

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5226

Transactional Memory: A Comprehensive Review of Implementation,

Applications, Performance, Challenges, Framework Comparisons, and

Future Prospects

Meenu

Submitted:11/03/2024 Revised: 26/04/2024 Accepted: 03/05/2024

Abstract Transactional Memory (TM) offers a high-level synchronization abstraction for parallel programming, improving scalability,

reliability, and productivity. It addresses challenges in multicore and distributed systems, surpassing traditional methods like locks and

semaphores. TM implementation strategies—Software Transactional Memory (STM), Hardware Transactional Memory (HTM), and

Hybrid Transactional Memory (HyTM)—present trade-offs in performance, scalability, and adaptability, catering to diverse workloads.

Advanced features, including Nested Transactions, enhance fault tolerance and minimize rollback costs through modular transaction

management.TM’s lock-free synchronization finds applications in concurrent data structures, graph algorithms, scalable systems, and real-

time computing, boosting reliability and system performance. Performance analyses of STM, HTM, and HyTM highlight their strengths

and limitations in handling varying workloads. However, challenges persist, such as programming model integration, contention

management, and efficiently managing large or nested transactions. Innovations like Dynamic STM, Adaptive Conflict Resolution, and

extended HTM support tackle these issues, advancing TM capabilities. Frameworks such as TCC and LogTM, along with STM and HTM

implementations, illustrate TM's evolution. Future research aims to overcome current limitations, ensuring TM’s role in high-performance

computing, real-time systems, and large-scale data processing. TM simplifies synchronization, empowering parallel programming to meet

modern and future system requirements efficiently.

Index Terms: Concurrency Management, Nested Transactions, Parallel Programming, Software Transactional Memory (STM),

Transactional Memory (TM)

I.INTRODUCTION

This section introduces the challenges of synchronization

in multicore systems and presents Transactional Memory

(TM) as a scalable solution, highlighting its principles,

motivations, and potential to simplify parallel

programming [1].

The shift from single core to multicore processors has

fundamentally transformed the landscape of computing,

enabled the parallel execution of tasks and delivered

substantial performance improvements [2]. However, this

transition introduces new challenges in parallel

programming, particularly in managing access to shared

resources. Effective synchronization among concurrent

threads is critical, but ensuring correctness and efficiency

in this context remains a complex task. Traditional

synchronization mechanisms, such as locks and

semaphores, have been widely used but often come with

significant drawbacks. These include issues like

deadlocks, livelocks, priority inversion, and poor

composability, which can severely hinder scalability and

complicate the development of reliable parallel programs

[3] [4]. To overcome these challenges, more advanced

techniques have been introduced, with Transactional

Memory (TM) emerging as a leading solution [5]. TM

provides a novel abstraction that simplifies

synchronization in parallel programming, making it

especially suited for the needs of multicore systems. This

survey examines the core concepts, motivations, and

practical applications of TM, highlighting its potential to

revolutionize parallel programming by offering a more

efficient and manageable synchronization model.

A. TRANSACTIONAL MEMORY

This section introduces Transactional Memory (TM) as a

solution to overcome the limitations of traditional

synchronization methods in parallel programming.

 As multicore processors become the norm in modern

computing, parallel programming has become a necessity.

However, traditional synchronization methods like locks

and semaphores often fall short when faced with

challenges such as deadlocks, priority inversion, and

reduced composability. These limitations create

significant bottlenecks, impacting scalability and the

reliability of parallel programs. Transactional Memory

(TM) presents an innovative alternative to these

conventional synchronization methods by replacing locks

with transactional execution. TM ensures that critical

sections of code are executed atomically and in isolation,

simplifying synchronization, reducing contention, and

Department of CSE, M. M. M. U. T., Gorakhpur, India

*myself_meenu@yahoo.co.in

mailto:*myself_meenu@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5227

improving overall reliability. This survey provides an in-

depth exploration of the foundational principles and

practical implications of TM, synthesizing insights from

key research to offer a comprehensive analysis of its

capabilities.

B. CORE PRINCIPLES AND MOTIVATION

This section highlights the core principles

of Transactional Memory (TM), focusing on its ability to

simplify synchronization and improve scalability in

multicore systems.

The core idea behind Transactional Memory is to treat a

series of operations on shared data as a single atomic

transaction. In this model, transactions

either commit (complete fully) or abort (revert all

changes), ensuring atomicity, consistency, and isolation of

operations. Unlike traditional lock-based approaches, TM

abstracts away the complexities of manual

synchronization, providing a model that is more

composable and scalable. This abstraction is especially

important as the adoption of multicore systems continues

to rise. Traditional synchronization models struggle to

meet the demands of these systems, leading to errors,

performance bottlenecks, and challenges in maintaining

modularity. TM provides an elegant solution to these

issues by ensuring safe concurrency and improved

performance, making it a highly relevant tool in modern

parallel programming.

 In conclusion, Transactional Memory represents a

fundamental shift in how parallel programming

challenges are addressed in multicore systems. By

simplifying synchronization and offering a more scalable

and composable approach, TM enhances both the

reliability and performance of concurrent applications. Its

ability to abstract synchronization complexities allows

developers to focus on higher-level program logic instead

of dealing with low-level implementation details,

ultimately reducing development time and minimizing

errors. As multicore architectures continue to dominate

computing, the relevance and importance of TM will only

increase. However, challenges related to hardware

implementation, performance overhead, and integration

with existing programming models remain areas of active

research. This survey lays the groundwork for

understanding TM's principles, motivations, and potential,

providing a foundation for exploring its practical

applications and future developments in the realm of

parallel computing.

II. IMPLEMENTATION APPROACHES

This section explores the implementation approaches for

Transactional Memory (TM): Hardware (HTM), Software

(STM), and Hybrid (HyTM). It highlights their trade-offs,

suitability for different workloads, and the importance of

selecting the right approach based on application needs.

The successful implementation of Transactional Memory

(TM) is crucial for realizing its potential to improve

performance, scalability, and applicability in parallel

computing systems. There are several ways to implement

TM, each with its own advantages, limitations, and

suitability for different use cases. Understanding these

implementation strategies is essential for selecting the

most appropriate solution based on the workload, system

architecture, and specific requirements of the application.

Before examining the individual approaches, it's

important to consider the fundamental trade-offs between

hardware-centric and software-centric solutions.

Hardware-based implementations prioritize performance,

offering low latency and high throughput. In contrast,

software-based solutions emphasize flexibility and

portability, as they can be deployed on various hardware

platforms. A hybrid approach combines the strengths of

both, offering a balance of performance and adaptability

for a range of workloads.

There are three primary TM implementation

approaches—Hardware Transactional Memory

(HTM), Software Transactional Memory (STM),

and Hybrid Transactional Memory (HyTM). Each

approach provides unique solutions to address the

challenges of synchronization in multicore systems, with

distinct considerations for efficiency, scalability, and ease

of use.

A. HARDWARE TRANSACTIONAL MEMORY

(HTM)

This section highlights Hardware Transactional Memory

(HTM's) use of specialized hardware for efficient

transaction management.

