

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5260

Transaction Models: A Comprehensive Review of Evolution,

Challenges, And Future Prospects

Meenu

Submitted:12/03/2024 Revised: 27/04/2024 Accepted: 04/05/2024

Abstract: This review paper explores the evolution of transaction models in database systems, highlighting their foundational principles

and advancements. It begins by examining the limitations of classical ACID-based models in handling modern, complex database systems,

including distributed, real-time, and long-duration transactions. Advanced models, such as nested, distributed, and real-time transactions,

are introduced to address scalability, fault tolerance, and performance challenges. Key issues such as deadlock management and scalability

are explored, alongside emerging trends like machine learning for optimization and blockchain for secure processing. The paper identifies

future research directions, including energy-efficient management, AI-driven optimizations, and support for heterogeneous environments,

ultimately emphasizing the need for adaptive transaction frameworks to meet evolving demands in database systems.

Index Terms: ACID Properties, Distributed Systems, Nested Transactions, Real-Time Transactions. Transaction Models.

I.INTRODUCTION

This section outlines the evolution of data management

systems, from manual filing systems to Centralized

Database Systems (CDBS) and Distributed Database

Systems (DDBS), addressing scalability and global

access. It also introduces Real-Time Database Systems

(RTDBS) and Distributed Real-Time Database Systems

(DRTDBS) for time-sensitive applications. The section

emphasizes the importance of transaction models,

adhering to ACID properties, in ensuring data integrity

and reliability in these advanced systems. Additionally, it

provides an overview of the paper's structure, which

includes discussions on classical and advanced transaction

models, key challenges, and future research directions.

The evolution of data management systems has

significantly transformed the way information is stored,

accessed, and processed. Initially, manual filing systems

were used to organize information, but they had several

limitations. These early systems lacked integrated data

definitions, were prone to redundancy, and were

inefficient when it came to scalability and data control. As

data management became more complex, these

deficiencies highlighted the need for more robust

solutions, leading to the development of Centralized

Database Systems (CDBS). CDBS centralized data

management, ensuring greater consistency, reducing

redundancy, and offering better control over data [1].

These systems provided a more structured and systematic

approach to data storage and retrieval, allowing

organizations to manage vast amounts of data more

effectively. However, as businesses and applications

expanded beyond localized environments, the limitations

of CDBS became apparent, particularly in terms of

geographical reach and scalability. The growing need for

accessing and managing data from multiple locations led

to the emergence of Distributed Database Systems

(DDBS). DDBS allow databases to be spread across

multiple locations, providing users with global access to

data. These systems address the challenge of data

distribution by enabling databases to be physically

distributed but logically integrated, ensuring that users

across various geographical regions can access the same

data seamlessly [2]. DDBS support improved data

availability and fault tolerance, although they introduce

challenges in synchronization, data consistency, and

transaction management. At the same time, advancements

in technology began to push the boundaries of data

processing beyond simple storage and retrieval. The

demand for real-time applications, which require

guaranteed timing constraints and immediate processing

of data, led to the rise of Real-Time Database Systems

(RTDBS) [3]. RTDBS are designed to handle time-

sensitive operations such as air traffic control, financial

markets, and industrial automation, where delays in data

processing or missed deadlines could have severe

consequences [4] [5]. These systems integrate timing

constraints into transaction management, ensuring that

operations are executed within specified time frames [6].

The need for both real-time and distributed capabilities

gave rise to Distributed Real-Time Database Systems

(DRTDBS). DRTDBS combine the features of RTDBS

with the benefits of distributed architectures, enabling

time-sensitive transactions to be processed across multiple

distributed locations [7]. These systems are particularly

suited for applications that require global coordination

while adhering to strict timing constraints, such as in

Department of CSE, M. M. M. U. T., Gorakhpur, India

myself_meenu@yahoo.co.in

mailto:myself_meenu@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5261

defence systems, telecommunications, and large-scale

industrial operations.

 To ensure the effective and reliable operation of these

systems, transaction models have been developed to

manage the execution of operations within databases [8].

