
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5243 

Hierarchical Deadlock Detection in Nested Transactions: A Depth-First 

Search Optimization Framework 

Meenu 

Submitted:13/03/2024       Revised: 28/04/2024        Accepted: 05/05/2024 

Abstract Deadlock detection in nested transactions is crucial for maintaining system stability and ensuring efficient transaction processing. 

In nested transaction systems, deadlocks can occur not only between top-level transactions but also among subtransactions, resulting in 

intricate cycles that complicate resolution. Traditional methods, which often involve examining the entire Wait-For Graph (WFG) for 

cycles, tend to be resource-intensive and time-consuming. As the complexity of transactions increases, there is a growing need for efficient 

deadlock detection techniques to optimize resource utilization and enhance overall system performance. This research focuses on 

developing an efficient Depth-First Search (DFS)-based algorithm to address hierarchical deadlocks that arise from subtransaction 

dependencies. By modelling transaction relationships as a directed graph, where nodes represent transactions and edges denote 

dependencies, the proposed approach iteratively applies the DFS algorithm to identify cycles indicative of potential deadlocks. The 

algorithm not only detects deadlocks but also provides detailed insights into the involved transactions, the deadlock cycle, and indirect 

dependencies. Key performance metrics, such as execution time, memory usage, system throughput, response time, and success ratio, were 

computed during the detection process. Implemented and validated in a MATLAB simulation environment, the algorithm demonstrated 

significant improvements in deadlock detection efficiency within nested transactional systems. Results showed its effectiveness in 

identifying hierarchical deadlocks, with favourable performance in execution time, memory usage, and overall throughput, even in 

scenarios of varying transaction complexity. This research highlights the importance of efficient deadlock detection techniques in 

optimizing resource utilization and advancing concurrent system performance. The proposed DFS-based algorithm offers a robust solution 

for managing hierarchical deadlocks and lays the groundwork for future development of resilient and dependable transaction management 

systems. 

INDEX TERMS: Cycle Detection, Deadlock Detection, Deadlock Resolution, Depth-First Search (DFS), Directed Graph Modelling, 

Hierarchical Deadlock Scenarios, Nested Transactions, Transaction Relationships. 

I.INTRODUCTION 

This section introduces the complexity of deadlock 

detection in nested transactions and proposes a Depth-

First Search (DFS)-based approach using a graph model. 

It outlines the paper's key contributions, including the 

DFS algorithm and performance analysis, and 

summarizes the paper's structure, covering existing 

strategies, challenges, and experimental results. 

 In modern transactional systems, managing concurrency 

and ensuring data consistency are paramount. However, 

these systems often face challenges such as deadlocks, 

especially in environments with nested transactions. In a 

database (DB) system, transactions require locks on 

objects to prevent consistency anomalies due to 

concurrent access, which can lead to deadlocks where a 

cyclical sequence of transactions waits indefinitely for 

each other (T1 → T2 → ... → T1)  (1) (2). Detecting and 

resolving these deadlocks is crucial, and one common 

method is the timeout approach, where the system aborts 

a transaction if it waits too long for a lock, assuming a 

deadlock (3). While simple to implement, this method is 

imprecise and often results in unnecessary aborts and 

restarts. A more precise strategy is the waits-for graph 

(WFG) method, where the system maintains a directed 

graph of waiting transactions, with nodes representing 

transactions and edges representing waiting situations (4). 

Deadlocks are detected by identifying cycles in the WFG, 

and the system resolves the deadlock by aborting one 

transaction in the cycle, removing its effects from the DB, 

and restarting it. The WFG method is precise for all 

transaction types and durations, making it a robust 

solution for deadlock detection. Because deadlocks are 

rare, the WFG cycle search is only initiated when likely, 

improving deadlock management performance (5) . 

Deadlock detection in nested transactions is more 

complex and costly than in flat transactions due to the 

need to account for transaction nesting, where deadlocks 

can occur among transactions in different hierarchies or 

among subtransactions within a single hierarchy. Unlike 

single-level transactions that rely on direct waits-for-lock 

relations, detecting deadlocks in nested transactions also 

requires maintaining waits-for-commit relations. This 

paper addresses the issue of deadlock detection and 

management in nested transactions, focusing on a Depth-

First Search (DFS) approach. Nested transactions 

introduce a hierarchical structure where transactions can 

contain subtransactions, forming a complex graph of 

Department of CSE, M. M. M. U. T., Gorakhpur, India 

*myself_meenu@yahoo.co.in 

 

mailto:*myself_meenu@yahoo.co.in


 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5244 

dependencies. Traditional deadlock detection methods 

may not suffice in such scenarios due to the nested nature 

of transactions. Our approach involves modelling 

transaction relationships as a directed graph, where nodes 

represent transactions and edges represent dependencies 

between transactions and their subtransactions. We 

leverage DFS, a well-known graph traversal algorithm, to 

explore these transaction graphs and identify cycles 

indicative of potential deadlocks. 

The key contributions of this paper include: 

A. GRAPH-BASED MODELLING: We propose a 

graph-based model to represent nested transactions, 

allowing for a comprehensive analysis of transaction 

dependencies. 

B. DFS-BASED DEADLOCK DETECTION: Our 

algorithm employs Depth-First Search to efficiently detect 

deadlock cycles within nested transactions. 

C. METRICS AND ANALYSIS: We measure and 

analyse critical system metrics during deadlock detection, 

providing insights into system performance under 

deadlock scenarios. 

 To validate our approach, we implemented the algorithm 

in a MATLAB simulation environment and conducted 

extensive experiments using various transaction 

scenarios. The results demonstrate the effectiveness of our 

method in accurately detecting deadlocks, identifying 

involved transactions, and providing insights into 

potential resolution strategies. 

The paper provides a comprehensive exploration of 

deadlock detection in nested transactions. Section 2 

reviews existing deadlock detection strategies, 

establishing a foundation for understanding the field. 

Section 3 discusses the unique challenges of detecting 

deadlocks in nested transactions. Section 4 presents a 

DFS-based deadlock detection method designed for 

nested transactions, explaining how the algorithm handles 

hierarchical structures and relationships in a directed 

graph. Section 5 details the algorithm’s steps, including 

graph representation, initialization, detection loops, and 

metric calculations. Section 6 analyses real-world results 

from MATLAB simulations, evaluating performance 

metrics like efficiency and scalability. Section 7 outlines 

future research directions and challenges, while Section 8 

concludes with key findings and suggestions for further 

exploration in deadlock management for nested 

transactional environments. 

 In conclusion, this paper introduces a DFS-based 

approach for detecting deadlocks in nested transactions 

using a graph-based model, offering an efficient method 

to identify deadlock cycles. The approach is validated 

through MATLAB simulations, demonstrating its 

accuracy and scalability. The paper also outlines its 

structure, covering a review of existing strategies, 

challenges in nested transactions, the proposed method, 

performance analysis, and future research directions, 

providing a comprehensive framework for optimizing 

deadlock detection techniques in complex transactional 

systems. 

