helping 

to minimize memory traffic. 

2) SPECIALIZED INSTRUCTIONS  

 Hardware-level instructions, such as Load-Transactional 

and Commit, help manage transactional execution. 

3) CONFLICT DETECTION  

 Hardware mechanisms dynamically detect and resolve 

conflicts between transactions, ensuring consistency and 

isolation. 
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HTM delivers high performance for short, low-contention 

transactions by reducing memory access overhead 

compared to traditional lock-based synchronization 

methods. However, its reliance on specialized hardware 

means that it can struggle with larger transactions or 

complex workloads, as hardware limitations such as cache 

size and transaction complexity can hinder scalability. 

Benchmarks involving tasks like counting operations and 

linked lists demonstrate HTM's strengths in low-

contention scenarios. 

B. SOFTWARE TRANSACTIONAL MEMORY 

(STM) 

This section discusses Software Transactional Memory 

(STM), focusing on its software-based execution, 

portability, and suitability for high-contention 

environments.  

STM simulates transactional execution entirely in 

software, removing the need for specialized hardware. 

Proposed by Shavit and Touitou [7], STM operates based 

on the following principles: 

1)          PORTABILITY 

STM can be deployed on any hardware, providing broad 

applicability across different systems. 

2)          NON-BLOCKING EXECUTION 

STM allows progress even under contention by using 

software-based conflict resolution mechanisms. 

3)         LOGGING AND METADATA  

To maintain consistency and atomicity, STM tracks read 

and write operations through metadata and logs, 

simulating the behaviour of atomic transactions. 

While STM offers flexibility and portability, it incurs 

higher overhead due to the need for managing metadata 

and logging. Despite this, STM excels in high-contention 

scenarios, enabling lock-free implementations of complex 

data structures. Experimental results suggest that STM 

achieves higher throughput and fewer retries when 

handling concurrent tasks in such environments [8] [9]. 

C. HYBRID TRANSACTIONAL MEMORY (HYTM) 

This section outlines Hybrid Transactional Memory 

(HyTM), which blends HTM and STM to balance 

performance and flexibility for different workloads. 

HyTM [10] combines elements of both HTM and STM to 

leverage the strengths of each approach. Key features of 

HyTM include: 

1) DUAL EXECUTION PATHS  

Transactions are first attempted in hardware. If hardware 

limitations are exceeded, the system falls back to 

software-based execution, ensuring that transactions are 

still processed correctly. 

2) CONFLICT DETECTION 

 HyTM maintains consistency between the hardware and 

software transactional executions, resolving conflicts in 

both paths. 

3) SCALABILITY  

HyTM offers a balance between the efficiency of HTM 

and the flexibility of STM, making it scalable across 

diverse workloads. 

HyTM adapts to the specific demands of a workload, 

offering high performance for short transactions while 

maintaining flexibility for larger or more complex tasks. 

It has been shown to perform well in high-contention 

scenarios, and benchmarks like SPLASH-2 highlight its 

scalability, making it a promising approach for practical 

implementations of TM. 

In conclusion, the choice of TM implementation approach 

depends heavily on the specific requirements of the 

application and the constraints of the underlying 

hardware. HTM is ideal for low-contention environments 

with short transactions, leveraging hardware-level 

optimizations for maximum performance. STM offers 

broad applicability across hardware platforms, excelling 

in high-contention scenarios but incurring higher 

overhead due to its software-based nature. HyTM, by 

combining HTM and STM, offers an adaptable solution 

that dynamically adjusts to the workload, providing the 

best of both worlds in terms of performance, portability, 

and scalability. Understanding the strengths and 

weaknesses of each approach allows developers to make 

informed decisions about integrating TM into their 

systems, ensuring that TM remains a viable solution for 

efficient synchronization across a diverse array of 

applications. As both hardware and software continue to 

evolve, future research and development in TM 

implementations promise to further refine these solutions, 

improving their performance, scalability, and broader 

applicability in emerging computing environments. 

III.NESTED TRANSACTIONS 

This section covers Nested Transactions, which improve 

efficiency and fault tolerance through different nesting 

models and architectural optimizations. 

In complex transactional systems, handling large 

transactions can be challenging, particularly when it 

comes to the high costs associated with rollbacks. While 

rollback operations are essential for maintaining atomicity 

and consistency, they become increasingly costly as 

transactions grow in size and complexity. This is 

particularly problematic when large numbers of 
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operations must be undone due to a failure or 

inconsistency. To address these challenges, Nested 

Transactions were introduced as a solution to facilitate 

more efficient error handling and improve the overall 

management of transaction execution [11]. By enabling 

partial rollbacks without requiring the entire transaction to 

be undone, Nested Transactions offer a modular approach 

that significantly reduces rollback costs, enhances 

concurrency, and improves fault tolerance. Breaking a 

large transaction into smaller, more manageable 

subtransactions allows for better failure management. If 

an error occurs within a subtransaction, only the changes 

in that subtransaction need to be rolled back, leaving other 

operations unaffected. This approach ensures that 

unrelated operations can continue, making it possible to 

maintain system progress even in the presence of failures. 