These transaction models define how operations are

grouped, executed, and committed while adhering to the

critical ACID properties—Atomicity, Consistency,

Isolation, and Durability. These properties are essential for

maintaining the integrity of data and ensuring the

reliability of database systems, especially in environments

where data is subject to constant updates, potential system

failures, and concurrent access.

This paper provides an in-depth exploration of transaction

models in database systems, highlighting their evolution

and addressing the key challenges and future directions.

Section 1 introduces the importance of transaction models

in ensuring consistency, reliability, and performance in

modern database systems, outlining the limitations of

traditional models in the context of complex applications.

Section 2 examines the classical transaction models,

including the ACID properties and their application in

various database scenarios, discussing their strengths and

limitations. Section 3 delves into advanced transaction

models, such as nested, distributed, and real-time models,

emphasizing their ability to address the challenges of

scalability, fault tolerance, and performance in modern

systems. Section 4 explores critical issues in transaction

models, including deadlock management, distributed

constraints, and scalability challenges, while also

discussing the trade-offs involved in implementing such

models. Section 5 highlights emerging trends and

potential areas of future research, including the integration

of machine learning, blockchain, and energy-efficient

transaction management strategies. Section 6 concludes

the paper by summarizing the key findings and identifying

the ongoing need for adaptive, innovative transaction

models that meet the evolving demands of complex

database systems.

II.TRANSACTION MODELS in DATABASE

SYSTEMS

This section explores the evolution of transaction models

in database systems, highlighting their key principles,

strengths, limitations, and applications across various

scenarios. The discussion begins with foundational

concepts and progresses to specific models, addressing the

unique challenges faced by modern database systems.

Database systems play a critical role in managing data

efficiently across a wide range of applications, from

enterprise solutions to real-time systems. At the heart of

database management is the transaction model, which

defines how transactions are executed, controlled, and

maintained. A transaction consists of a sequence of

operations—such as reads, writes, inserts, and deletes—

that ensure the consistency and integrity of the database.

Effective transaction models are designed to adhere to the

ACID properties—Atomicity, Consistency, Isolation, and

Durability—which guarantee reliable data management

even during system failures or concurrent access.

However, traditional flat transaction models often fall

short as application requirements become more complex,

leading to the development of advanced transaction

models. These models modify or extend traditional

frameworks to address challenges like distributed

databases, nested transactions, long-duration operations,

and real-time constraints. Transaction models are essential

for defining how transactions are executed and maintained

in a system. They help ensure data integrity and

consistency in the presence of failures or concurrent

operations. The ACID properties, which form the

foundation of transaction management, play a crucial role

in ensuring reliable transaction behaviour:

A. ATOMICITY ensures that a transaction is

indivisible, either fully completing or not executing at all.

If a failure occurs, all changes made by the transaction are

undone to maintain consistency.

B. CONSISTENCY ensures that a transaction moves

the database from one valid state to another, adhering to

predefined rules like constraints and triggers.

C. ISOLATION guarantees that concurrent

transactions do not interfere with each other, preventing

inconsistent intermediate states. Depending on isolation

levels, some interactions between transactions are allowed

to balance performance and consistency.

D. DURABILITY ensures that once a transaction is

committed, its effects are permanent, even in the event of

failures like power outages or system crashes.

Transaction models abstract how transactions are

structured and managed. Over time, various transaction

models have been developed to meet the needs of more

complex applications. For example, in real-world

scenarios, transactions may involve long durations or

nested operations, such as in Computer-Aided Design

(CAD) or real-time systems. Models like the nested

transaction model address such complexities, allowing

subtransactions to fail without affecting the parent

transaction, which improves failure recovery. Similarly, in

distributed database systems, where transactions span

multiple locations, models like the Flex transaction model

relax some ACID properties to enhance scalability and

performance in distributed environments.