 HTM uses specialized hardware to manage transactions

efficiently. First introduced by Herlihy and Moss [6],

HTM offers several key features:

1) TRANSACTIONAL CACHE

Temporary changes made during a transaction are stored

in a dedicated cache until the transaction commits, helping

to minimize memory traffic.

2) SPECIALIZED INSTRUCTIONS

 Hardware-level instructions, such as Load-Transactional

and Commit, help manage transactional execution.

3) CONFLICT DETECTION

 Hardware mechanisms dynamically detect and resolve

conflicts between transactions, ensuring consistency and

isolation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5228

HTM delivers high performance for short, low-contention

transactions by reducing memory access overhead

compared to traditional lock-based synchronization

methods. However, its reliance on specialized hardware

means that it can struggle with larger transactions or

complex workloads, as hardware limitations such as cache

size and transaction complexity can hinder scalability.

Benchmarks involving tasks like counting operations and

linked lists demonstrate HTM's strengths in low-

contention scenarios.

B. SOFTWARE TRANSACTIONAL MEMORY

(STM)

This section discusses Software Transactional Memory

(STM), focusing on its software-based execution,

portability, and suitability for high-contention

environments.

STM simulates transactional execution entirely in

software, removing the need for specialized hardware.

Proposed by Shavit and Touitou [7], STM operates based

on the following principles:

1) PORTABILITY

STM can be deployed on any hardware, providing broad

applicability across different systems.

2) NON-BLOCKING EXECUTION

STM allows progress even under contention by using

software-based conflict resolution mechanisms.

3) LOGGING AND METADATA

To maintain consistency and atomicity, STM tracks read

and write operations through metadata and logs,

simulating the behaviour of atomic transactions.

While STM offers flexibility and portability, it incurs

higher overhead due to the need for managing metadata

and logging. Despite this, STM excels in high-contention

scenarios, enabling lock-free implementations of complex

data structures. Experimental results suggest that STM

achieves higher throughput and fewer retries when

handling concurrent tasks in such environments [8] [9].

C. HYBRID TRANSACTIONAL MEMORY (HYTM)

This section outlines Hybrid Transactional Memory

(HyTM), which blends HTM and STM to balance

performance and flexibility for different workloads.

HyTM [10] combines elements of both HTM and STM to

leverage the strengths of each approach. Key features of

HyTM include:

1) DUAL EXECUTION PATHS

Transactions are first attempted in hardware. If hardware

limitations are exceeded, the system falls back to

software-based execution, ensuring that transactions are

still processed correctly.

2) CONFLICT DETECTION

 HyTM maintains consistency between the hardware and

software transactional executions, resolving conflicts in

both paths.

3) SCALABILITY

HyTM offers a balance between the efficiency of HTM

and the flexibility of STM, making it scalable across

diverse workloads.

HyTM adapts to the specific demands of a workload,

offering high performance for short transactions while

maintaining flexibility for larger or more complex tasks.

It has been shown to perform well in high-contention

scenarios, and benchmarks like SPLASH-2 highlight its

scalability, making it a promising approach for practical

implementations of TM.

In conclusion, the choice of TM implementation approach

depends heavily on the specific requirements of the

application and the constraints of the underlying

hardware. HTM is ideal for low-contention environments

with short transactions, leveraging hardware-level

optimizations for maximum performance. STM offers

broad applicability across hardware platforms, excelling

in high-contention scenarios but incurring higher

overhead due to its software-based nature. HyTM, by

combining HTM and STM, offers an adaptable solution

that dynamically adjusts to the workload, providing the

best of both worlds in terms of performance, portability,

and scalability. Understanding the strengths and

weaknesses of each approach allows developers to make

informed decisions about integrating TM into their

systems, ensuring that TM remains a viable solution for

efficient synchronization across a diverse array of

applications. As both hardware and software continue to

evolve, future research and development in TM

implementations promise to further refine these solutions,

improving their performance, scalability, and broader

applicability in emerging computing environments.

III.NESTED TRANSACTIONS

This section covers Nested Transactions, which improve

efficiency and fault tolerance through different nesting

models and architectural optimizations.

In complex transactional systems, handling large

transactions can be challenging, particularly when it

comes to the high costs associated with rollbacks. While

rollback operations are essential for maintaining atomicity

and consistency, they become increasingly costly as

transactions grow in size and complexity. This is

particularly problematic when large numbers of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5229

operations must be undone due to a failure or

inconsistency. To address these challenges, Nested

Transactions were introduced as a solution to facilitate

more efficient error handling and improve the overall

management of transaction execution [11]. By enabling

partial rollbacks without requiring the entire transaction to

be undone, Nested Transactions offer a modular approach

that significantly reduces rollback costs, enhances

concurrency, and improves fault tolerance. Breaking a

large transaction into smaller, more manageable

subtransactions allows for better failure management. If

an error occurs within a subtransaction, only the changes

in that subtransaction need to be rolled back, leaving other

operations unaffected. This approach ensures that

unrelated operations can continue, making it possible to

maintain system progress even in the presence of failures.

A. NESTING MODELS

This section discusses three primary nesting models—

Closed, Open, and Linear Nesting—and examines

architectural innovations aimed at enhancing the

performance and scalability of Nested Transactions.

Nesting transactions come in different models, each with

unique strengths and trade-offs, influencing how

subtransactions are executed, committed, and rolled back.

These models significantly impact the performance and

scalability of the overall system [12] [13].

1) CLOSED NESTING

 In this model, subtransactions are committed to their

parent transaction. When a subtransaction completes

successfully, it becomes part of the larger parent

transaction, and any partial rollbacks are contained within

that subtransaction. This model provides strong control

and isolation, ensuring that the overall transaction's

integrity is maintained. However, it may limit

concurrency as subtransactions must be executed

sequentially within their parent.

2) OPEN NESTING

Open Nesting allows subtransactions to commit

independently and make intermediate changes visible to

the broader system. This approach increases concurrency,

as different subtransactions can progress in parallel

without waiting for one another. However, it introduces

additional complexity in managing rollbacks, as

intermediate changes must be carefully reverted without

affecting system consistency. Open Nesting is best suited

for highly parallel applications but requires compensatory

mechanisms to handle failures effectively.

3) LINEAR NESTING

Linear Nesting restricts concurrency by allowing

subtransactions to execute sequentially, one after another,

within a single transactional branch. This model simplifies

implementation and rollback management, as there is no

need to coordinate multiple concurrent subtransactions. It

is a straightforward approach, making it ideal for simpler

systems where parallelism is not a priority.

To improve the performance of Nested Transactions,

architectural innovations such as transactional data caches

and hierarchical tracking mechanisms are critical. These

enhancements allow efficient tracking of subtransactions,

ensuring that rollbacks can be performed swiftly without

consuming excessive resources. By supporting the

effective execution and rollback of nested transactions,

these optimizations contribute to the robustness and

scalability of transactional memory systems, even in

complex environments.