A.  NESTING MODELS 

This section discusses three primary nesting models—

Closed, Open, and Linear Nesting—and examines 

architectural innovations aimed at enhancing the 

performance and scalability of Nested Transactions. 

Nesting transactions come in different models, each with 

unique strengths and trade-offs, influencing how 

subtransactions are executed, committed, and rolled back. 

These models significantly impact the performance and 

scalability of the overall system [12] [13].    

1) CLOSED NESTING  

 In this model, subtransactions are committed to their 

parent transaction. When a subtransaction completes 

successfully, it becomes part of the larger parent 

transaction, and any partial rollbacks are contained within 

that subtransaction. This model provides strong control 

and isolation, ensuring that the overall transaction's 

integrity is maintained. However, it may limit 

concurrency as subtransactions must be executed 

sequentially within their parent. 

2)  OPEN NESTING 

Open Nesting allows subtransactions to commit 

independently and make intermediate changes visible to 

the broader system. This approach increases concurrency, 

as different subtransactions can progress in parallel 

without waiting for one another. However, it introduces 

additional complexity in managing rollbacks, as 

intermediate changes must be carefully reverted without 

affecting system consistency. Open Nesting is best suited 

for highly parallel applications but requires compensatory 

mechanisms to handle failures effectively. 

3)         LINEAR NESTING 

Linear Nesting restricts concurrency by allowing 

subtransactions to execute sequentially, one after another, 

within a single transactional branch. This model simplifies 

implementation and rollback management, as there is no 

need to coordinate multiple concurrent subtransactions. It 

is a straightforward approach, making it ideal for simpler 

systems where parallelism is not a priority. 

To improve the performance of Nested Transactions, 

architectural innovations such as transactional data caches 

and hierarchical tracking mechanisms are critical. These 

enhancements allow efficient tracking of subtransactions, 

ensuring that rollbacks can be performed swiftly without 

consuming excessive resources. By supporting the 

effective execution and rollback of nested transactions, 

these optimizations contribute to the robustness and 

scalability of transactional memory systems, even in 

complex environments. 

In conclusion, Nested Transactions provide an effective 

mechanism for managing large, complex transactions by 

offering the flexibility to perform partial rollbacks and 

preserving system consistency. They help decompose 

large transactions into smaller, manageable 

subtransactions, which can improve fault tolerance and 

reduce the overhead associated with rollbacks. Each of the 

three primary nesting models—Closed Nesting, Open 

Nesting, and Linear Nesting—offers distinct trade-offs, 

enabling the model to be chosen based on application 

requirements. Closed Nesting provides strong isolation 

and control, Open Nesting boosts concurrency but adds 

complexity in rollback management, and Linear Nesting 

simplifies implementation at the cost of limiting 

concurrency. Furthermore, architectural innovations like 

transactional data caches and hierarchical tracking 

mechanisms play a crucial role in optimizing the 

performance and scalability of nested transactions in high-

performance systems. Ultimately, Nested Transactions 

enhance the flexibility and efficiency of transactional 

memory systems, enabling more modular, robust, and 

scalable programming. [14] [15] [16].As the complexity 

and parallelism of modern systems continue to grow, the 

adoption of Nested Transactions will remain an essential 

strategy for managing transaction execution and ensuring 

system reliability. 

IV.APPLICATIONS OF TRANSACTIONAL 

MEMORY 

This section highlights the benefits and applications of 

Transactional Memory (TM), focusing on its role in 

improving concurrency, scalability, and performance in 

various domains.       

Transactional Memory (TM) has gained widespread 

recognition for its ability to simplify synchronization and 

enhance concurrency in parallel programming. By 

abstracting the complexities of managing concurrent 

operations, TM allows developers to focus on higher-level 

program logic instead of low-level synchronization 

details. This makes TM a powerful tool for addressing the 
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challenges posed by parallelism, offering scalability and 

adaptability across various domains—from data structures 

to large-scale, high-performance systems. A primary 

advantage of TM is its support for efficient, lock-free 

operations in shared memory environments, which 

eliminates the overhead associated with traditional 

synchronization mechanisms like locks. This leads to 

better performance and improved reliability in systems 

where concurrency is essential. As such, TM is being 

increasingly explored and applied in a wide range of 

fields, providing effective solutions to some of the most 

persistent challenges in parallel computing. 

A. KEY APPLICATIONS 

 Key Applications of Transactional Memory (TM) include 

1) CONCURRENT DATA STRUCTURES 

TM enables efficient, lock-free operations on shared 

structures such as linked lists, queues, and hash tables. 

This enhances scalability and minimizes synchronization 

errors, making it ideal for dynamic, concurrent data 

environments. 

2) GRAPH ALGORITHMS  

TM supports parallel execution of complex operations 

like graph traversal and updates. This significantly 

improves the performance of graph-based computations 

in data-intensive workloads, such as those in social 

networks, web crawlers, or computational biology. 

3) SCALABLE SYSTEMS 

TM helps in the efficient management of concurrent 

operations in large-scale systems such as game servers. 

By abstracting synchronization, it simplifies system 

design and enhances the reliability of these systems 

under high loads. 