The following sections introduce several key transaction

models, each designed to address specific challenges

within database systems, starting with Gray's Model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5262

A. GRAY’S MODEL

Gray's Model introduced multi-level locking and two-

phase commit protocols to enhance data management in

distributed systems [9] [10] . This model was designed to

support high concurrency and ensure robust recovery

mechanisms, making it particularly useful in

environments where many transactions occur

simultaneously across different sites. The goal of Gray's

Model is to maintain data consistency and offer efficient

recovery from system failures, even in highly distributed

systems. One of its main advantages is its strong support

for concurrency and its ability to handle recovery

effectively, which is crucial for distributed systems.

However, the model introduces complexity, especially

with multi-level locking and two-phase commit, which

can increase overhead and slow down performance,

particularly as the number of transactions increases. The

main challenge lies in maintaining consistency and

managing the complexity inherent in distributed

transaction management.

B. READ/WRITE MODEL

The Read/Write Model treats database objects as pages in

memory and defines transactions based on sequences of

read and write operations [11]. This model simplifies the

design of transactions by focusing on basic read and write

actions, making it ideal for simpler transaction

environments where complex computations are not

needed. The primary goal is to provide a straightforward

approach to managing database transactions by focusing

on the core data access functions. It offers the advantage

of being easy to implement, making it suitable for systems

with basic transactional needs. However, it has limitations

as it overlooks computations that may occur in main

memory, making it unsuitable for applications requiring

more advanced processing during transactions. The

challenge in this model is its inability to handle complex

transactional logic, especially for applications that need

more than just basic data manipulations.

C. RELATIONAL UPDATES MODEL

The Relational Updates Model focuses on atomic

operations such as insertions, deletions, and updates

within a relational database [12]. It was designed to ensure

the atomicity and consistency of fundamental relational

operations, providing a robust foundation for database

transactions that require basic relational data

manipulation. The model's goal is to manage database

operations in such a way that ensures all transactions are

executed atomically, maintaining integrity in the database.

Its primary advantage is that it guarantees atomic

execution, which is essential for ensuring data consistency

during simple database operations. However, it is limited

in scope, as it primarily caters to relational databases and

doesn’t account for more complex transactional

requirements. The main challenge is maintaining

consistency in concurrent operations, especially when

multiple transactions access the same data simultaneously.

D. ONLINE/BATCH TRANSACTIONS MODEL

The Online/Batch Transactions Model categorizes

transactions into short-lived (online) and long-lived

(batch) transactions, each with different processing needs

[13]. Online transactions are designed for quick responses,

while batch transactions handle larger volumes of data

over longer periods. The goal of this model is to optimize

resource usage by tailoring the processing strategy based

on the transaction type. Online transactions offer quick

response times, making them ideal for real-time

applications, while batch transactions allow for more

efficient processing of large data sets. However, online

transactions are often limited to smaller portions of the

database, which may reduce their efficiency when dealing

with large datasets. Conversely, batch transactions can

require more system resources, especially when handling

large amounts of data. The challenge lies in balancing the

system’s resource usage to optimize both response times

for online transactions and the efficiency of batch

processing.

E. GENERAL/TWO-STEP/RESTRICTED TWO-

STEP MODEL

The General/Two-Step/Restricted Two-Step Model

defines transactions through a sequential order of read and

write actions, ensuring strict consistency in systems that

require specific operational constraints [14] [15] [16].

This model is particularly useful when transactions need

to follow a strict sequence of actions to guarantee data

integrity. Its primary goal is to maintain consistency by

enforcing a structured order of operations during

transaction execution. The advantage of this model is its

customizability, allowing it to cater to applications with

specific transactional order requirements. However, it

introduces complexity due to the need for strict

sequencing, making it difficult to implement in systems

that require flexibility in the order of operations.

Additionally, if not carefully managed, the model is prone

to deadlocks, especially when multiple transactions

require different sequences of operations. The main

challenge is ensuring that the transaction flows do not

result in deadlocks while maintaining the strict

consistency requirements.