In conclusion, Nested Transactions provide an effective

mechanism for managing large, complex transactions by

offering the flexibility to perform partial rollbacks and

preserving system consistency. They help decompose

large transactions into smaller, manageable

subtransactions, which can improve fault tolerance and

reduce the overhead associated with rollbacks. Each of the

three primary nesting models—Closed Nesting, Open

Nesting, and Linear Nesting—offers distinct trade-offs,

enabling the model to be chosen based on application

requirements. Closed Nesting provides strong isolation

and control, Open Nesting boosts concurrency but adds

complexity in rollback management, and Linear Nesting

simplifies implementation at the cost of limiting

concurrency. Furthermore, architectural innovations like

transactional data caches and hierarchical tracking

mechanisms play a crucial role in optimizing the

performance and scalability of nested transactions in high-

performance systems. Ultimately, Nested Transactions

enhance the flexibility and efficiency of transactional

memory systems, enabling more modular, robust, and

scalable programming. [14] [15] [16].As the complexity

and parallelism of modern systems continue to grow, the

adoption of Nested Transactions will remain an essential

strategy for managing transaction execution and ensuring

system reliability.

IV.APPLICATIONS OF TRANSACTIONAL

MEMORY

This section highlights the benefits and applications of

Transactional Memory (TM), focusing on its role in

improving concurrency, scalability, and performance in

various domains.

Transactional Memory (TM) has gained widespread

recognition for its ability to simplify synchronization and

enhance concurrency in parallel programming. By

abstracting the complexities of managing concurrent

operations, TM allows developers to focus on higher-level

program logic instead of low-level synchronization

details. This makes TM a powerful tool for addressing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5230

challenges posed by parallelism, offering scalability and

adaptability across various domains—from data structures

to large-scale, high-performance systems. A primary

advantage of TM is its support for efficient, lock-free

operations in shared memory environments, which

eliminates the overhead associated with traditional

synchronization mechanisms like locks. This leads to

better performance and improved reliability in systems

where concurrency is essential. As such, TM is being

increasingly explored and applied in a wide range of

fields, providing effective solutions to some of the most

persistent challenges in parallel computing.

A. KEY APPLICATIONS

 Key Applications of Transactional Memory (TM) include

1) CONCURRENT DATA STRUCTURES

TM enables efficient, lock-free operations on shared

structures such as linked lists, queues, and hash tables.

This enhances scalability and minimizes synchronization

errors, making it ideal for dynamic, concurrent data

environments.

2) GRAPH ALGORITHMS

TM supports parallel execution of complex operations

like graph traversal and updates. This significantly

improves the performance of graph-based computations

in data-intensive workloads, such as those in social

networks, web crawlers, or computational biology.

3) SCALABLE SYSTEMS

TM helps in the efficient management of concurrent

operations in large-scale systems such as game servers.

By abstracting synchronization, it simplifies system

design and enhances the reliability of these systems

under high loads.

 In conclusion, Transactional Memory represents a

transformative shift in parallel programming,

simplifying the challenges of concurrency and

synchronization while improving system performance

and scalability. Its ability to support lock-free operations

on shared resources brings about significant gains in

efficiency, reliability, and scalability across a wide range

of applications. From concurrent data structures to

complex graph algorithms and scalable systems like

game servers, TM offers a powerful solution to

longstanding parallel programming problems. As TM

continues to evolve, it holds the promise of unlocking

even greater potential in multicore and distributed

systems. The continued development of TM

technologies will drive advancements in high-

performance computing, real-time systems, and large-

scale data processing, helping to shape the future of

parallel programming. With its flexibility, efficiency,

and robustness, TM will be at the heart of next-

generation programming models designed to meet the

demands of increasingly complex applications.

V.PERFORMANCE INSIGHTS

This section compares HTM, STM, and HyTM based on

their strengths, limitations, and suitability for different

applications, as detailed in Table I.

Transactional Memory (TM) systems can be broadly

categorized into three types: Hardware Transactional

Memory (HTM), Software Transactional Memory (STM),

and Hybrid Transactional Memory (HyTM). Each

approach leverages unique methodologies for handling

transactions, offering distinct trade-offs in terms of

performance, resource management, conflict detection,

and ease of programming. The Table I below provides a

detailed comparison of HTM, STM, and HyTM,

highlighting their features, strengths, and limitations to

help understand their suitability for different use cases.

TABLE I

COMPARISON OF HTM, STM, AND HYTM

S.No. Feature HTM STM HyTM

1. Implementation

Hardware-based: TM logic is integrated

into hardware (e.g., caches and registers),

making it fast and efficient but hardware-

dependent.

Software-based: Uses data

structures and runtime

libraries, offering flexibility

but adding software overhead.

Hybrid:

Combines

HTM for

efficient

small

transactions

and STM for

larger ones,

balancing

performance

and

flexibility.

2. Performance High: Moderate to Low:
High to

Moderate:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5231

 Low overhead for small transactions due

to direct hardware execution, ideal for

common cases.

 Slower due to runtime checks

and metadata management but

supports more complex cases.

Matches

HTM

performance

for small

transactions;

STM

fallback adds

overhead for

large or

complex

transactions.

3.
Resource

Limitations

Hardware-limited: Constrained by

physical resources like cache size and

associativity, leading to potential

transaction aborts for large memory

footprints.

Unbounded: Mixed:

Can handle arbitrarily large

transactions, limited only by

system memory, but at the cost

of higher runtime complexity.

Uses HTM

for

hardware-

limited cases

and switches

to STM for

transactions

exceeding

hardware

capabilities,

providing

flexibility

but

introducing

transition

overhead.

4. Conflict Detection

Eager:

Eager or Lazy: Detection

occurs either during execution

(eager) or at commit time

(lazy), offering flexibility but

varying in efficiency.

Hybrid:

 Detects conflicts during transaction

execution using hardware mechanisms

like MESI protocols, ensuring early

resolution but adding some latency.

Eager

detection in

hardware

mode for

speed; lazy

detection in

STM

fallback to

optimize

resource

usage.

5.
Rollback

Mechanism

Fast:

Software-based: Uses undo

logs or private buffers to revert

changes, making rollbacks

slower but more flexible.

Hybrid:

Relies on cache invalidation or other

hardware mechanisms for efficient

rollbacks, minimizing wasted

computation.

HTM

rollbacks are

quick; STM

rollbacks

rely on undo

logs or other

software

mechanisms,

slowing

down the

process.

6. Scalability

Limited: Scalability is constrained by

hardware shared resources like cache and

interconnect bandwidth, affecting

performance in large systems.

Flexible:

Improved:

Benefits

from STM’s

scalability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5232

Better scalability with software

but incurs higher runtime

overhead, particularly under

high contention.

for large

transactions

while

leveraging

HTM’s

efficiency

for small

transactions.

7.
Ease of

Programming

Transparent: Requires minimal code

changes; programmers benefit from

hardware-level optimizations

automatically.

Annotation Required:

Programmers must annotate

transactions in code and use

runtime libraries, increasing

complexity.

Hybrid:

Transparent

in HTM

mode; STM

fallback may

require

annotations

or runtime

integration,

adding some

complexity.