 In conclusion, Transactional Memory represents a 

transformative shift in parallel programming, 

simplifying the challenges of concurrency and 

synchronization while improving system performance 

and scalability. Its ability to support lock-free operations 

on shared resources brings about significant gains in 

efficiency, reliability, and scalability across a wide range 

of applications. From concurrent data structures to 

complex graph algorithms and scalable systems like 

game servers, TM offers a powerful solution to 

longstanding parallel programming problems. As TM 

continues to evolve, it holds the promise of unlocking 

even greater potential in multicore and distributed 

systems. The continued development of TM 

technologies will drive advancements in high-

performance computing, real-time systems, and large-

scale data processing, helping to shape the future of 

parallel programming. With its flexibility, efficiency, 

and robustness, TM will be at the heart of next-

generation programming models designed to meet the 

demands of increasingly complex applications. 

V.PERFORMANCE INSIGHTS 

This section compares HTM, STM, and HyTM based on 

their strengths, limitations, and suitability for different 

applications, as detailed in Table I. 

Transactional Memory (TM) systems can be broadly 

categorized into three types: Hardware Transactional 

Memory (HTM), Software Transactional Memory (STM), 

and Hybrid Transactional Memory (HyTM). Each 

approach leverages unique methodologies for handling 

transactions, offering distinct trade-offs in terms of 

performance, resource management, conflict detection, 

and ease of programming. The Table I below provides a 

detailed comparison of HTM, STM, and HyTM, 

highlighting their features, strengths, and limitations to 

help understand their suitability for different use cases. 

 

TABLE I  

COMPARISON OF HTM, STM, AND HYTM 

S.No. Feature HTM  STM  HyTM  

1.   Implementation 

Hardware-based: TM logic is integrated 

into hardware (e.g., caches and registers), 

making it fast and efficient but hardware-

dependent. 

Software-based: Uses data 

structures and runtime 

libraries, offering flexibility 

but adding software overhead. 

Hybrid: 

Combines 

HTM for 

efficient 

small 

transactions 

and STM for 

larger ones, 

balancing 

performance 

and 

flexibility. 

2.   Performance High: Moderate to Low: 
High to 

Moderate:  
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 Low overhead for small transactions due 

to direct hardware execution, ideal for 

common cases. 

 Slower due to runtime checks 

and metadata management but 

supports more complex cases. 

Matches 

HTM 

performance 

for small 

transactions; 

STM 

fallback adds 

overhead for 

large or 

complex 

transactions. 

3.   
Resource 

Limitations 

Hardware-limited: Constrained by 

physical resources like cache size and 

associativity, leading to potential 

transaction aborts for large memory 

footprints. 

Unbounded:  Mixed:  

Can handle arbitrarily large 

transactions, limited only by 

system memory, but at the cost 

of higher runtime complexity. 

Uses HTM 

for 

hardware-

limited cases 

and switches 

to STM for 

transactions 

exceeding 

hardware 

capabilities, 

providing 

flexibility 

but 

introducing 

transition 

overhead. 

4.   Conflict Detection 

Eager: 

Eager or Lazy: Detection 

occurs either during execution 

(eager) or at commit time 

(lazy), offering flexibility but 

varying in efficiency. 

Hybrid:  

 Detects conflicts during transaction 

execution using hardware mechanisms 

like MESI protocols, ensuring early 

resolution but adding some latency. 

Eager 

detection in 

hardware 

mode for 

speed; lazy 

detection in 

STM 

fallback to 

optimize 

resource 

usage. 

5.   
Rollback 

Mechanism 

Fast:  

Software-based: Uses undo 

logs or private buffers to revert 

changes, making rollbacks 

slower but more flexible. 

Hybrid:  

Relies on cache invalidation or other 

hardware mechanisms for efficient 

rollbacks, minimizing wasted 

computation. 

HTM 

rollbacks are 

quick; STM 

rollbacks 

rely on undo 

logs or other 

software 

mechanisms, 

slowing 

down the 

process. 

6.   Scalability 

Limited: Scalability is constrained by 

hardware shared resources like cache and 

interconnect bandwidth, affecting 

performance in large systems. 

Flexible:  

Improved: 

Benefits 

from STM’s 

scalability 
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Better scalability with software 

but incurs higher runtime 

overhead, particularly under 

high contention. 

for large 

transactions 

while 

leveraging 

HTM’s 

efficiency 

for small 

transactions. 

7.   
Ease of 

Programming 

Transparent: Requires minimal code 

changes; programmers benefit from 

hardware-level optimizations 

automatically. 

Annotation Required: 

Programmers must annotate 

transactions in code and use 

runtime libraries, increasing 

complexity. 

Hybrid: 

Transparent 

in HTM 

mode; STM 

fallback may 

require 

annotations 

or runtime 

integration, 

adding some 

complexity. 

8.   Examples 

TCC, LogTM, Azul Vega, Sun Rock, 

IBM BG/Q, Intel Haswell. 

RSTM [17], TL2 [48], 

TinySTM [49],SwissTM 

[50],DSTM [18], McRT-STM 

[19], NORec [20], Nested 

LogTM [21] [22], Haskell 

STM [23] [24] [25] [26] [27] 

[28] [29], ATOMOS [30], 

NeSTM [31], HParSTM [32], 

NePalTM [33], CWSTM [34], 

PNSTM [35], SSTM [36]. 