II.RELATED WORK 

This section explores deadlock detection strategies in 

nested transactions, highlighting the complexities 

introduced by hierarchical dependencies. It begins by 

outlining the adopted model of nested transactions, 

building upon Moss's framework and enhancing it to 

account for broader lock acquisition. The section then 

delves into deadlock detection mechanisms, addressing 

direct-wait and ancestor-descendant deadlocks within 

nested transaction systems. Finally, a comparative 

analysis of various deadlock detection strategies, 

including those proposed by Moss, Rukoz, Shin, and 

Rezende, is presented, evaluating their strengths and 

limitations based on different NT system requirements. 

Deadlock detection in nested transactions has been a 

significant area of research due to the complexities 

introduced by hierarchical dependencies and concurrency 

control mechanisms. In nested transaction (NT) systems, 

deadlocks can arise not only between top-level 

transactions but also within the hierarchical structure of 

subtransactions. 

A. A MODEL OF NESTED TRANSACTIONS 

 This section describes the nested transaction model, 

where transactions can have subtransactions, allowing all 

levels to acquire locks. It highlights the potential for inter-

transaction and intra-transaction deadlocks, while 

supporting parallel execution and enhancing modularity 

for complex applications. 

To understand the complexities of deadlock detection in 

nested transactions, it is essential to first establish the 

model of nested transactions that our paper employs. Our 

paper adopts the terminology outlined by Moss, where 

transactions can comprise multiple subtransactions, 

forming a potentially deep nested hierarchy (6). The top-

level transaction (TL-transaction) is the root transaction 

not enclosed by any other, while transactions with 

subtransactions are termed parents, and their 

subtransactions are children. We also use the terms 

ancestors and descendants, where the ancestor 

(descendant) relation is the transitive closure of the parent 

(child) relation. The non-reflexive versions are referred to 

as superior (inferior). A transaction's descendants and their 

parent/child relationships constitute its hierarchy. Unlike 

Moss's model, where only leaf transactions can lock 

objects, ours permits every transaction to acquire locks, 

potentially leading to deadlocks across TL-transactions 

and within single transaction hierarchies. Our model 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5245 

supports parent/child and sibling parallelism, allowing a 

parent transaction concurrent execution with its inferiors 

(non-strict), but it cannot commit until all inferiors have 

committed or aborted. The Nested Model, advantageous 

for complex applications, introduces complexity but is 

pivotal in engineering scenarios, offering operational 

abstractions and flexible ACID property handling. Moss's 

Nested Transaction Model, grounded in Bjork and Davies' 

"spheres of control," (7) (8) has two types: closed nested 

transactions, which confine subtransactions' impact to 

their parent's scope (9) (10) , and open nested transactions, 

which allow autonomous subtransaction execution and 

early leaf-level lock release (11) (12) (13) . Unlike flat 

transactions, nested transactions support independent 

subtransaction failure and rollback, enhancing 

performance through intra-transaction and 

intertransaction parallelism, and improving modularity, 

encapsulation, and security. These features make nested 

transactions ideal for real-time, intricate, and distributed 

applications (14). In nested transactions using the basic 

two-phase locking mechanism, two types of deadlocks 

can occur: inter-transaction deadlocks, which happen 

between two nested transactions similar to flat 

transactions, and intra-transaction deadlocks, which occur 

between subtransactions within the same nested 

transaction. 

In conclusion, the nested transaction model enhances 

complex application management by allowing multiple 

subtransactions and enabling all levels to acquire locks. 

This structure supports parallel execution and improves 

modularity while addressing inter-transaction and intra-

transaction deadlocks. Although it introduces complexity, 

its flexible ACID handling and independent rollback 

mechanisms make it ideal for real-time and distributed 

systems, advancing transaction processing efficiency and 

reliability. 

B. DEADLOCK DETECTION IN NESTED 

TRANSACTIONS 

This section addresses deadlock detection in nested 

transactions, emphasizing the adaptation of single-level 

transaction concepts to manage hierarchical complexities. 

It identifies two types of deadlocks—direct-wait and 

ancestor-descendant—and utilizes the Wait-For Graph 

(WFG) to detect cycles, ensuring effective deadlock 

management. 

Having established the model of nested transactions, we 

now turn our attention to the mechanisms for detecting 

deadlocks within these systems. Effective deadlock 

detection in nested transactions requires extending 

concepts from single-level transactions and incorporating 

additional mechanisms to address the complexities 

introduced by hierarchical structures (6) (15)    Deadlocks 

in nested transactions can be effectively managed by 

extending single-level transaction concepts and 

incorporating additional mechanisms, primarily through 

the representation of various waiting relations in the Wait-

For Graph (WFG). Two main types of deadlocks are 

addressed: 

1) DIRECT-WAIT DEADLOCKS 

These occur when a transaction is blocked waiting for a 

lock held by another transaction, detected through direct-

waits-for-lock relations in the WFG. A deadlock is 

identified if a cycle is present in these relations, such as 

mutual waiting between transactions A and B for lock 

release. 

2) ANCESTOR-DESCENDANT DEADLOCKS 

These occur when a transaction waits for a lock held by 

its ancestor, affecting the entire hierarchy. Detection 

involves both direct-waits-for-lock and waits-for-commit 

relations, ensuring that all superiors of the waiting 

transaction also wait to commit until the deadlock is 

resolved. Combining direct-waits-for-lock and waits-for-

commit relations proves effective in detecting deadlocks 

in nested transactions, offering a comprehensive approach 

to deadlock management. 

In conclusion, effective deadlock detection in nested 

transactions is crucial for maintaining system integrity and 

performance. By extending the concepts from single-level 

transactions and utilizing the Wait-For Graph (WFG), this 

section highlights the identification of two primary 

deadlock types: direct-wait and ancestor-descendant. The 

proposed mechanisms ensure comprehensive detection 

and management of deadlocks, ultimately enhancing the 

reliability of nested transaction systems. 

C. DEADLOCK DETECTION STRATEGIES IN 

NESTED TRANSACTIONS 

This section analyses deadlock detection strategies in 

nested transactions, focusing on the challenges posed by 

hierarchical dependencies. It compares several 

approaches, highlighting their unique strengths and 

limitations. The choice of strategy depends on the specific 

needs of the system, balancing detection accuracy with 

resource efficiency.        

Deadlock detection in nested transactions (NTs) presents 

unique challenges due to the hierarchical nature of 

transaction dependencies. In Nested Transactions (NT) 

systems using locks for concurrency control, committed 

transactions inherit their locks to their parent transactions 

instead of releasing them, requiring deadlock detection 

algorithms to account for these nested relationships. 