8. Examples

TCC, LogTM, Azul Vega, Sun Rock,

IBM BG/Q, Intel Haswell.

RSTM [17], TL2 [48],

TinySTM [49],SwissTM

[50],DSTM [18], McRT-STM

[19], NORec [20], Nested

LogTM [21] [22], Haskell

STM [23] [24] [25] [26] [27]

[28] [29], ATOMOS [30],

NeSTM [31], HParSTM [32],

NePalTM [33], CWSTM [34],

PNSTM [35], SSTM [36].

Combines

both

approaches

to balance

performance,

scalability,

and

flexibility. : Focus on hardware optimizations for

small, efficient transactions.

: Software-centric solutions for

diverse and complex

transactional needs.

In conclusion, this comparison highlights the strengths

and limitations of HTM, STM, and HyTM. HTM systems

excel in speed and simplicity for small transactions but are

constrained by hardware limitations. STM offers

flexibility and scalability, making it suitable for complex

and unbounded transactions, albeit at the cost of

performance. HyTM provides a middle ground,

leveraging HTM's efficiency for small transactions while

falling back to STM for larger or more complex scenarios.

Selecting the right TM approach depends on the specific

application requirements, such as transaction size,

contention levels, and hardware capabilities. As TM

technology continues to evolve, hybrid solutions are

expected to play a pivotal role in achieving a balance

between performance and scalability in multicore

environments.

VI.CHALLENGES AND LIMITATIONS

This section outlines the key challenges faced by HTM

and STM systems, as well as common issues shared by

both, including resource limitations, performance

overhead, and conflict resolution, highlighting the need

for advancements to improve TM efficiency and

scalability [37].

Transactional Memory (TM) systems, while offering a

promising approach to parallel programming, face several

challenges that stem from their specific architectures and

implementations. These challenges vary based on whether

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5233

the system is Hardware Transactional Memory (HTM) or

Software Transactional Memory (STM), and some are

shared across both. The Table II below categorizes these

challenges, providing a description of each issue and its

potential impact on TM performance and scalability.

TABLE II

 CHALLENGES IN TRANSACTIONAL MEMORY SYSTEMS

In conclusion, the Table II highlights the multifaceted

challenges faced by TM systems, emphasizing the trade-

offs between hardware- and software-based

implementations. HTM systems excel in speed but are

limited by physical constraints and scalability issues,

while STM systems offer flexibility at the cost of

performance and complexity. Common challenges such as

I/O handling, nesting, and programming model

integration underscore the need for innovative solutions to

make TM more robust and user-friendly. By addressing

Category Challenge Description Impact

HTM-

Specific

Challenges

Limited On-Chip

Resources

Constrained by limited buffer size,

restricting transaction size.

Large transactions may not fit, causing

overflows and requiring re-execution.

Bounded

Transactions

Transactions are limited by hardware

buffer size.

Large transactions can overflow,

causing degradation in performance.

Unbounded

Transactions

Supporting large transactions adds

complexity, especially in hybrid systems.

Performance cliffs occur when

switching from HTM to STM for larger

transactions.

Instruction Set

Architecture (ISA)

Support

HTM requires specific ISA extensions,

and levels of support vary widely.

Poor ISA support limits flexibility;

excessive support complicates

hardware design.

STM-

Specific

Challenges

Runtime Overhead Managing transactional state and conflict

resolution incurs runtime overhead.

Affects performance, especially in

high-contention scenarios.

Atomicity and

Code Interaction

Weak atomicity allows errors when

mixing transactional and non-

transactional accesses.

Causes synchronization issues and data

races.

Inconsistent Reads Transactions may read inconsistent data

due to conflicts not being detected early.

Leads to incorrect results, infinite

loops, or program failures.

Zombie

Transactions

Transactions doomed to abort but still

execute until detected.

Leads to inconsistent data access,

infinite loops, and runtime failures.

Common

Challenges

I/O Operations Handling I/O in transactions is

problematic, especially undoing or

deferring operations.

Impacts real-time and interactive

systems where I/O must be processed

consistently.

Nesting

Transactions

Closed Nesting: Commit or abort as a

unit.

- Open Nesting: Independent commits

for inner transactions.

Closed nesting limits concurrency;

open nesting increases programmer

complexity.

Programming

Model Integration

Integrating TM with models like

OpenMP or MPI, which were not

designed for TM.

Requires significant changes to

programming models, affecting ease of

use and performance.

Conflict Detection

and Resolution

Detecting and resolving conflicts

effectively, especially in STM.

Adds complexity and overhead,

especially with per-thread views of

memory in STM.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5234

these challenges, TM technology can unlock its full

potential, enabling efficient and scalable parallel

programming for a wide range of applications.

VII. Comparative Study of Transactional Memory

(TM) Frameworks

This section compares various Transactional Memory

(TM) frameworks, including key HTM and STM systems.

It highlights their approaches, strengths, and trade-offs,

offering insights into their suitability for different

applications and workloads.

A. COMPARISON OF TCC AND LOGTM

This section compares TCC and LogTM, focusing on their

distinct approaches to transaction management and the

trade-offs in performance, scalability, and complexity

[37].

Transactional Memory (TM) systems are designed to

handle parallel execution efficiently by enabling atomic

and isolated memory transactions. Two prominent

implementations, Transactional Coherence and

Consistency (TCC) [38] and Log-Based Transactional

Memory (LogTM) [21], adopt different approaches to

manage commits, aborts, and conflicts. These systems

showcase the diversity in TM design philosophies, each

with unique trade-offs in terms of performance,

scalability, and conflict management. The Table III

compares the features of TCC and LogTM, highlighting

their respective strengths and limitations.

TABLE III

COMPARISON OF TCC AND LOGTM

S.No. Feature TCC LogTM

1. Commit Slower:

TCC requires broadcasting the

transaction's write set across the

bus to maintain consistency, which

increases commit latency.

Faster:

 LogTM commits by updating values in

place without broadcasting, making

commits quicker.

2. Abort Faster:

TCC uses speculative rollback to

handle aborts efficiently,

discarding changes quickly

without complex recovery steps.

Slower:

LogTM requires traversing a log to undo

changes, which is more time-consuming

during an abort.

3. Coherence

Mechanism

Bus-based:

TCC relies on a bus architecture

for communication, simplifying

coherence but limiting scalability

in systems with more processors.

Directory-based: LogTM uses a directory

to track memory states across processors,

enabling better scalability in larger

systems.

4. Conflict

Detection

Lazy:

Conflicts are detected only at

commit time, reducing overhead

during transaction execution but

increasing rollback likelihood.

Eager:

 Conflicts are detected during each read

or write, enabling earlier resolution but

with higher runtime checking overhead.

5. Conflict

Resolution

Abort Self:

 TCC resolves conflicts by

aborting the conflicting

transaction itself, simplifying

resolution.

Oldest Timestamp Wins:

LogTM prioritizes older transactions,

aborting newer ones to preserve progress

and fairness.

6. Write Visibility At Commit:

TCC makes write changes visible

to other processors only after a

transaction successfully commits,

ensuring atomicity.