Combines 

both 

approaches 

to balance 

performance, 

scalability, 

and 

flexibility. : Focus on hardware optimizations for 

small, efficient transactions. 

: Software-centric solutions for 

diverse and complex 

transactional needs. 

    

    

     

In conclusion, this comparison highlights the strengths 

and limitations of HTM, STM, and HyTM. HTM systems 

excel in speed and simplicity for small transactions but are 

constrained by hardware limitations. STM offers 

flexibility and scalability, making it suitable for complex 

and unbounded transactions, albeit at the cost of 

performance. HyTM provides a middle ground, 

leveraging HTM's efficiency for small transactions while 

falling back to STM for larger or more complex scenarios. 

Selecting the right TM approach depends on the specific 

application requirements, such as transaction size, 

contention levels, and hardware capabilities. As TM 

technology continues to evolve, hybrid solutions are 

expected to play a pivotal role in achieving a balance 

between performance and scalability in multicore 

environments. 

VI.CHALLENGES AND LIMITATIONS 

This section outlines the key challenges faced by HTM 

and STM systems, as well as common issues shared by 

both, including resource limitations, performance 

overhead, and conflict resolution, highlighting the need 

for advancements to improve TM efficiency and 

scalability [37]. 

Transactional Memory (TM) systems, while offering a 

promising approach to parallel programming, face several 

challenges that stem from their specific architectures and 

implementations. These challenges vary based on whether 
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the system is Hardware Transactional Memory (HTM) or 

Software Transactional Memory (STM), and some are 

shared across both. The Table II below categorizes these 

challenges, providing a description of each issue and its 

potential impact on TM performance and scalability. 

 

 

 

 

TABLE II 

 CHALLENGES IN TRANSACTIONAL MEMORY SYSTEMS 

In conclusion, the Table II highlights the multifaceted 

challenges faced by TM systems, emphasizing the trade-

offs between hardware- and software-based 

implementations. HTM systems excel in speed but are 

limited by physical constraints and scalability issues, 

while STM systems offer flexibility at the cost of 

performance and complexity. Common challenges such as 

I/O handling, nesting, and programming model 

integration underscore the need for innovative solutions to 

make TM more robust and user-friendly. By addressing 

Category Challenge Description Impact 

HTM-

Specific 

Challenges 

Limited On-Chip 

Resources 

Constrained by limited buffer size, 

restricting transaction size. 

Large transactions may not fit, causing 

overflows and requiring re-execution. 

Bounded 

Transactions 

Transactions are limited by hardware 

buffer size. 

Large transactions can overflow, 

causing degradation in performance. 

Unbounded 

Transactions 

Supporting large transactions adds 

complexity, especially in hybrid systems. 

Performance cliffs occur when 

switching from HTM to STM for larger 

transactions. 

Instruction Set 

Architecture (ISA) 

Support 

HTM requires specific ISA extensions, 

and levels of support vary widely. 

Poor ISA support limits flexibility; 

excessive support complicates 

hardware design. 

STM-

Specific 

Challenges 

Runtime Overhead Managing transactional state and conflict 

resolution incurs runtime overhead. 

Affects performance, especially in 

high-contention scenarios. 

Atomicity and 

Code Interaction 

Weak atomicity allows errors when 

mixing transactional and non-

transactional accesses. 

Causes synchronization issues and data 

races. 

Inconsistent Reads Transactions may read inconsistent data 

due to conflicts not being detected early. 

Leads to incorrect results, infinite 

loops, or program failures. 

Zombie 

Transactions 

Transactions doomed to abort but still 

execute until detected. 

Leads to inconsistent data access, 

infinite loops, and runtime failures. 

Common 

Challenges 

I/O Operations Handling I/O in transactions is 

problematic, especially undoing or 

deferring operations. 

Impacts real-time and interactive 

systems where I/O must be processed 

consistently. 

Nesting 

Transactions 

Closed Nesting: Commit or abort as a 

unit.  

- Open Nesting: Independent commits 

for inner transactions. 

Closed nesting limits concurrency; 

open nesting increases programmer 

complexity. 

Programming 

Model Integration 

Integrating TM with models like 

OpenMP or MPI, which were not 

designed for TM. 

Requires significant changes to 

programming models, affecting ease of 

use and performance. 

Conflict Detection 

and Resolution 

Detecting and resolving conflicts 

effectively, especially in STM. 

Adds complexity and overhead, 

especially with per-thread views of 

memory in STM. 
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these challenges, TM technology can unlock its full 

potential, enabling efficient and scalable parallel 

programming for a wide range of applications. 

VII. Comparative Study of Transactional Memory 

(TM) Frameworks 

This section compares various Transactional Memory 

(TM) frameworks, including key HTM and STM systems. 

It highlights their approaches, strengths, and trade-offs, 

offering insights into their suitability for different 

applications and workloads. 

A. COMPARISON OF TCC AND LOGTM 

This section compares TCC and LogTM, focusing on their 

distinct approaches to transaction management and the 

trade-offs in performance, scalability, and complexity 

[37]. 