Various algorithms have been proposed to address these 

challenges, each offering distinct advantages and 

drawbacks. Below is a comparative analysis of prominent 

deadlock detection strategies in NT systems, highlighting 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5246 

their key features, advantages, and disadvantages. The 

Table I below summarizes the comparison of Moss's, 

Rukoz's, Shin's, and Rezende's deadlock detection 

strategies: 

TABLE I  

OVERVIEW OF DEADLOCK DETECTION STRATEGIES FOR NESTED TRANSACTIONS 

Author Deadlock Detection Strategy Advantages Disadvantages 

Moss Follows edges in the wait-for graph 

to find cycles, addressing nested 

relationships in lock-based NT 

systems. (6) (3) (16) 

Effective handling of nested 

relationships. 

Potential performance overhead 

due to significant graph traversal. 

Rukoz Utilizes a distributed representative 

graph and hierarchical approach for 

deadlock detection in NT systems. 

(15) (17) 

Distributed approach aligns 

with NT structure. 

Root process failures result in 

subtree aborts, reducing need 

for further detection steps.  

Requires effective communication 

and coordination between 

distributed components. 

Dependency on root process 

functionality and reliability.  
Shin Proposes an edge-chasing algorithm 

for highly parallel NTs, addressing 

indirect waiting relationships. (18) 

Avoids traversing transaction 

trees, constant message passing 

overhead regardless of nesting 

depth. 

Prone to phantom deadlocks due to 

communication delays in 

distributed systems. 

Rezende Introduces detection arcs for 

deadlock management in NTs, 

reducing traversal of the waits-for 

graph (WFG). (19) 

Enhances performance by 

traversing a minimal subset of 

WFG edges. 

Requires careful handling of 

detection arcs to ensure accurate 

deadlock detection without 

overlooking cases. 

Each deadlock detection strategy in nested transactions 

offers unique strengths and limitations. Moss's approach 

effectively handles nested relationships but may 

encounter performance overhead. Rukoz's distributed 

method aligns well with NT structures but requires robust 

communication and coordination. Shin's edge-chasing 

algorithm avoids tree traversal but needs to address 

phantom deadlock risks. Rezende's use of detection arcs 

enhances performance but demands careful management 

for accurate detection. The choice of deadlock detection 

strategy depends on the specific requirements and 

constraints of the NT system, balancing between effective 

detection and resource utilization. Table I summarizes the 

comparison of Moss's, Rukoz's, Shin's, and Rezende's 

deadlock detection strategies. 

In conclusion, the examination of deadlock detection 

strategies in nested transactions highlights their unique 

strengths and limitations due to hierarchical dependencies. 

Each approach—Moss's, Rukoz's, Shin's, and 

Rezende's—offers different advantages and challenges, 

emphasizing the need for careful selection based on 

specific system requirements. Ultimately, the choice of 

strategy should balance detection accuracy with resource 

efficiency.                

III.ISSUES AND CHALLENGES 

This section outlines the challenges involved in detecting 

deadlocks within nested transactions. It underscores the 

necessity for sophisticated strategies to effectively 

manage dependencies, dynamic behaviours, and resource 

contention, ensuring reliable performance in transactional 

systems.  

Detecting deadlocks in nested transactions involves 

numerous challenges due to the complex nature of 

dependencies, dynamic transaction behaviour, and 

resource contention. Below is a detailed analysis of the 

key issues in deadlock detection within nested 

transactions, along with potential resolutions for each 

issue. These issues and their resolutions are summarized 

in Table II: 

TABLE II 

DEADLOCK DETECTION IN NESTED TRANSACTIONS ISSUES AND REMEDIES 

 S.No. Issues in Deadlock 

Detection in Nested 

Transactions 

Description Issues Resolution 

1 Hierarchical 

Dependencies 

Nested transactions 

introduce a hierarchical 

structure where 

Develop advanced 

modelling techniques to 

accurately capture and 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5247 

transactions can contain 

subtransactions. This 

hierarchical nature leads 

to complex dependencies 

among transactions, 

making it challenging to 

accurately model and 

analyse deadlock 

scenarios. 

analyse dependencies in 

hierarchical structures. 

2 Cyclic Dependencies Deadlocks arise due to 

cyclic dependencies 

where transactions wait 

for resources held by 

each other. In nested 

transactions, these cyclic 

dependencies can span 

across multiple levels of 

nesting, increasing the 

complexity of deadlock 

detection. 

Implement algorithms 

that can detect and break 

cycles spanning multiple 

levels of nesting. 

3 Dynamic Transaction 

Behaviour 

Transactions in 

concurrent systems 

exhibit dynamic 

behaviour, with changes 

in transaction states and 

resource allocations over 

time. Managing dynamic 

behaviour while 

detecting and resolving 

deadlocks adds another 

layer of complexity. 

Use adaptive algorithms 

that can respond to 

changes in transaction 

states and resource 

allocations in real-time. 

4 Resource Contention Resource contention is a 

fundamental issue in 

deadlock scenarios. 

Transactions compete for 

shared resources, and 

when a cyclic wait 

occurs, it can result in 

resource starvation and 

system deadlock. 

Optimize resource 

allocation strategies to 

minimize contention and 

prevent cyclic waits. 

5 Performance Impact Deadlock detection and 

resolution mechanisms 

incur computational 

overhead, impacting 

system performance. 

Balancing accurate 

deadlock detection with 

minimal performance 

impact is a key challenge, 

especially in high-

throughput transactional 

systems. 

Design efficient detection 

mechanisms that balance 

accuracy and 

performance impact. 

6 Transaction Rollback and 

Recovery 

Resolving deadlocks 

often involves 

transaction rollback and 

Develop robust rollback 

and recovery protocols 

that ensure data 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5248 

recovery strategies. In 

nested transactions, 

coordinating rollback and 

recovery across multiple 

levels of nesting while 

maintaining data 

consistency poses 

significant challenges. 

consistency across all 

levels of nesting. 

7 Scalability and 

Complexity 

As the number of 

transactions and levels of 

nesting increases, the 

scalability and 

complexity of deadlock 

detection algorithms also 

escalate. Ensuring 

efficient and scalable 

deadlock detection 

mechanisms is essential 

for large-scale 

transactional systems. 

Create scalable 

algorithms capable of 

handling large numbers 

of transactions and deep 

nesting levels. 

    

Addressing these issues and challenges requires 

sophisticated deadlock detection algorithms tailored for 

nested transaction environments. Effective strategies for 

resource management, transaction coordination, and 

deadlock resolution are essential to build robust and 

reliable concurrent systems. The resolutions mentioned in 

Table II highlight the need for advanced modelling 

techniques, adaptive algorithms, efficient resource 

allocation strategies, robust rollback protocols, and 

scalable detection mechanisms to effectively manage and 

mitigate deadlocks in nested transactions. Implementing 

real-time detection and resolution systems will ensure that 

transactional systems maintain high performance and 

reliability, even under high-throughput conditions. 