Immediate:

LogTM updates shared memory during

execution, improving concurrency but

requiring more robust conflict

management.

7. Always in

Transaction

Yes:

TCC treats all operations as part of

transactions, providing uniformity

but adding overhead for non-

critical code.

No:

LogTM only uses transactional

mechanisms when needed, reducing

overhead for non-transactional

operations.

8. Nesting Support Yes: Yes:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5235

In conclusion, the comparison between TCC and LogTM

underscores their distinct approaches to handling

transactional memory. TCC excels in simplicity and

speculative execution but suffers from scalability

challenges due to its bus-based architecture. In contrast,

LogTM offers better scalability and concurrency through

its directory-based coherence mechanism and immediate

write visibility but incurs higher overheads during aborts

and conflict detection. Understanding these trade-offs is

crucial for selecting the appropriate TM system based on

the application's requirements, such as scalability,

transaction complexity, and contention levels. As TM

technology evolves, hybrid approaches that combine the

best features of TCC and LogTM may address their

respective limitations.

B. COMPARATIVE OVERVIEW OF HTM

SYSTEMS

This section compares prominent HTM systems,

highlighting their features, architectures, limitations, and

trade-offs in performance and scalability.

Hardware Transactional Memory (HTM) systems

leverage hardware-level mechanisms to manage

transactional operations efficiently. By integrating

speculative execution, conflict detection, and rollback

mechanisms directly into the processor architecture, HTM

systems aim to improve performance and simplify

programming for parallel workloads. Various HTM

implementations have been developed, each with unique

features and architectural designs, but they also face

specific limitations. The Table IV provides a comparative

overview of some prominent HTM systems, focusing on

their key features, architecture, limitations, and

implementation status [39].

TABLE IV COMPARATIVE OVERVIEW OF HTM SYSTEMS

 TCC supports nesting of

transactions, enabling more

complex workflows.

LogTM also supports nested transactions

but with different conflict detection and

resolution strategies.

S.No. HTM

System

Key Features Architecture Limitations Status

1. Azul Vega

[40] [41]

TM integrated with Java

Virtual Machine.

Speculative execution

with SPECULATE,

ABORT, and COMMIT

instructions.

64-bit RISC; up to

16 processors (54

cores each, total

864 cores). L1

Cache: 16KB

private per core.

L2 Cache: 2MB

shared among 9

processors.

- Memory

conflicts limit

speedup to ~1.1×.

Capacity overflow

is rare but impacts

runtime.

Commercially

implemented.

2. Sun Rock

[42] [43]

Checkpoint-based

speculative execution

with the ability to revert

to a safe state.

SPECULATE and

COMMIT instructions;

conflicts abort

transactions.

High-performance

SPARC processor.

Supported for

only 32 L2 cache

lines.

Cancelled

before release.

3. IBM BG/Q

[44] [45]

Multi-versioned 16-way

L2 cache for speculative

state storage. Supports

short- and long-running

transactional modes.

Blue Gene/Q

supercomputer

architecture.

L1 cache cannot

store speculative

state. Requires

evictions or

aliasing for long-

running

transactions.

Used in Sequoia

supercomputer.

4. Intel

Haswell

[46]

Transactional

Synchronization

Extensions (TSX):

x86 architecture. Detailed

architectural

implementation

not disclosed.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5236

In

conclusion, the Table IV illustrates the diversity in HTM

designs, highlighting the trade-offs and challenges faced

by different systems. While Azul Vega and Intel Haswell

have achieved commercial success, systems like Sun

Rock faced technical limitations that led to their

cancellation. IBM BG/Q demonstrates the potential of

HTM in high-performance computing environments,

albeit with architectural constraints. These

implementations underscore the importance of balancing

performance, scalability, and reliability in HTM systems.

Continued advancements in HTM technology will be

crucial for addressing these limitations and expanding its

applicability in parallel computing.

C. COMPARATIVE ANALYSIS OF STM

IMPLEMENTATIONS

This section compares four STM implementations,

highlighting their features, strengths, and trade-offs for

different application needs [47].

Transactional Memory (TM) systems offer a flexible

framework for simplifying concurrent programming by

eliminating many of the challenges associated with

traditional lock-based synchronization. To cater to diverse

workloads and system requirements, several Software

Transactional Memory (STM) implementations have been

developed, each with distinct features and approaches.

The Table V provides a comparative analysis of four

popular STM implementations: RSTM [17], TL2 [48],

TinySTM [49], and SwissTM [50]. These

implementations are evaluated across various dimensions,

including granularity, update policy, write policy, and

concurrency control [6] [14] [47] [51] [52] [53] [54] [55]

[56]. The comparison highlights their strengths, trade-

offs, and suitability for different scenarios.

TABLE V COMPARATIVE ANALYSIS OF STM IMPLEMENTATIONS

S.No. Feature RSTM TL2 TinySTM SwissTM

1. Granularity

Object-based:

RSTM operates

at the object

level (e.g.,

arrays, lists),

meaning it

treats data

structures as

atomic units.

This is useful

for high-level

abstractions and

large data

structures.

Both: TL2

supports

both object-

based and

word-based

granularity.

The

flexibility

allows it to

work with

both larger

objects or

finer

memory

locations,

offering

more

control

based on the

workload.

Word-based:

TinySTM

operates at a

finer level,

managing

individual

memory

locations

(e.g., words or

cache lines),

providing

better control

for more

granular

transactions.

Word-based:

Similar to

TinySTM,

SwissTM

operates at the

word level.

This helps

improve

memory

efficiency and

allows finer

control over

transaction

granularity.

XBEGIN, XEND, and

XABORT instructions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5237

2.
Update

Policy

Deferred:

Updates are

applied to

memory only at

commit time.

This helps in

reducing

conflicts and

ensures that

partial,

speculative

updates do not

affect other

transactions.

Deferred:

TL2 uses

deferred

updates,

meaning

changes are

buffered and

only applied

when the

transaction

commits.

This ensures

consistency

and

minimizes

premature

side effects.

Both:

TinySTM

offers both

deferred

updates

(written at

commit time)

and

immediate

updates

(applied

immediately),

providing

flexibility

based on the

workload.

Deferred:

SwissTM

defers updates

until commit

to ensure that

any changes

are atomic and

consistent. It

uses buffered

memory writes

to avoid

conflicts

during

execution.

3. Write Policy

Buffered:

Writes are

buffered and

stored in a

private

transaction

memory space.

They are only

visible to other

transactions

once the

transaction

commits.

Buffered:

TL2 uses a

similar

approach by

buffering

writes in a

private

memory

area until

the

transaction

is

successfully

committed,

ensuring

isolation

and

consistency.

Both:

TinySTM

supports both

buffered

writes, where

changes are

stored in a

temporary

buffer until

commit, and

immediate

writes, which

are applied

during

execution.

Buffered:

SwissTM uses

buffered

writes,

ensuring that

memory

updates only

happen when

the transaction

commits. This

provides

isolation and

consistency

during

execution.

4.
Acquire

Policy

Both: RSTM

supports both

eager and lazy

acquisition of

locks/resources.