Transactional Memory (TM) systems are designed to 

handle parallel execution efficiently by enabling atomic 

and isolated memory transactions. Two prominent 

implementations, Transactional Coherence and 

Consistency (TCC) [38] and Log-Based Transactional 

Memory (LogTM) [21], adopt different approaches to 

manage commits, aborts, and conflicts. These systems 

showcase the diversity in TM design philosophies, each 

with unique trade-offs in terms of performance, 

scalability, and conflict management. The Table III 

compares the features of TCC and LogTM, highlighting 

their respective strengths and limitations. 

TABLE III 

COMPARISON OF TCC AND LOGTM 

S.No. Feature TCC LogTM  

1.  Commit Slower:  

TCC requires broadcasting the 

transaction's write set across the 

bus to maintain consistency, which 

increases commit latency. 

Faster: 

 LogTM commits by updating values in 

place without broadcasting, making 

commits quicker. 

2.  Abort Faster:  

TCC uses speculative rollback to 

handle aborts efficiently, 

discarding changes quickly 

without complex recovery steps. 

Slower:  

LogTM requires traversing a log to undo 

changes, which is more time-consuming 

during an abort. 

3.  Coherence 

Mechanism 

Bus-based:  

TCC relies on a bus architecture 

for communication, simplifying 

coherence but limiting scalability 

in systems with more processors. 

Directory-based: LogTM uses a directory 

to track memory states across processors, 

enabling better scalability in larger 

systems. 

4.  Conflict 

Detection 

Lazy:  

Conflicts are detected only at 

commit time, reducing overhead 

during transaction execution but 

increasing rollback likelihood. 

Eager: 

 Conflicts are detected during each read 

or write, enabling earlier resolution but 

with higher runtime checking overhead. 

5.  Conflict 

Resolution 

Abort Self: 

 TCC resolves conflicts by 

aborting the conflicting 

transaction itself, simplifying 

resolution. 

Oldest Timestamp Wins:  

LogTM prioritizes older transactions, 

aborting newer ones to preserve progress 

and fairness. 

6.  Write Visibility At Commit:  

TCC makes write changes visible 

to other processors only after a 

transaction successfully commits, 

ensuring atomicity. 

Immediate:  

LogTM updates shared memory during 

execution, improving concurrency but 

requiring more robust conflict 

management. 

7.  Always in 

Transaction 

Yes:  

TCC treats all operations as part of 

transactions, providing uniformity 

but adding overhead for non-

critical code. 

No:  

LogTM only uses transactional 

mechanisms when needed, reducing 

overhead for non-transactional 

operations. 

8.  Nesting Support Yes: Yes:  
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In conclusion, the comparison between TCC and LogTM 

underscores their distinct approaches to handling 

transactional memory. TCC excels in simplicity and 

speculative execution but suffers from scalability 

challenges due to its bus-based architecture. In contrast, 

LogTM offers better scalability and concurrency through 

its directory-based coherence mechanism and immediate 

write visibility but incurs higher overheads during aborts 

and conflict detection. Understanding these trade-offs is 

crucial for selecting the appropriate TM system based on 

the application's requirements, such as scalability, 

transaction complexity, and contention levels. As TM 

technology evolves, hybrid approaches that combine the 

best features of TCC and LogTM may address their 

respective limitations. 

B. COMPARATIVE OVERVIEW OF HTM 

SYSTEMS 

This section compares prominent HTM systems, 

highlighting their features, architectures, limitations, and 

trade-offs in performance and scalability. 

Hardware Transactional Memory (HTM) systems 

leverage hardware-level mechanisms to manage 

transactional operations efficiently. By integrating 

speculative execution, conflict detection, and rollback 

mechanisms directly into the processor architecture, HTM 

systems aim to improve performance and simplify 

programming for parallel workloads. Various HTM 

implementations have been developed, each with unique 

features and architectural designs, but they also face 

specific limitations. The Table IV provides a comparative 

overview of some prominent HTM systems, focusing on 

their key features, architecture, limitations, and 

implementation status [39]. 

TABLE IV  COMPARATIVE OVERVIEW OF HTM SYSTEMS 

 TCC supports nesting of 

transactions, enabling more 

complex workflows. 

LogTM also supports nested transactions 

but with different conflict detection and 

resolution strategies. 

S.No. HTM 

System 

Key Features Architecture Limitations Status 

1.  Azul Vega 

[40] [41] 

TM integrated with Java 

Virtual Machine. 

Speculative execution 

with SPECULATE, 

ABORT, and COMMIT 

instructions. 

64-bit RISC; up to 

16 processors (54 

cores each, total 

864 cores). L1 

Cache: 16KB 

private per core. 

L2 Cache: 2MB 

shared among 9 

processors. 

- Memory 

conflicts limit 

speedup to ~1.1×. 

Capacity overflow 

is rare but impacts 

runtime. 

Commercially 

implemented. 

2.  Sun Rock 

[42] [43] 

Checkpoint-based 

speculative execution 

with the ability to revert 

to a safe state. 

SPECULATE and 

COMMIT instructions; 

conflicts abort 

transactions. 

High-performance 

SPARC processor. 