In conclusion, effective deadlock detection in nested 

transactions is essential for system reliability and 

performance. Addressing the complexities of hierarchical 

structures, dynamic behaviours, and resource contention 

requires advanced algorithms and strategies. By 

optimizing resource allocation and ensuring robust 

rollback protocols, we can improve detection and 

resolution efficiency, leading to resilient concurrent 

systems that maintain high performance in high-

throughput environments. 

IV.DFS BASED DEADLOCK DETECTION MODEL 

 This section introduces a DFS-based model for detecting 

deadlocks in concurrent systems and nested transactions. 

It organizes transactions into a directed graph and uses the 

Depth-First Search (DFS) algorithm to identify cycles 

indicating deadlocks. The model captures essential 

information about involved transactions and 

dependencies, supports performance metric analysis, and 

includes visualizations to aid in understanding and 

optimizing system stability. 

Effective management of deadlocks is crucial in 

concurrent systems and nested transactions to uphold 

system stability and performance. In response, we've 

crafted a structured model that harnesses the Depth-First 

Search (DFS) algorithm specifically for detecting and 

addressing deadlocks within nested transactions. This 

DFS-based deadlock detection model stands as a pivotal 

framework designed for this precise purpose. It operates 

by structuring transactional relationships into a directed 

graph, where nodes represent transactions or 

subtransactions, and edges signify resource dependencies. 

The model's core lies in the DFS algorithm, systematically 

traversing this graph to identify cycles that indicate 

potential deadlocks. As DFS explores paths in the graph, 

revisiting nodes already in the current path signals the 

presence of a cycle, highlighting a deadlock scenario. This 

methodical approach ensures precise deadlock detection, 

enabling the model to gather critical information like 

involved transactions, the deadlock cycle, and 

contributing dependencies. Additionally, the model 

facilitates metric analysis, providing insights into 

deadlock occurrences, system behaviour under varying 

conditions, and performance optimizations. Visualizations 

of the transactional graph and deadlock scenarios further 

aid in understanding and optimizing system stability in 

complex concurrent environments. 

In conclusion, the DFS-based deadlock detection model 

effectively identifies deadlocks in concurrent systems and 

nested transactions by leveraging the Depth-First Search 

algorithm to detect cycles in directed graphs. This 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5249 

approach enhances detection accuracy and offers valuable 

insights for optimizing system stability and performance. 

V.PROPOSED ALGORITHM 

This section outlines a proposed DFS-based algorithm for 

detecting deadlocks in nested transactions, focusing on 

enhancing system stability and performance. It represents 

transactions as a directed graph, initializes metrics, and 

detects deadlocks through DFS by identifying cycles. The 

algorithm calculates average performance metrics and 

visualizes results, ensuring precise deadlock detection and 

comprehensive analysis in concurrent systems. 

In the realm of nested transactions, managing deadlocks is 

crucial for ensuring system stability and performance. We 

propose an implementation of the Depth-First Search 

(DFS) algorithm tailored for detecting deadlocks within 

nested transactions. This algorithm efficiently traverses 

the transaction graph, identifying cycles that signal 

potential deadlocks. 

A. ALGORITHM 

This algorithm is structured to systematically identify and 

handle deadlocks in nested transactions using Depth-First 

Search (DFS). Below is a detailed breakdown of each step 

involved in the process: 

STEP 1: GRAPH REPRESENTATION 

1) Create a directed graph where nodes represent 

transactions, and edges represent resource dependencies. 

STEP 2: INITIALIZATION 

1) Initialize arrays to store metrics such as execution 

times, memory usage, system throughput, response times, 

and success ratios for each iteration. 

2) Set the number of transactions and iterations. 

STEP 3: GRAPH SETUP 

1) Initialize a directed graph (digraph) to represent 

transaction relationships. 

2) Add edges to the graph to simulate transaction 

dependencies and subtransactions. 

STEP 4: ITERATION LOOP 

1) For each iteration: 

a) Add subtransactions to the graph as defined. 

b) Call the detectDeadlock function to detect deadlocks 

and calculate metrics. 

c) Store metrics for the current iteration. 

STEP 5: DEADLOCK DETECTION FUNCTION 

(DETECTDEADLOCK) 

1) Initialize containers for visited nodes and nodes in 

the current path (stack) using containers.Map. 

2) Start a timer (tic) to measure execution time. 

3) Perform DFS for each node in the graph to detect 

cycles: 

a) Mark nodes as visited and add them to the stack. 

b) Explore successors of the current node recursively. 

c) If a cycle is found (i.e., a node is visited that's already 

in the stack), a deadlock is detected. 

d) Display deadlock-related information like involved 

transactions, deadlock cycle, and indirect dependencies 

contributing to deadlock. 

4) Stop the timer (toc) and calculate execution time. 

5) Return metrics (dummy values if no deadlock is 

detected). 

STEP 6: METRIC CALCULATION 

1) Calculate overall averages for metrics across all 

iterations. 

2) Display the overall summary of metrics. 

STEP 7: GRAPH PLOTTING 

1) Plot individual graphs for each metric (execution time, 

memory usage, system throughput, response time, success 

ratio). 

2) Plot the transaction tree graph. 

The methodical nature of this approach guarantees precise 

deadlock identification and thorough metric evaluation 

within nested transactions. This structured framework not 

only enhances transactional dependency management but 

also facilitates the optimization of system performance, 

making it indispensable for developers and researchers 

navigating the complexities of concurrent systems. 

In conclusion, the proposed DFS-based algorithm 

provides a systematic and efficient approach for detecting 

deadlocks in nested transactions, essential for maintaining 

stability and performance in concurrent systems. By 

representing transactions as a directed graph and utilizing 

Depth-First Search to identify cycles, this algorithm 

ensures accurate deadlock detection while also facilitating 

detailed metric analysis and visualization. The structured 

framework enhances the management of transactional 

dependencies and aids in optimizing overall system 

performance, making it a valuable tool for developers and 

researchers in the field of concurrent transaction 

management. 

VI.IMPLEMENTATION AND RESULTS 

This section outlines the implementation and evaluation 

of a Depth-First Search (DFS)-based deadlock detection 

algorithm for nested transactional systems, analysing 

configurations of 5 to 30 parent transactions over ten 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5250 

iterations. We validated our approach using MATLAB 

simulations, demonstrating its effectiveness in detecting 

and managing deadlocks in nested transactions. It 

discusses key performance metrics—execution time, 

memory usage, system throughput, success ratio, and 

response time—that are essential for assessing the 

effectiveness and efficiency of deadlock detection 

protocols. The section emphasizes the necessity of a 

comprehensive analysis to understand system 

performance under varying workloads and transaction 

complexities, ultimately highlighting the significance of 

optimizing resource management and performance 

monitoring in deadlock detection. 