In eager

acquisition,

resources are

locked

immediately,

whereas in lazy

acquisition,

locks are taken

only when

needed.

Lazy: TL2

uses lazy

acquisition,

meaning

locks are

acquired

only when

necessary,

typically

during

execution if

conflicts are

about to

occur. This

reduces

unnecessary

overhead.

Both:

TinySTM can

either acquire

locks eagerly

(immediately)

or lazily (on-

demand),

providing

flexibility

depending on

the context

and workload.

Both:

SwissTM

supports both

eager and lazy

lock/resource

acquisition.

The system

can adapt

based on the

transaction’s

needs or

configuration.

5. Read Policy

Both (Visible

and Invisible):

RSTM supports

both visible and

invisible reads.

Visible reads

allow other

transactions to

see the data

immediately,

whereas

Invisible:

TL2

primarily

uses

invisible

reads. Reads

are not

visible to

other

transactions

until the

Invisible:

TinySTM

uses invisible

reads,

meaning that

the data read

by a

transaction is

not visible to

other

transactions

Invisible:

SwissTM also

uses invisible

reads to ensure

consistency

and isolation,

making sure

that data

changes are

not exposed

until the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5238

invisible reads

keep data

private until

commit.

transaction

commits,

ensuring

isolation

and

preventing

conflicts

during

execution.

until the

transaction

commits.

transaction

commits.

6.
Conflict

Detection

Both (Eager

and Lazy):

RSTM allows

for both eager

and lazy

conflict

detection,

depending on

the transaction

configuration.

Eager detection

checks conflicts

immediately,

while lazy

detection

checks at

commit time.

Both (Eager

and Lazy):

TL2

supports

both eager

and lazy

conflict

detection

strategies.

Eager

detection

checks

conflicts as

operations

happen,

while lazy

detection

waits until

commit.

Early:

TinySTM

employs early

conflict

detection,

identifying

conflicts as

soon as they

occur during

the

transaction

execution,

reducing retry

rates and

improving

performance.

Mixed

Invalidation:

SwissTM uses

a mixed

invalidation

method,

detecting

write-write

conflicts early

and read-write

conflicts

lazily, offering

a balance

between

performance

and

correctness.

7.
Concurrency

Control

Optimistic:

RSTM uses

optimistic

concurrency

control,

assuming that

conflicts are

rare and

allowing

transactions to

execute

concurrently.

Conflicts are

resolved when

they are

detected,

typically at

commit time.

Optimistic:

TL2 uses

optimistic

concurrency

control,

meaning it

allows

transactions

to execute

concurrently

with the

assumption

that

conflicts

will be rare.

Conflicts

are detected

and resolved

at commit

time.

Optimistic:

TinySTM

uses

optimistic

concurrency

control,

allowing

transactions

to execute

concurrently

and resolving

conflicts

when they are

detected. This

leads to

higher

throughput in

low

contention.

Both

(Optimistic &

Lock-based):

SwissTM uses

optimistic

concurrency

control for

low-

contention

scenarios and

switches to

lock-based

control when

high

contention is

detected. This

provides

flexibility and

better handling

of diverse

workloads.

8.
Progress

Guarantee

Obstruction-

free: RSTM

guarantees

obstruction-free

progress,

meaning

transactions

will eventually

complete even

if other

transactions are

delayed or

blocked.

Lock-based:

TL2 uses

lock-based

control,

meaning

progress

depends on

acquiring

and

releasing

locks. In

high-

contention

Lock-based:

TinySTM

uses lock-

based control

in certain

cases,

guaranteeing

progress as

long as locks

are properly

acquired and

released, but

potentially

Lock-based:

SwissTM uses

lock-based

concurrency

control,

ensuring

transaction

isolation. It

may face

delays in high

contention but

can switch

between

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5239

situations, it

may face

delays or

deadlocks.

causing

delays in

highly

concurrent

environments.

optimistic and

lock-based

methods based

on workload

characteristics.

In conclusion, this comparative analysis highlights the

diverse approaches adopted by STM implementations to

balance performance, scalability, and correctness. RSTM

and TL2 offer simplicity and consistency with their

deferred updates and optimistic concurrency control,

while TinySTM and SwissTM provide more flexibility,

catering to workloads with varying contention levels. By

understanding these differences, developers can choose

the STM implementation best suited to their application's

needs, ensuring efficient and reliable transactional

memory operations in multicore environments. As

research progresses, future STM systems are likely to

incorporate hybrid techniques that further optimize

performance and usability across a wider range of

scenarios.

VIII. FUTURE DIRECTIONS

This section explores the future advancements and

directions for Transactional Memory (TM), focusing on

overcoming current limitations and broadening its

applicability in modern computing environments.

 As modern computing systems become increasingly

complex, TM is evolving to meet the growing demands of

parallel programming. Researchers are working to refine

TM’s design and implementation, with a goal of

enhancing its scalability, flexibility, and reliability across

a wide range of workloads and system architectures.

While TM holds the potential to simplify concurrency

management, unlocking this potential requires addressing

existing challenges and integrating TM more effectively

into the broader computing ecosystem.

Key advancements and future directions include:

A. DYNAMIC STM

Extends STM to support dynamic memory access

patterns, enhancing flexibility.

B. ADAPTIVE CONFLICT RESOLUTION

Dynamically adjusts backoff mechanisms to minimize

transaction abort rates.

C. EXPANDED HTM SUPPORT

Developments in processor design aim to handle larger

and more complex transactions.

D. INTEGRATION WITH WEAK MEMORY

MODELS

Enables TM to function effectively in systems with

relaxed consistency constraints.

In conclusion, these innovations are set to enhance TM’s

robustness, making it an essential tool in modern parallel

programming. As TM continues to evolve, its expanding

applicability will enable it to address a wide variety of

workloads and emerging applications. The combination of

improvements in Dynamic STM, Adaptive Conflict

Resolution, and expanded hardware support will refine

TM's performance and facilitate its integration with

advanced computing paradigms, such as weak memory

models. As TM adapts alongside developments in

hardware, software, and system architectures, it will

remain central to advancing parallel computing,

empowering developers to harness the full potential of

multicore and distributed systems.

IX.CONCLUSION

Transactional Memory (TM) has emerged as a

transformative paradigm for managing synchronization in

parallel programming, offering an efficient, high-level

abstraction that overcomes the limitations of traditional

synchronization methods like locks and semaphores. This

paper has provided a comprehensive exploration of TM by

examining its foundational principles, implementation

strategies, applications, challenges, and future

directions.TM was introduced as a response to the

increasing complexity of synchronization in multicore and

distributed systems. It provides atomicity, consistency,

and isolation, simplifying concurrency management and

enabling developers to focus on scalable program design.

The core implementation strategies of TM—Software

Transactional Memory (STM), Hardware Transactional

Memory (HTM), and Hybrid Transactional Memory

(HyTM)—offer flexibility, low-latency synchronization,

and dynamic adaptability, respectively. Each approach has

specific strengths, limitations, and applicability,

depending on the workload and system requirements.