Supported for 

only 32 L2 cache 

lines.  

Cancelled 

before release. 

3.  IBM BG/Q 

[44] [45] 

Multi-versioned 16-way 

L2 cache for speculative 

state storage. Supports 

short- and long-running 

transactional modes. 

Blue Gene/Q 

supercomputer 

architecture. 

L1 cache cannot 

store speculative 

state. Requires 

evictions or 

aliasing for long-

running 

transactions. 

Used in Sequoia 

supercomputer. 

4.  Intel 

Haswell 

[46] 

Transactional 

Synchronization 

Extensions (TSX): 

x86 architecture. Detailed 

architectural 

implementation 

not disclosed. 
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In 

conclusion, the Table IV illustrates the diversity in HTM 

designs, highlighting the trade-offs and challenges faced 

by different systems. While Azul Vega and Intel Haswell 

have achieved commercial success, systems like Sun 

Rock faced technical limitations that led to their 

cancellation. IBM BG/Q demonstrates the potential of 

HTM in high-performance computing environments, 

albeit with architectural constraints. These 

implementations underscore the importance of balancing 

performance, scalability, and reliability in HTM systems. 

Continued advancements in HTM technology will be 

crucial for addressing these limitations and expanding its 

applicability in parallel computing. 

C. COMPARATIVE ANALYSIS OF STM 

IMPLEMENTATIONS 

This section compares four STM implementations, 

highlighting their features, strengths, and trade-offs for 

different application needs [47]. 

 

Transactional Memory (TM) systems offer a flexible 

framework for simplifying concurrent programming by 

eliminating many of the challenges associated with 

traditional lock-based synchronization. To cater to diverse 

workloads and system requirements, several Software 

Transactional Memory (STM) implementations have been 

developed, each with distinct features and approaches. 

The Table V provides a comparative analysis of four 

popular STM implementations: RSTM [17], TL2 [48], 

TinySTM [49], and SwissTM [50]. These 

implementations are evaluated across various dimensions, 

including granularity, update policy, write policy, and 

concurrency control [6] [14] [47] [51] [52] [53] [54] [55] 

[56]. The comparison highlights their strengths, trade-

offs, and suitability for different scenarios. 

TABLE V COMPARATIVE ANALYSIS OF STM IMPLEMENTATIONS 

S.No. Feature RSTM  TL2  TinySTM  SwissTM  

1.   Granularity 

Object-based: 

RSTM operates 

at the object 

level (e.g., 

arrays, lists), 

meaning it 

treats data 

structures as 

atomic units. 

This is useful 

for high-level 

abstractions and 

large data 

structures. 

Both: TL2 

supports 

both object-

based and 

word-based 

granularity. 

The 

flexibility 

allows it to 

work with 

both larger 

objects or 

finer 

memory 

locations, 

offering 

more 

control 

based on the 

workload. 

Word-based: 

TinySTM 

operates at a 

finer level, 

managing 

individual 

memory 

locations 

(e.g., words or 

cache lines), 

providing 

better control 

for more 

granular 

transactions. 

Word-based: 

Similar to 

TinySTM, 

SwissTM 

operates at the 

word level. 

This helps 

improve 

memory 

efficiency and 

allows finer 

control over 

transaction 

granularity. 

XBEGIN, XEND, and 

XABORT instructions. 
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2.   
Update 

Policy 

Deferred: 

Updates are 

applied to 

memory only at 

commit time. 

This helps in 

reducing 

conflicts and 

ensures that 

partial, 

speculative 

updates do not 

affect other 

transactions. 

Deferred: 

TL2 uses 

deferred 

updates, 

meaning 

changes are 

buffered and 

only applied 

when the 

transaction 

commits. 

This ensures 

consistency 

and 

minimizes 

premature 

side effects. 

Both: 

TinySTM 

offers both 

deferred 

updates 

(written at 

commit time) 

and 

immediate 

updates 

(applied 

immediately), 

providing 

flexibility 

based on the 

workload. 

Deferred: 

SwissTM 

defers updates 

until commit 

to ensure that 

any changes 

are atomic and 

consistent. It 

uses buffered 

memory writes 

to avoid 

conflicts 

during 

execution. 

3.   Write Policy 

Buffered: 

Writes are 

buffered and 

stored in a 

private 

transaction 

memory space. 

They are only 

visible to other 

transactions 

once the 

transaction 

commits. 

Buffered: 

TL2 uses a 

similar 

approach by 

buffering 

writes in a 

private 

memory 

area until 

the 

transaction 

is 

successfully 

committed, 

ensuring 

isolation 

and 

consistency. 

Both: 

TinySTM 

supports both 

buffered 

writes, where 

changes are 

stored in a 

temporary 

buffer until 

commit, and 

immediate 

writes, which 

are applied 

during 

execution. 

Buffered: 

SwissTM uses 

buffered 

writes, 

ensuring that 

memory 

updates only 

happen when 

the transaction 

commits. This 

provides 

isolation and 

consistency 

during 

execution. 

4.   
Acquire 

Policy 

Both: RSTM 

supports both 

eager and lazy 

acquisition of 

locks/resources. 