We conducted simulations to evaluate the performance of 

our DFS-based deadlock detection algorithm in nested 

transactional systems, with varying numbers of 

transactions and different levels of nesting. The 

experimental setup included a simulated environment 

with 5, 10, 15, 20, 25, and 30 parent transactions, each 

with two subtransactions, and nested transaction depths 

ranging from 1 to 5 levels. Metrics were recorded over 10 

iterations for each configuration. The total number of 

transactions considered in each model is as follows: 5 

parent transactions with 2 subtransactions each, resulting 

in 15 transactions (referred to as the "05 transaction 

model"); 10 parent transactions with 2 subtransactions 

each, resulting in 30 transactions (referred to as the "10 

transaction model"); 15 parent transactions with 2 

subtransactions each, resulting in 45 transactions (referred 

to as the "15 transaction model"); 20 parent transactions 

with 2 subtransactions each, resulting in 60 transactions 

(referred to as the "20 transaction model"); 25 parent 

transactions with 2 subtransactions each, resulting in 75 

transactions (referred to as the "25 transaction model"); 

and 30 parent transactions with 2 subtransactions each, 

resulting in 90 transactions (referred to as the "30 

transaction model"). This model structure allows for a 

comprehensive analysis of system performance across 

varying levels of complexity and workload, providing 

insights into how the system handles increasing numbers 

of transactions. When evaluating the effectiveness of 

deadlock detection in nested transactions using Depth-

First Search (DFS), it’s crucial to consider a range of 

performance metrics that provide insights into the 

protocol’s capabilities. Key metrics such as average 

system throughput, success ratio, response time, 

execution time, and memory usage were analysed to 

assess the protocol’s performance and efficiency. DFS 

traverses transactional relationships to identify cycles 

indicative of potential deadlocks. Evaluating system 

throughput helps gauge the protocol’s ability to detect 

deadlocks within a specified timeframe, ensuring timely 

resolution and system stability. The success ratio metric 

reflects the protocol’s effectiveness in resolving deadlocks 

and maintaining transaction reliability. A higher success 

ratio indicates that a larger proportion of transactions are 

successfully completed without encountering deadlocks, 

showcasing the protocol’s robustness in handling 

concurrent transactions, and minimizing disruptions due 

to deadlock situations. Response time measures the 

system’s responsiveness to detecting and handling 

deadlock situations. A lower response time indicates 

quicker detection and resolution of deadlocks, which is 

crucial for maintaining system performance and user 

satisfaction. Execution time reflects the efficiency of 

deadlock detection and resolution processes. A protocol 

with lower execution times for deadlock handling tasks 

can manage concurrent transactions more effectively, 

minimizing disruptions caused by deadlock situations. 

Assessing memory usage is crucial for scalability and 

efficient resource management during deadlock handling 

processes. A protocol that optimizes memory usage while 

effectively managing deadlock scenarios can enhance 

overall system performance and reliability. Experimental 

results and performance trends, summarized in Tables III 

to VIII, showcase the protocol’s strengths and areas for 

improvement in handling deadlock scenarios within 

nested transactions. FIGURES 1-11 illustrate the 

performance trends of the nested transaction systems 

under various configurations, paving the way for further 

research and optimization in deadlock detection. 

In conclusion, this section presents the framework for 

implementing a Depth-First Search (DFS)-based deadlock 

detection algorithm tailored for nested transactional 

systems. We established a simulated environment with 

varying configurations of parent transactions and 

subtransactions, providing a structured approach to assess 

the protocol’s performance. This framework sets the 

foundation for further exploration and optimization in the 

field of deadlock detection within complex transactional 

systems. 

A. Performance Metrics 

This section outlines essential performance metrics for 

evaluating deadlock detection protocols in nested 

transactions. These metrics, summarized in Table III, 

include system throughput, success rates, response times, 

execution durations, and memory utilization. Each metric 

provides valuable insights into the system's efficiency and 

effectiveness, enabling stakeholders to identify areas for 

improvement and optimize transaction management. By 

measuring these indicators, a comprehensive assessment 

of the deadlock detection system's overall performance 

capacity can be achieved. 

In detecting deadlocks in nested transactions, various 

performance metrics are employed to gauge the 

effectiveness and efficiency of the detection protocols. 

These metrics offer a comprehensive view of different 

performance aspects, enabling stakeholders to make 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5251 

informed decisions and implement improvements. Table 

III summarizes the key performance metrics used in this 

evaluation. These metrics are crucial for assessing the 

efficiency, success rate, detection time, and overall 

performance capacity of the deadlock detection system.  

TABLE III 

 PERFORMANCE METRICS FOR DEADLOCK DETECTION IN NESTED TRANSACTIONS 

S.No. Performance 

Metric 

Description 

1. Average 

System 

Throughput 

Measures the average number of transactions processed per unit of time, 

indicating system capacity. 

2. Average 

Success 

Ratio 

Average ratio of successful transactions to total transactions submitted, 

showing system success rate. 

3. Average 

Response 

Time 

Average elapsed time from command initiation to completion, assessing 

transaction performance. 

4. Average 

Execution 

Time 

Average typical duration for completing each transaction, reflecting system 

efficiency. 

5. Average 

Memory 

Usage 

Average amount of memory utilized per transaction, indicating system 

memory efficiency. 

 

FIGURE 1. Five parent node transaction structure                     FIGURE 2. Ten parent node transaction structure 

 

FIGURE 3. Fifteen parent node transaction structure            FIGURE 4. Twenty parent node transaction structure 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5252 

 

 FIGURE 5. Twenty-five parent node transaction structure            FIGURE 6. Thirty parent node transaction structure   

          

In conclusion, the performance metrics discussed are vital 

for evaluating deadlock detection protocols in nested 

transactions. By analysing system throughput, success 

rates, response times, execution durations, and memory 

utilization, stakeholders can gain valuable insights into 

system efficiency and effectiveness. This assessment 

facilitates informed decision-making and identifies areas 

for improvement, ensuring optimized performance and 

reliability in transaction management as complexity 

increases. 

B. Performance Metrics Analysis 

This section examines the essential performance metrics 

used to evaluate deadlock detection protocols in nested 

transactions, focusing on execution time, memory usage, 

system throughput, success ratio, and response time. 