Nested Transactions were highlighted as an effective way

to improve fault tolerance, concurrency, and rollback

efficiency. By modularly breaking down transactions into

smaller subtransactions, TM reduces overhead and

enhances scalability, particularly in complex systems.

TM's diverse applications, including concurrent data

structures, graph algorithms, scalable systems, and real-

time computing, demonstrate its effectiveness across

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5240

domains requiring high concurrency and reliability. Its

lock-free synchronization capabilities significantly

enhance performance and reliability. Insights into TM's

performance showed the unique advantages and trade-offs

of STM, HTM, and HyTM, emphasizing the importance

of aligning implementation strategies with specific

workload characteristics to maximize scalability and

efficiency. The challenges and limitations of TM, such as

integration complexity, large transaction handling,

contention management, and nesting complexity, were

discussed. These obstacles highlight the need for

continued innovation to improve TM's practicality and

facilitate broader adoption. A Comparative Study of

Transactional Memory (TM) Frameworks was conducted,

providing valuable insights into different TM systems,

including the comparison of TCC and LogTM, an

overview of HTM systems, and an in-depth analysis of

STM implementations. This comparison highlighted the

distinct approaches, trade-offs, and challenges faced by

different TM frameworks, offering a clearer

understanding of their suitability for various applications

and workloads. Looking ahead, future directions for TM

include advancements like Dynamic STM, Adaptive

Conflict Resolution, expanded HTM support, and

integration with weak memory models. These innovations

are crucial for overcoming current limitations and

broadening TM’s applicability in modern computing

environments. In conclusion, TM represents a significant

advancement in parallel programming, providing a

scalable, efficient, and reliable synchronization model. As

multicore and distributed systems grow in complexity,

TM’s adaptability and robustness position it as a

cornerstone of modern computing. By addressing

challenges and leveraging emerging advancements, TM is

set to drive innovation in high-performance computing,

real-time systems, and large-scale data processing,

shaping the future of parallel programming. This

exploration will help researchers by offering valuable

insights into TM’s principles, challenges, and future

directions, guiding the development of more efficient and

scalable systems in various computational domains.

References

[1] H. Grahn, “Transactional memory,” Journal of

Parallel and Distributed Computing, vol. 70, no. 10,

pp. 993-1008, 2010.

[2] J. B. K. C. L. K. R. a. Y. Z. J. R. Blumofe, “Cilk : An

efficient multithreaded runtime system,” Journal of

Parallel and Distributed Computing, vol. 37, no. 1,

pp. 55-69, August 1996.

[3] P. B. a. N. Goodman, “Concurrency Control in

Distributed Database Systems,” ACM Computing

Surveys, vol. 13, no. 2, p. 185 – 221, 1981.

[4] R. a. M. M. S. Alexandru Turcu, “ On closed nesting

in distributed transactional memory,” in Seventh

ACM SIGPLAN workshop on Transactional

Computing, 2012.

[5] J. R. L. a. R. R. T. Harris, Transactional Memory, 2

ed., Synthesis Lectures on Computer Architecture

Morgan & Claypool Publishers, 2010, pp. 1-247.

[6] M. H. a. J. E. B. Moss, “Transactional memory:

architectural support for lock-free data structures,”

in Proceedings of the 20th annual international

symposium on Computer architecture (ISCA '93).,

May 1993.

[7] N. &. T. D. Shavit, “Software transactional

memory,” in Proceedings of the 14th Annual ACM

Symposium on Principles of DistributedComputing,

Ottawa, Can, 1995.

[8] T. L. V. M. B. R. M. B. S. a. T. S. Ali-Reza Adl-

Tabatabai, “Compiler and runtime support for

efficient software transactional memory,” in

Proceedings of the 27th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, Ottawa, Ontario, Canada , 2006.

[9] S. Peyton-Jones, Beautiful concurrency, A. O. a. G.

Wilson, Ed., O'Reilly, 2007.

[10] F. Y. L. V. L. M. M. D. N. Peter Damron, “Hybrid

transactional memory,” in Proceedings of the 12th

ACM International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS 2006, San Jose, CA, USA,

October 21-25, 2006.

[11] J. E. B. Moss, “Nested Transactions: An Approach to

Reliable Distributed Computing,” Ph.D. Thesis,

Technical Report MIT/LCS/TR-260,MIT

Laboratory for Computer Science, Cambridge, MA,

April 1981.

[12] T. a. B. Ravindran, “ On open nesting in distributed

transactional memory,” in 5th Annual International

Systems and Storage Conference (SYSTOR) ’12,

2012.

[13] S. M. A.-R. A.-T. A. L. H. R. L. H. J. E. B. M. S. a.

T. S. Y. Ni, “Open nesting in software transactional

memory,” in PPoPP ’07: Proceedings of the 12th

ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming ,ACM Press, New

York, NY, USA, 2007.

[14] N. C. J. Diegues, “Review of nesting in transactional

memory,” Tech. rep., Technical Report RT/1/2012,

Instituto Superior Técnico/INESC-ID , 2012.

[15] T. H. a. S. Stipic, “Abstract nested transactions,” in

Second ACM SIGPLAN Workshop on Transactional

Computing, 2007.

[16] L. H. J. Eliot B. Moss, “Nested transactional

memory: Model and architecture sketches,” Science

of Computer Programming, vol. 63, no. 2, pp. 186-

201, 2006.

[17] M. S. C. H. A. A. D. E. W. S. I. a. M. S. V. Marathe,

“Lowering the overhead of Software Transactional

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5241

Memory,” in 1st ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT '06), 2006 .

[18] M. &. L. V. &. M. M. &. S. W. Herlihy, “ Software

Transactional Memory for Dynamic-Sized Data

Structures,” in Proceedings of the Annual ACM

Symposium on Principles of Distributed Computing,

2003.

[19] A.-R. A.-T. R. H. C. C. M. a. B. H. B. Saha, “McRT-

STM: a high-performance Software Transactional

Memory system for a multi-core runtime,” in

SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP'06), 2006.

[20] M. S. a. M. S. L. Dalessandro, “NOrec: Streamlining

STM by abolishing ownership records,” in

Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP '10), 2010.

[21] J. B. M. M. M. H. a. D. W. K. Moore, “LogTM: log-

based transactional memory,” in Proceedings of the

12th High-Performance Computer Architecture

International Symposium (HPCA '06), 2006.

[22] J. B. K. E. M. L. Y. M. D. H. B. L. M. M. S. a. D. M.

J. Moravan, “Supporting Nested Transactional

Memory in LogTM,” in 12th International

Conference on Architectural Support for

Programming Languages and Operating Systems in

SIGPLAN Notices (Proceedings of the 2006

ASPLOS Conference), 2006.

[23] R. C. Ammlan Ghosh and Haskell, Implementing

Software Transactional Memory using STM, vol. 2,

Advanced Computing and Systems for Security

,Springer AISC, 2016, pp. 235-248.

[24] M. R. Y. a. M. F. Le, “Revisiting software

transactional memory in Haskell,” ACM SIGPLAN

Notices, vol. 51, no. 12, pp. 105-113, 2016.