F. DISTRIBUTED DBMS MODEL

The Distributed DBMS Model is designed to manage

distributed databases across multiple locations, ensuring

consistency and fault tolerance in environments where

data is spread across different sites [17]. The primary goal

of this model is to maintain data consistency and ensure

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5263

the fault tolerance of the system despite the geographical

distribution of the data. The distributed nature of the

model allows for scalability, enabling systems to handle

larger volumes of data and transactions. However, the

implementation of distributed DBMS models is complex

due to the need to coordinate transactions across multiple

locations, often leading to higher system overhead. The

main challenge is ensuring low latency, high consistency,

and fault tolerance, particularly in large-scale distributed

systems where maintaining consistency and

synchronization between multiple nodes becomes

increasingly difficult.

G. FLAT TRANSACTION MODEL / ADVANCED

TRANSACTION MODEL

The Flat Transaction Model and Advanced Transaction

Model cater to different levels of transactional complexity.

The Flat Transaction Model handles single-level

operations, making it simple and efficient for basic

transaction needs [18]. In contrast, the Advanced

Transaction Model supports hierarchical transactions,

which are more suitable for complex systems that require

multi-level or nested operations [19]. The goal of the Flat

Transaction Model is to simplify transaction design, while

the Advanced Transaction Model aims to efficiently

manage more complex transaction flows through

hierarchical structures. The advantage of the Flat Model is

its simplicity, making it easy to design and implement for

basic tasks. On the other hand, the Advanced Model

handles complex transactions better, offering improved

performance for sophisticated applications. However, the

Flat Model is limited to simple operations, making it

unsuitable for more intricate applications, while the

Advanced Model can introduce higher performance costs

and greater complexity, which can impact system

efficiency. The main challenge lies in ensuring integrity

checks and managing complexity in the Advanced

Transaction Model, especially when dealing with nested

or hierarchical transaction structures.

In conclusion, Transaction models form the foundation of

database systems, ensuring data integrity, reliability, and

efficient management across a wide range of applications.

From simple flat transactions to complex hierarchical and

distributed models, each framework addresses unique

operational challenges. As database systems evolve to

meet the demands of real-time, distributed, and large-scale

environments, choosing the right transaction model is

crucial to achieving a balance between performance, fault

tolerance, and data integrity. By leveraging tailored

models, modern systems can efficiently handle

increasingly complex scenarios while maintaining robust

functionality.

III. ADVANCED TRANSACTION MODEL in

DATABASE SYSTEM

This section examines the evolution of advanced

transaction models, outlining their principles, strengths,

limitations, and applications. The discussion advances to

specific models, highlighting how they address challenges

in modern databases by introducing flexibility, scalability,

and fault tolerance for complex scenarios.

The evolution of database systems has necessitated the

development of advanced transaction models to address

the growing complexity and requirements of modern

applications. Traditional flat transaction models, although

foundational, are limited in their ability to handle intricate

scenarios such as long-running processes, collaborative

workflows, and distributed systems. As the demand for

high-performance, scalable, and resilient database

systems has grown, the need for innovative transaction

models has become increasingly apparent. Advanced

transaction models are designed to overcome these

challenges by introducing flexibility and robustness into

transaction management. These models are particularly

critical in environments where maintaining strict

adherence to ACID (Atomicity, Consistency, Isolation,

Durability) properties is impractical or counterproductive.

By providing mechanisms for concurrency, fault

tolerance, and dynamic restructuring, advanced models

enable efficient management of complex transactions,

often spanning multiple systems or domains. Applications

such as Computer-Aided Design (CAD), real-time

databases, and workflow systems exemplify the necessity

of these models. Advanced transaction models introduce

two critical innovations: enhanced operational

abstractions and relaxation of the strict ACID (Atomicity,

Consistency, Isolation, and Durability) properties.