Analysing these metrics provides insights into the 

system's efficiency, reliability, and resource utilization, 

which are critical for informed decision-making and 

improvements in deadlock detection strategies. The 

subsequent analysis highlights trends and patterns in these 

metrics, emphasizing the importance of understanding 

their implications for overall system performance in 

managing deadlocks effectively.  Before delving into the 

analysis of these performance metrics, it is essential to 

highlight their significance in evaluating deadlock 

detection protocols in nested transactions. These metrics, 

including Average System Throughput, Average Success 

Ratio, Average Response Time, Average Execution Time, 

and Average Memory Usage, provide a comprehensive 

view of the system's efficiency, success rate, detection 

performance, and resource utilization. Understanding 

these metrics is crucial for making informed decisions and 

implementing improvements in deadlock detection 

protocols for nested transactions. The following section 

will provide a detailed analysis of each metric, shedding 

light on their impact and implications for system 

performance. 

1) ANALYSIS OF EXECUTION TIME TRENDS 

This section analyses average execution time to evaluate 

the system's processing efficiency across various 

transaction workloads. It details the recorded execution 

times for different transaction volumes, illustrating how 

execution time scales with the number of transactions. The 

analysis provides insights into how execution time 

impacts overall transaction management and efficiency in 

the system. 

Examining the average execution time provides essential 

insights into the system's processing efficiency across 

various transaction workloads. Table IV details the 

recorded average execution times for different transaction 

volumes over ten iterations, offering a comprehensive 

view of how execution time scales with the number of 

transactions. This information is visually represented in 

FIGURE 7, depicting the execution time trends, and 

highlighting any significant patterns or outliers within the 

transaction workload spectrum.  

TABLE IV EXECUTION TIME FOR SIMULATION 

Number of 

Parent 

Transactions 

Average 

Execution 

Time 

(seconds) 

5 0.0411 

10 0.107 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5253 

15 0.069 

20 0.1159 

25 0.075 

30 0.0927 

                 

The analysis of average execution time versus the number 

of transactions reveals a non-linear pattern in system 

performance. Initially, there's a significant increase from 

5 to 10 parent transactions, indicating overheads and 

resource contention. This is followed by a decrease from 

10 to 15 parent transactions, possibly due to optimization 

or improved resource management. However, from 15 to 

20 parent transactions, there's another increase, suggesting 

increased overhead. The pattern continues with 

fluctuations, highlighting the impact of resource 

contention and transaction complexity on performance.  

In conclusion, the analysis of execution time trends 

highlights the intricate relationship between transaction 

workload and system processing efficiency. By examining 

the variations in average execution time across different 

transaction volumes, we gain valuable insights into the 

performance dynamics of the system. The observed 

fluctuations underscore the importance of effective 

resource management and optimization strategies to 

mitigate overhead and enhance overall efficiency in 

handling nested transactions. Continuous monitoring and 

adaptive management practices will be essential for 

maintaining optimal performance as transaction 

workloads evolve. 

2) ANALYSIS OF MEMORY USAGE 

 

FIG 7. Execution time for simulation 

This section analyses the system's memory usage under 

different transaction workloads, providing insights into its 

scalability and resource management. It highlights the 

system's ability to efficiently handle varying transaction 

volumes without requiring additional memory, indicating 

effective memory allocation and optimization 

mechanisms. 

Analysing average memory usage offers valuable insights 

into the system's memory requirements under different 

transaction workloads. Table V shows the recorded 

average memory usage for varying numbers of 

transactions over ten iterations, illustrating how memory 

usage scales with transaction volume. This information is 

visually represented in FIGURE 8, providing a clear 

depiction of memory usage trends, and highlighting any 

significant patterns or fluctuations across different 

transaction volumes.  

TABLE VMEMORY USAGE FOR SIMULATION 

Number of 

Parent 

Transactions 

Average 

Memory 

Usage 

(MB) 

5 67.4522 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5254 

10 67.4522 

15 67.4522 

20 67.4522 

25 67.4522 

30 67.4522 

 

The analysis of average memory usage versus the number 

of transactions reveals a constant memory usage of 

67.4522 MB across all transaction counts from 5 to 30 

parent transactions. This suggests efficient memory 

management and allocation mechanisms in the system, 

indicating scalability and optimized memory usage. The 

system's ability to handle increasing transactions without 

requiring additional memory resources reflects positive 

scalability and efficiency in memory utilization, 

potentially through techniques like memory pooling or 

efficient memory reuse.  

In conclusion, the system demonstrates effective memory 

management and scalability by maintaining a constant 

memory usage across increasing transaction volumes. 

This stability indicates the use of efficient optimization 

mechanisms, ensuring that the system can handle higher 

workloads without requiring additional memory 

resources, ultimately contributing to its overall 

performance and efficiency. 

 

FIGURE 8. Memory Usage for simulation 

3) ANALYSIS OF SYSTEM THROUGHPUT  

This section evaluates system throughput across varying 

transaction workloads, providing insights into the 

system's processing capacity. It highlights the system's 

ability to maintain consistent throughput under different 

transaction volumes, suggesting effective load balancing, 

resource management, and scalability. The analysis 

emphasizes the system's capability to handle increasing 

workloads efficiently without performance degradation, 

indicating robust optimization mechanisms in place. 

Evaluating the average system throughput offers crucial 

insights into the system's processing capacity across 

varying transaction workloads. Table VI compiles the 

average throughput values recorded for different 

transaction volumes over ten iterations, demonstrating 

how throughput varies with transaction volume. This data 

is visually presented in FIGURE 9, providing a graphical 

representation of throughput trends, and emphasizing any 

notable fluctuations or trends observed across the 

transaction volume range.

TABLE VI SYSTEM THROUGHPUT FOR SIMULATION 

Number of 

Parent 

Transactions 

Average 

System 

Throughput 

(TPS) 

5 46.9724 

10 46.9724 

15 46.9724 

20 46.9724 

25 46.9724 

30 46.9724 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5255 

 

FIGURE 9. System Throughput for simulation 

 The analysis of average system throughput versus the 

number of transactions shows a consistent throughput of 

46.9724 transactions per second (TPS) across all 

transaction counts from 5 to 30 parent transactions. This 

indicates a stable and well-optimized system capable of 

handling varying loads efficiently. The constant 

throughput suggests effective load balancing, resource 

management, and scalability, ensuring steady 

performance without degradation even as transaction 

volumes increase. 

In conclusion, the consistent throughput across varying 

transaction volumes demonstrates the system's strong 

scalability and efficient resource management. The 

stability in processing capacity highlights the system's 

robustness in handling increased workloads without 

experiencing any performance degradation, underscoring 

the effectiveness of its optimization mechanisms and load 

balancing strategies. 

4) ANALYSIS OF SUCCESS RATIO 

                    

This section focuses on assessing the average success ratio 

to evaluate the system's reliability and transaction 

completion rates across varying transaction workloads. It 

provides insights into the system's performance by 

detailing how success rates fluctuate with transaction 

volume. The analysis emphasizes the importance of 

maintaining a high success ratio in ensuring robust 

functionality and a positive user experience.  

Assessing the average success ratio provides crucial 

insights into the system's reliability and transaction 

completion rates across varying transaction workloads. 