In eager 

acquisition, 

resources are 

locked 

immediately, 

whereas in lazy 

acquisition, 

locks are taken 

only when 

needed. 

Lazy: TL2 

uses lazy 

acquisition, 

meaning 

locks are 

acquired 

only when 

necessary, 

typically 

during 

execution if 

conflicts are 

about to 

occur. This 

reduces 

unnecessary 

overhead. 

Both: 

TinySTM can 

either acquire 

locks eagerly 

(immediately) 

or lazily (on-

demand), 

providing 

flexibility 

depending on 

the context 

and workload. 

Both: 

SwissTM 

supports both 

eager and lazy 

lock/resource 

acquisition. 

The system 

can adapt 

based on the 

transaction’s 

needs or 

configuration. 

5.   Read Policy 

Both (Visible 

and Invisible): 

RSTM supports 

both visible and 

invisible reads. 

Visible reads 

allow other 

transactions to 

see the data 

immediately, 

whereas 

Invisible: 

TL2 

primarily 

uses 

invisible 

reads. Reads 

are not 

visible to 

other 

transactions 

until the 

Invisible: 

TinySTM 

uses invisible 

reads, 

meaning that 

the data read 

by a 

transaction is 

not visible to 

other 

transactions 

Invisible: 

SwissTM also 

uses invisible 

reads to ensure 

consistency 

and isolation, 

making sure 

that data 

changes are 

not exposed 

until the 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242  |  5238 

invisible reads 

keep data 

private until 

commit. 

transaction 

commits, 

ensuring 

isolation 

and 

preventing 

conflicts 

during 

execution. 

until the 

transaction 

commits. 

transaction 

commits. 

6.   
Conflict 

Detection 

Both (Eager 

and Lazy): 

RSTM allows 

for both eager 

and lazy 

conflict 

detection, 

depending on 

the transaction 

configuration. 

Eager detection 

checks conflicts 

immediately, 

while lazy 

detection 

checks at 

commit time. 

Both (Eager 

and Lazy): 

TL2 

supports 

both eager 

and lazy 

conflict 

detection 

strategies. 

Eager 

detection 

checks 

conflicts as 

operations 

happen, 

while lazy 

detection 

waits until 

commit. 

Early: 

TinySTM 

employs early 

conflict 

detection, 

identifying 

conflicts as 

soon as they 

occur during 

the 

transaction 

execution, 

reducing retry 

rates and 

improving 

performance. 

Mixed 

Invalidation: 

SwissTM uses 

a mixed 

invalidation 

method, 

detecting 

write-write 

conflicts early 

and read-write 

conflicts 

lazily, offering 

a balance 

between 

performance 

and 

correctness. 

7.   
Concurrency 

Control 

Optimistic: 

RSTM uses 

optimistic 

concurrency 

control, 

assuming that 

conflicts are 

rare and 

allowing 

transactions to 

execute 

concurrently. 

Conflicts are 

resolved when 

they are 

detected, 

typically at 

commit time. 

Optimistic: 

TL2 uses 

optimistic 

concurrency 

control, 

meaning it 

allows 

transactions 

to execute 

concurrently 

with the 

assumption 

that 

conflicts 

will be rare. 

Conflicts 

are detected 

and resolved 

at commit 

time. 

Optimistic: 

TinySTM 

uses 

optimistic 

concurrency 

control, 

allowing 

transactions 

to execute 

concurrently 

and resolving 

conflicts 

when they are 

detected. This 

leads to 

higher 

throughput in 

low 

contention. 

Both 

(Optimistic & 

Lock-based): 

SwissTM uses 

optimistic 

concurrency 

control for 

low-

contention 

scenarios and 

switches to 

lock-based 

control when 

high 

contention is 

detected. This 

provides 

flexibility and 

better handling 

of diverse 

workloads. 

8.   
Progress 

Guarantee 

Obstruction-

free: RSTM 

guarantees 

obstruction-free 

progress, 

meaning 

transactions 

will eventually 

complete even 

if other 

transactions are 

delayed or 

blocked. 

Lock-based: 

TL2 uses 

lock-based 

control, 

meaning 

progress 

depends on 

acquiring 

and 

releasing 

locks. In 

high-

contention 

Lock-based: 

TinySTM 

uses lock-

based control 

in certain 

cases, 

guaranteeing 

progress as 

long as locks 

are properly 

acquired and 

released, but 

potentially 

Lock-based: 

SwissTM uses 

lock-based 

concurrency 

control, 

ensuring 

transaction 

isolation. It 

may face 

delays in high 

contention but 

can switch 

between 
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situations, it 

may face 

delays or 

deadlocks. 

causing 

delays in 

highly 

concurrent 

environments. 

optimistic and 

lock-based 

methods based 

on workload 

characteristics. 

 

 

In conclusion, this comparative analysis highlights the 

diverse approaches adopted by STM implementations to 

balance performance, scalability, and correctness. RSTM 

and TL2 offer simplicity and consistency with their 

deferred updates and optimistic concurrency control, 

while TinySTM and SwissTM provide more flexibility, 

catering to workloads with varying contention levels. By 

understanding these differences, developers can choose 

the STM implementation best suited to their application's 

needs, ensuring efficient and reliable transactional 

memory operations in multicore environments. As 

research progresses, future STM systems are likely to 

incorporate hybrid techniques that further optimize 

performance and usability across a wider range of 

scenarios. 