Operational abstractions allow for features like

parallelism within transactions, nested transaction

hierarchies, and hybrid operations that combine multiple

workflows under a unified framework. These structural

enhancements improve execution control and enable

collaborative workflows. On the other hand, relaxing strict

ACID properties—particularly atomicity and isolation—

caters to applications requiring cooperative interactions or

partial commits for long-running processes. For example,

traditional isolation protocols, such as locking-based

mechanisms, can hinder shared workflows and increase

the likelihood of deadlocks. Gray’s 1981 findings

highlighted that the frequency of deadlocks rises

exponentially with transaction size, further demonstrating

the limitations of traditional protocols in managing large-

scale operations. To address these challenges, advanced

models such as Nested Transaction Model, Sagas,

Multilevel Transaction Model, Dynamic Restructuring,

Workflow Models and Flex Transaction Model have been

developed. These advanced models ensure resilience,

efficiency, and flexibility, meeting the demands of modern

applications while balancing the need for consistency and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5264

operational fluidity. By supporting long-duration,

complex transactions, they provide critical solutions for

today’s sophisticated and collaborative database

applications.

The following sections explore a range of advanced

transaction models, each designed to address specific

challenges and application needs. These discussions focus

on their distinctive features, advantages, and practical uses

in modern systems.

The Nested Transaction Model, developed by Moss, is an

extension of the flat transaction model, where transactions

are organized hierarchically, allowing subtransactions to

commit independently [20]. This model improves fault

tolerance by allowing subtransactions to fail without

impacting the parent transaction, and it enhances

concurrency by enabling the parallel processing of

subtransactions. Despite its advantages, the model

introduces complexity in managing subtransaction states

and dependencies, as well as potential issues with

maintaining isolation and consistency between

subtransactions. It is particularly suited for complex

systems requiring high fault tolerance and recovery

capabilities, such as enterprise software and real-time

systems. The Sagas model, proposed by Garcia-Molina

and Salem in 1987, is a variant of nested transactions

where each subtransaction is associated with a

compensating transaction [21]. If the saga is aborted,

compensating transactions are executed to undo the

effects of the completed subtransactions. This model is

useful in distributed systems with long-running

transactions, where it is impractical to lock resources until

the entire transaction completes. The primary advantages

of sagas are their flexibility in allowing subtransactions to

affect the system before the entire saga completes and

their applicability in distributed systems. However, they

relax isolation between subtransactions, which may

violate traditional ACID properties, and introduce

complexity in managing compensating transactions.

Sagas are widely used in distributed systems involving

long-running business processes or workflow systems

where partial execution is acceptable. The Multilevel

Transaction Model builds upon open nested transactions

by organizing subtransactions in a balanced tree structure

[22] [23]. This approach aims to improve the efficiency of

transaction execution and management by grouping

related operations and processing them at different

abstraction levels. The model's advantages include better

resource management and enhanced performance due to

the balanced tree structure, which optimizes execution

efficiency. However, the complexity of organizing

transactions and managing different levels of abstraction

adds overhead to the system. This model is particularly

suited for large-scale enterprise applications and systems

that require efficient processing of nested transactions at

multiple levels of abstraction. The Dynamic Restructuring

(Split and Join Transaction Model) introduces flexibility

by enabling transactions to be split into multiple smaller

transactions or joined together during execution [24]. This

model is designed to optimize resource management and

parallelism, especially in systems where transactions can

benefit from being processed concurrently. The main

advantage of this approach is the ability to adapt to

changing system conditions and improve parallelism,

reducing execution time. However, it increases

complexity in managing split and join operations and

introduces potential overhead in dynamically

restructuring transactions. This model is applicable in

real-time systems with fluctuating load conditions and

high-performance systems requiring adaptive transaction

management. The Workflow Models are designed for

complex, long-running transactions where tasks are

executed sequentially or in parallel. These models

integrate nested transactions and can relax ACID

properties to allow for more flexible execution [25]. They

are needed in applications with complex task

dependencies and dynamic task sequences, such as

business process management. The key advantages of

workflow models are flexibility in task execution and

sequencing, making them suitable for real-world

applications with interdependent tasks. However, relaxing

ACID properties can lead to potential inconsistencies, and

managing dynamic workflows adds complexity.

Workflow models are typically used in business process

management systems and complex distributed systems,

such as e-commerce and supply chain management.