Table VII aggregates the average success ratio values 

recorded for different transaction volumes over ten 

iterations, offering a comprehensive view of success rates 

across transaction volumes. This data is visually depicted 

in FIGURE 10, graphically presenting success ratio 

trends, and highlighting any significant patterns or 

variations observed in the system's performance 

concerning transaction completions. 

 

TABLE VII SUCCESS RATIO FOR SIMULATION 

Number of Parent 

Transactions 

Average 

Success 

Ratio 

5 0.5748 

10 0.5748 

15 0.5748 

20 0.5748 

25 0.5748 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5256 

30 0.5748 

                                                         

FIGURE 10. Success Ratio for simulation

 

The analysis of the average success ratio versus the 

number of transactions reveals a constant value of 0.5748 

across all transaction counts from 5 to 30 parent 

transactions. This indicates a stable and reliable system 

with consistent success rates in transaction handling, 

regardless of workload variations. The system's 

predictable performance suggests robust functionality and 

user experience.  

In conclusion, the consistent average success ratio across 

all transaction volumes highlights the system's reliability 

and effective transaction management. This stability in 

success rates, despite varying workloads, reflects the 

system's robust functionality and efficiency in handling 

transactions. Such predictable performance is crucial for 

ensuring a positive user experience, reinforcing the 

importance of maintaining high success rates in 

transaction processing systems. 

5) ANALYSIS OF RESPONSE TIME 

This section evaluates the average response time to assess 

the system's responsiveness under varying transaction 

workloads. It highlights the importance of consistent 

response times for user experience and system reliability, 

emphasizing effective resource allocation and stable 

performance in handling requests. The analysis 

underscores the necessity for ongoing monitoring and 

performance optimization to ensure scalability and 

sustained performance across different usage patterns. 

Analysing the average response time provides insights 

into the system's responsiveness under varying transaction 

workloads. Table VIII summarizes the recorded average 

response time values for different transaction volumes 

over ten iterations, showing how response time changes 

with transaction volume. This data is visually represented 

in FIGURE 11, offering a graphical depiction of response 

time trends, and highlighting any significant changes or 

patterns observed in the system's responsiveness across 

various transaction volumes. 

TABLE VIII RESPONSE TIME FOR SIMULATION 

Number of 

Parent 

Transactions 

Average 

Response 

Time 

(seconds) 

5 2.7506 

10 2.7506 

15 2.7506 

20 2.7506 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5257 

25 2.7506 

30 2.7506 

 

 
 

FIGURE 11. Response Time for simulation 

The analysis of average response time versus the number 

of transactions shows a constant value of 2.7506 seconds 

across all transaction counts from 5 to 30 parent 

transactions. This indicates a stable and predictable 

system performance, crucial for user experience and 

system reliability. The constant response time suggests 

effective resource allocation and consistent performance 

in handling requests, highlighting system stability. 

However, ongoing monitoring, load testing, and 

performance optimization are necessary to ensure 

scalability and sustained performance under varying 

workloads and usage patterns. 

In conclusion, the analysis of average response time 

reveals a stable performance across different transaction 

volumes, indicating effective resource management and 

consistent responsiveness. This predictability is vital for 

maintaining user satisfaction and system reliability. 

However, to support scalability and adapt to varying 

workloads, it is essential to implement ongoing 

monitoring and performance optimization strategies. 

Ensuring that the system can handle increased demands 

while maintaining responsiveness will be crucial for its 

long-term effectiveness and user experience. 

In conclusion, the comprehensive analysis of performance 

metrics for deadlock detection protocols in nested 

transactions has provided critical insights into the 

system’s efficiency, reliability, and resource management. 

By examining key metrics such as execution time, 

memory usage, system throughput, success ratio, and 

response time, we established a robust framework for 

evaluating overall system performance. The findings 

reveal a non-linear relationship between transaction 

workload and execution time, emphasizing the necessity 

of effective resource management and optimization 

strategies to mitigate overhead and enhance processing 

efficiency. Notably, the constant memory usage across 

varying transaction volumes showcases effective memory 

allocation mechanisms, reflecting the system's scalability 

and its capacity to handle increased workloads without 

additional memory requirements. Furthermore, the stable 

system throughput signifies the success of load balancing 

and resource management, ensuring consistent processing 

capacity even with rising transaction volumes. The high 

and consistent success ratio across different transaction 

counts reinforces the system’s reliability and its capability 

to maintain a positive user experience. Additionally, the 

stable average response time underscores the system's 

predictable performance, which is crucial for user 

satisfaction and operational reliability. 

Overall, these outcomes provide valuable insights for 

stakeholders seeking to optimize transaction management 

systems. By identifying key performance indicators and 

understanding their implications, stakeholders can make 

informed decisions to enhance the efficiency and 

effectiveness of deadlock detection protocols in nested 

transactions, ensuring scalability and reliability as 

complexity increases. Continuous monitoring and 

adaptive management practices will be essential for 

sustaining optimal performance amid evolving transaction 

workloads. 

The detailed analysis further underscores the effectiveness 

of the Depth-First Search (DFS) algorithm in managing 

nested transactions, highlighting correlations between 

workload and processing efficiency metrics. The constant 

values in memory usage, system throughput, success ratio, 

and response time suggest a stable and predictable system. 

However, the observed non-linear trend in average 

execution time points to the system's sensitivity to 

workload changes, indicating potential overhead and 

resource contention periods. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5258 

Overall, the system exhibits reliability, scalability, and 

effective resource management in detecting and resolving 

deadlocks. However, continuous monitoring and 

optimization efforts are necessary to ensure consistent 

performance and to address fluctuations in execution time, 

thus enhancing the overall robustness of the deadlock 

detection framework. 

 

VII.FUTURE DIRECTIONS AND CHALLENGES 

This section addresses the challenges and opportunities in 

deadlock management within transactional systems, 

emphasizing the need for further development to enhance 

system resilience and adaptability. It highlights the 

necessity for ongoing research and collaboration to 

advance deadlock detection and resolution mechanisms. 

The current state of deadlock management in transactional 

systems presents both challenges and opportunities for 

improvement. While existing deadlock detection 

algorithms and strategies have made significant 

advancements in mitigating deadlocks, there are several 

areas where further development and innovation are 

needed to address emerging complexities and enhance 

system resilience. In light of these considerations, the 

following future directions and challenges outline key 

areas for research and development in deadlock resolution 

strategies and transactional system management. 

A.  ADVANCED DEADLOCK RESOLUTION 

STRATEGIES 

Explore transaction prioritization, dynamic resource 

allocation, and adaptive scheduling. Automate deadlock 

resolution to minimize manual intervention and enhance 

resilience. 

B. DYNAMIC GRAPH ANALYSIS 

Extend algorithms to handle real-time updates and 

changes in transaction graphs. Implement adaptive 

analysis techniques to maintain detection efficiency. 