[25] Du Bois, “An Implementation of Composable

Memory Transactions in Haskell,” in Software

Composition, SC 2011,Lecture Notes in Computer

Science,Springer, Berlin, Heidelberg., 2011.

[26] H. T. M. S. J. S. S. S. Discolo, “Lock Free Data

Structures Using STM in Haskell,” in Functional and

Logic Programming, FLOPS , 2006.

[27] M. L. V. &. M. M. Herlihy, “A flexible framework

for implementing software transactional memory,”

ACM SIGPLAN Notices, vol. 41, no. 10, pp. 253-

262, 2006.

[28] S. M. S. P. J. a. M. H. T. Harris, “Composable

memory transactions,” in Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’05,

Chicago, IL, USA, 2005.

[29] G. a. S. F. S. Peyton Jones, “Concurrent Haskell,” in

23rd ACM Symposium on Principles of

Programming Languages (POPL’96), 1996.

[30] M. H. C. J. C. C. M. C. K. a. K. O. B. Carlstrom,

“The ATOMOS Transactional Programming

Language,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI'06), 2006.

[31] N. B. C. K. a. K. O. W. Baek, “Implementing and

evaluating nested parallel transactions in software

transactional memory,” in Proceedings of the 22nd

ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’10,, Thira, Santorini, Greece,

2010.

[32] R. K. a. K. Vidyasankar, “HParSTM: A Hierarchy-

based STM Protocol for Supporting Nested

Parallelism,” in 6th ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT '11), 2011.

[33] W. A.-R. A.-T. T. S. X. T. a. R. N. H. Volos,

“NePaLTM: Design and Implementation of Nested

Parallelism for Transactional Memory Systems,” in

Proceedings of the 23rd European Conference on

Object-Oriented Programming(ECOOP '09), 2009.

[34] J. T. F. a. J. S. K. Agrawal, “Nested parallelism in

transactional memory,” in Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP '08), 2008.

[35] D. P. F. R. G. a. M. K. J. Barreto, “ Leveraging

parallel nesting in transactional memory,” in

Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP '10).

[36] H. R. a. E. Witchel, “The xfork in the road to

coordinated sibling transactions,” in 4th ACM

SIGPLAN Workshop on Transactional Computing

(TRANSACT '09), 2009.

[37] C. O. S. U. E. A. F. G. B. S. M. V. Tim Harris, “

Transactional Memory: An Overview,” IEEE Micro

, vol. 27, no. 3, pp. 8-29, 2007.

[38] L. H. a. V. W. a. M. K. C. a. B. D. C. a. J. D. D. a. B.

H. a. M. K. P. a. H. W. a. C. K. a. K. Olukotun,

“Transactional Memory Coherence and

Consistency,” in 31st Annual International

Symposium ,Computer Architecture(ISCA04),

2004.

[39] N. M. a. J. N. A. S. R. Cordeiro, A Review of

Hardware Transactional Memory, 10th Workshop on

Parallel and Distributed Processing (WSPPD), 2012.

[40] J. CHOQUETTE, G. TENE and K. NORMOYLE,

“Speculative multiaddress atomicity”. US Patent

7,376,800.

[41] Click., Azul's experiences with hardware

transactional memory, 2009.

[42] R. C. M. E. M. K. A. L. S. Y. H. Z. a. M. T. Shailender

Chaudhry, “Rock: A High-Performance Sparc CMT

Processor,” IEEE Micro, vol. 29, no. 2, pp. 6-16,

2009.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5226–5242 | 5242

[43] Y. L. M. M. a. D. N. D. Dice, “Early experience with

a commercial hardware transactional memory

implementation,” in 14th international conference on

Architectural support for programming languages

and operating systems,ASPLOS, New York, USA,

2009.

[44] P. Bright, “IBMs new transactional memory: Make-

or-break time for multithreaded revolution,” ARS

Technica, 2011.

[45] M. G. P. W. M. O. J. N. A. C. B. R. S. a. M. M. M.

A. Wang, “Evaluation of blue gene/q hardware

support for transactional memories,” in 21st

International Conference on Parallel Architectures

and CompilationTechniques, PACT ’12,

Minneapolis, MN, USA, 2012.

[46] J. Reinders, “Transactional synchronization in

Haswell,” Intel Software Network , 2012.

[47] G. A. Asi, “Performance Tradeoffs in Software

Transactional Memory,” Master Thesis Computer

Science, School of Computing Blekinge Institute of

Technology, No:MCS-2010-28, Sweden, May 2010.

[48] O. S. N. S. Dave Dice, “ Transactional Locking II,”

in 20th International Symposium on Distributed

Computing, Stockholm,Sweden, 2006.

[49] F. a. T. R. Pascal Felber, “Dynamic performance

tuning of word-based software transactional

memory,” in 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming

(PPoPP '08), New York, USA, 2008.

[50] R. G. a. M. K. A. Dragojevic, “Stretching

transactional memory,” in ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI), Dublin, Ireland, 2009.

[51] S. Classen, “LibSTM: A fast and flexible STM

Library,” Master's Thesis, Laboratory for Software

Technology, Swiss Federal Institute of Technology,

ETH Zurich, Feb, 2008.

[52] I. a. M. Raynal, “A Lock-Based STM Protocol That

Satisfies Opacity and Progressiveness,” in

Proceedings of the 12th International Conference on

Principles of Distributed Systems (OPODIS'08,

2008.

[53] W. N. S. I. a. M. L. Scott, “Contention Management

in Dynamic Software Transactional Memory,” in

Proceedings of the ACM PODC Workshop on

Concurrency and Synchronization in Java Programs,

Canada, July 2004.

[54] N. S. a. M. L. S. y, “Advanced contention

management for dynamic software transactional

memory,” in Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed

computing, Las Vegas, NV, USA, 2005.

[55] e. a. R. Guerraoui, “Toward a theory of transactional

contention managers,” in Proceedings of the twenty-

fourth annual ACM symposium on Principles of

distributed computing, Las Vegas, NV, USA, 2005.

[56] M. L. Scott, “Applications Included with RSTM

WebPage,” [Online]. Available:

http://www.cs.rochester.edu/research/synchronizatio

n/rstm/applications.shtml.

Mrs. Meenu is an Associate

Professor in the department of

Computer Science &

Engineering at the Madan

Mohan Malaviya University of

Technology, Gorakhpur where

she has been a faculty member

since 2003. She is Chairperson of

Women Cell as well as Women

Welfare and AntiHarassment Cell. She completed her

M.Tech. at Madan Mohan Malaviya University of

Technology. She has served as the Session Chair for

UPCON-2018 (5th IEEE Uttar Pradesh Section

International Conference). She is the author of 64 research

papers, which have been published in various National &

International Journals/Conferences. She is a reviewer of

many International Journals/ Conferences and Editorial

Board member of International Journals. She is also

member of many Professional Societies. Her research

interest lies in the area of Distributed Real Time Database

Systems. She has collaborated actively with researchers in

several other disciplines of computer science, particularly

machine learning.