VIII. FUTURE DIRECTIONS 

This section explores the future advancements and 

directions for Transactional Memory (TM), focusing on 

overcoming current limitations and broadening its 

applicability in modern computing environments. 

 As modern computing systems become increasingly 

complex, TM is evolving to meet the growing demands of 

parallel programming. Researchers are working to refine 

TM’s design and implementation, with a goal of 

enhancing its scalability, flexibility, and reliability across 

a wide range of workloads and system architectures. 

While TM holds the potential to simplify concurrency 

management, unlocking this potential requires addressing 

existing challenges and integrating TM more effectively 

into the broader computing ecosystem. 

Key advancements and future directions include: 

A. DYNAMIC STM 

Extends STM to support dynamic memory access 

patterns, enhancing flexibility. 

B. ADAPTIVE CONFLICT RESOLUTION 

Dynamically adjusts backoff mechanisms to minimize 

transaction abort rates. 

C. EXPANDED HTM SUPPORT 

Developments in processor design aim to handle larger 

and more complex transactions. 

D. INTEGRATION WITH WEAK MEMORY 

MODELS 

Enables TM to function effectively in systems with 

relaxed consistency constraints. 

In conclusion, these innovations are set to enhance TM’s 

robustness, making it an essential tool in modern parallel 

programming. As TM continues to evolve, its expanding 

applicability will enable it to address a wide variety of 

workloads and emerging applications. The combination of 

improvements in Dynamic STM, Adaptive Conflict 

Resolution, and expanded hardware support will refine 

TM's performance and facilitate its integration with 

advanced computing paradigms, such as weak memory 

models. As TM adapts alongside developments in 

hardware, software, and system architectures, it will 

remain central to advancing parallel computing, 

empowering developers to harness the full potential of 

multicore and distributed systems. 

IX.CONCLUSION 

Transactional Memory (TM) has emerged as a 

transformative paradigm for managing synchronization in 

parallel programming, offering an efficient, high-level 

abstraction that overcomes the limitations of traditional 

synchronization methods like locks and semaphores. This 

paper has provided a comprehensive exploration of TM by 

examining its foundational principles, implementation 

strategies, applications, challenges, and future 

directions.TM was introduced as a response to the 

increasing complexity of synchronization in multicore and 

distributed systems. It provides atomicity, consistency, 

and isolation, simplifying concurrency management and 

enabling developers to focus on scalable program design. 

The core implementation strategies of TM—Software 

Transactional Memory (STM), Hardware Transactional 

Memory (HTM), and Hybrid Transactional Memory 

(HyTM)—offer flexibility, low-latency synchronization, 

and dynamic adaptability, respectively. Each approach has 

specific strengths, limitations, and applicability, 

depending on the workload and system requirements. 

Nested Transactions were highlighted as an effective way 

to improve fault tolerance, concurrency, and rollback 

efficiency. By modularly breaking down transactions into 

smaller subtransactions, TM reduces overhead and 

enhances scalability, particularly in complex systems. 

TM's diverse applications, including concurrent data 

structures, graph algorithms, scalable systems, and real-

time computing, demonstrate its effectiveness across 
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domains requiring high concurrency and reliability. Its 

lock-free synchronization capabilities significantly 

enhance performance and reliability. Insights into TM's 

performance showed the unique advantages and trade-offs 

of STM, HTM, and HyTM, emphasizing the importance 

of aligning implementation strategies with specific 

workload characteristics to maximize scalability and 

efficiency. The challenges and limitations of TM, such as 

integration complexity, large transaction handling, 

contention management, and nesting complexity, were 

discussed. These obstacles highlight the need for 

continued innovation to improve TM's practicality and 

facilitate broader adoption. A Comparative Study of 

Transactional Memory (TM) Frameworks was conducted, 

providing valuable insights into different TM systems, 

including the comparison of TCC and LogTM, an 

overview of HTM systems, and an in-depth analysis of 

STM implementations. This comparison highlighted the 

distinct approaches, trade-offs, and challenges faced by 

different TM frameworks, offering a clearer 

understanding of their suitability for various applications 

and workloads. Looking ahead, future directions for TM 

include advancements like Dynamic STM, Adaptive 

Conflict Resolution, expanded HTM support, and 

integration with weak memory models. These innovations 

are crucial for overcoming current limitations and 

broadening TM’s applicability in modern computing 

environments. In conclusion, TM represents a significant 

advancement in parallel programming, providing a 

scalable, efficient, and reliable synchronization model. As 

multicore and distributed systems grow in complexity, 

TM’s adaptability and robustness position it as a 

cornerstone of modern computing. By addressing 

challenges and leveraging emerging advancements, TM is 

set to drive innovation in high-performance computing, 

real-time systems, and large-scale data processing, 

shaping the future of parallel programming. This 

exploration will help researchers by offering valuable 

insights into TM’s principles, challenges, and future 

directions, guiding the development of more efficient and 

scalable systems in various computational domains. 
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