C. OPTIMIZATION AND PARALLELISM 

Improve algorithm efficiency and scalability for large-

scale graphs. Utilize parallel processing and distributed 

computing to accelerate detection. 

D. MACHINE LEARNING INTEGRATION  

Use machine learning to enhance prediction and 

prevention capabilities. Train models on historical data for 

early deadlock detection. 

E. FAULT TOLERANCE AND RECOVERY 

Enhance fault tolerance to recover from deadlock-induced 

failures. Develop automated recovery strategies to 

minimize downtime and ensure data consistency. 

F. REAL-TIME MONITORING AND ANALYSIS 

Implement real-time monitoring tools and integrate 

anomaly detection to identify potential deadlocks early. 

G. CROSS-PLATFORM COMPATIBILITY 

Ensure deadlock detection solutions are compatible across 

various platforms. Address transaction coordination and 

resource management challenges in distributed 

environments. 

H. SECURITY AND PRIVACY CONSIDERATIONS 

Implement encryption and secure protocols to protect 

deadlock-related data. Ensure data privacy and access 

control within detection mechanisms. Addressing these 

future directions requires ongoing research, collaboration, 

and innovation to develop robust, efficient, and adaptable 

deadlock detection and resolution mechanisms for modern 

transactional systems. 

In conclusion, the future directions and challenges in 

deadlock management within transactional systems 

underscore the importance of continual advancement and 

innovation. By focusing on enhancing resolution 

strategies, improving adaptability to dynamic 

environments, and integrating cutting-edge technologies, 

the field can better address the complexities of modern 

systems. Ongoing research, collaboration, and the 

development of robust mechanisms will be essential for 

ensuring that deadlock detection and resolution processes 

remain effective and efficient. Ultimately, these efforts 

will contribute to the resilience and reliability of 

transactional systems, enabling them to meet the demands 

of increasingly complex and evolving operational 

landscapes. 

VIII.CONCLUSION 

This section concludes that the advanced deadlock 

management approach proposed in this paper, which 

employs a Depth-First Search (DFS)-based detection 

mechanism, significantly enhances the reliability and 

performance of nested transaction systems. By 

introducing relations such as direct-waits-for-lock, waits-

for-commit, and indirect-waits-for-lock, the methodology 

facilitates early deadlock detection and prevents deadlock 

cycles, ensuring uninterrupted transaction progress. The 

approach minimizes the need for exhaustive cycle 

searches within the transaction graph, leading to 

substantial improvements in processing efficiency. 

Performance evaluations highlight stable execution times, 

consistent memory usage, reliable throughput, predictable 

response times, and steady success rates across various 

transaction volumes, demonstrating the effectiveness of 

the proposed method in resource management and system 

reliability. This research establishes a robust foundation 

for efficient deadlock management in nested transactions, 

with future efforts directed towards optimizing execution 

times and exploring additional strategies to further 

enhance the resilience, scalability, and adaptability of 

transaction management systems. 

References 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5243-5259  |  5259 

[1] P. A. Bernstein VHaNG. Concurrency Control and 

Recovery in Database Systems: Addison Wesley; 

1987. 

[2] Ceri S PG. Distributed Database Principles and 

Systems: New York: McGraw-Hill; 1984. 

[3] Chandy M MJHL. Distributed deadlock detection. 

ACM Trans Comput Syst.. 1983; 1(2): 144-56. 

[4] RC H. Some Deadlock Properties in Computer 

Systems. ACM Comput Surveys. 1972; 4(3): 179-

96. 

[5] Gray J RA. Transaction Processing: Concepts and 

Techniques San Mateo: : Morgan Kaufmann Publ; 

1993. 

[6] Moss JEB. Nested Transactions: An Approach to 

Reliable Distributed Computing. Cambridge, MA:; 

April 1981. 

[7] Bjork LA. Recovery scenario for a DB/DC system. 

In ACM Annual Conference; 1973. p. 142–6. 

[8] Davies CT. Recovery semantics for a DB/DC 

system. In ACM Annual Conference; 1973. p. 136–

41. 

[9] Salem HGMaK. Sagas. In ACM SIGMOD 

International Conference on Management of Data; 

1987. p. 249–259. 

[10] Karabatis G. Nested Transaction Models. In Liu L. 

ÖM, editor. Encyclopedia of Database Systems; 

2017; New York: Springer. 

[11] Medjahed MOAKE. Generalization of ACID 

Properties. In Liu L. ÖMT, editor. Encyclopedia of 

Database Systems; 2009; Boston, MA: Springer. 

[12] Buchmann A. Open Nested Transaction Models. In 

Liu L. ÖM, editor. Encyclopedia of Database 

Systems; 2016; New York: Springer. 

[13] A. EI-Sayed HSHaMEES. Effect of shaping 

characteristics on the performance of nested 

transactions. Information and Software Technology. 

2001; 43(10): 579-590. 

[14] Rothermel THaK. Concurrency Control Issue in 

Nested Transactions. VLDB J. 1993; 2(1): 39-74. 

[15] M R. Hierarchical Deadlock Detection for Nested 

Transactions. Distrib Comput.. 1991; 4(3): 123-129. 

[16] Sinha MK NM. A Priority Based Distributed 

Deadlock Detection Algorithm. IEEE Trans Softw 

Eng.. 1985; 11(1): 67-80. 

[17] Rukoz M. A distributed solution for detecting 

deadlock in distributed nested transaction systems 

Bermond J,RM, editor. Berlin, Heidelberg: In 

Distributed Algorithms,Lecture Notes in Computer 

Science,Springer; 1989. 

[18] Dong C. Shin SCM. A deadlock detection algorithm 

for nested transaction model. Microprocessing and 

Microprogramming. 1990; 28(1): 9-14. 

[19] Rezende F&HT&GA&LJ. Detection arcs for 

deadlock management in nested transactions and 

their performance; 2006.

 

Mrs. Meenu is an Associate Professor in the department of Computer Science & Engineering at the 

Madan Mohan Malaviya University of Technology, Gorakhpur where she has been a faculty member 

since 2003. She is Chairperson of Women Cell as well as Women Welfare and AntiHarassment Cell. 

She completed her M.Tech. at Madan Mohan Malaviya University of Technology. She has served as 

the Session Chair for UPCON-2018 (5th IEEE Uttar Pradesh Section International Conference). She 

is the author of 64 research papers, which have been published in various National & International 

Journals/Conferences. She is a reviewer of many International Journals/ Conferences and Editorial 

Board member of International Journals. She is also member of many Professional Societies. Her 

research interest lies in the area of Distributed Real Time Database Systems. She has collaborated 

actively with researchers in several other disciplines of computer science, particularly machine learning. 

 

 

 

 

 

 