Finally, the Flex Transaction Model generalizes ACID

properties in multidatabase systems by relaxing atomicity

and isolation to provide greater flexibility in distributed

and heterogeneous environments [26]. It addresses

challenges in systems where full ACID compliance is not

feasible or necessary, such as when transaction

performance and scalability are prioritized over strict

consistency. The advantages of this model include

improved performance, flexibility, and concurrency, as

well as better scalability in distributed systems. However,

relaxing these properties can reduce consistency and

introduce complexity in managing the system. The Flex

model is most applicable in multidatabase systems and

distributed environments, such as large-scale e-commerce

platforms or cloud-based applications where high

availability is critical.

In conclusion, advanced transaction models play a pivotal

role in addressing the limitations of traditional flat

transaction systems by introducing innovative

mechanisms tailored to the needs of modern applications.

Each model offers unique advantages, such as improved

concurrency, fault tolerance, and flexibility, while catering

to specific use cases ranging from nested hierarchies to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5265

distributed workflows and long-running transactions.

However, these benefits often come with trade-offs, such

as increased complexity and the relaxation of strict ACID

properties. By carefully balancing these factors, advanced

transaction models provide robust solutions for managing

complex, high-performance, and distributed database

systems, making them indispensable for contemporary

and future applications in diverse domains.

IV.ISSUES AND CHALLENGES in

TRANSACTION MODEL

This section discusses the key issues and challenges faced

by transaction models in adapting to diverse application

requirements. These include scalability limitations,

concurrency management, and deadlocks, as well as

challenges in fault tolerance, resource management, and

execution control.

Transaction models play a pivotal role in maintaining

consistency, reliability, and performance in database

systems. However, the growing complexity of modern

applications, coupled with advancements in distributed,

real-time, and large-scale systems, has exposed various

limitations and challenges in these models. Traditional

transaction models, while robust in ensuring ACID

properties, often fall short when faced with the demands

of contemporary applications requiring scalability, fault

tolerance, and flexibility. Advanced transaction models,

though addressing some of these shortcomings, introduce

new layers of complexity and performance trade-offs. The

Table I below provides a structured overview of these

challenges, along with potential resolutions that leverage

modern techniques and technologies to address them

effectively.

TABLE I TRANSACTION MODEL ISSUES AND REMEDIES

S. No.
Issues in Transaction

Models
Description Issues Resolution

1.

Scalability Limitations

Traditional models

struggle with handling

large-scale or distributed

systems, leading to

bottlenecks in

processing.

Implement distributed

transaction models and

load-balancing

mechanisms to enhance

scalability.

2.

Concurrency

Management

Ensuring isolation in

concurrent transactions

increases resource

contention and

deadlocks, especially in

nested models.

Use advanced

concurrency control

protocols like Optimistic

Concurrency Control

(OCC) and Multi-Version

Concurrency Control

(MVCC).

3.

Deadlocks and

Performance Overheads

Locking mechanisms

often lead to deadlocks;

advanced models may

reduce deadlocks but

increase dependency

management.

Use deadlock detection

techniques (e.g., waits-

for graph cycles) and

lightweight dependency

management protocols.

4.

Relaxation of ACID

Properties

Relaxing atomicity and

isolation introduce

inconsistencies and

partial failures in

transactions.

Use compensating

transactions (e.g., Sagas)

and hybrid consistency

models for balancing

flexibility and integrity.

5. Fault Tolerance and

Recovery

Failed subtransactions

can disrupt overall

Employ nested

transaction models with

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5266

system integrity,

requiring complex

rollback mechanisms.

independent

commit/abort handling

and robust recovery

protocols.

6.

Resource Management

Models like Sagas and

dynamic restructuring

demand efficient

resource allocation to

prevent overloads.

Use resource scheduling

algorithms and adaptive

resource allocation

strategies for dynamic

environments.

7.

Heterogeneity in

Distributed Systems

Coordinating

transactions across

diverse data sources and

protocols increases

complexity.

Implement middleware

solutions and consensus

protocols like Paxos or

Raft for transaction

coordination.

8.

Execution Control and

Task Sequencing

Dynamic task

dependencies in

workflows complicate

execution control and

scheduling.

Use workflow

management systems

with robust scheduling

and dependency tracking

mechanisms.

9.

Real-Time Constraints

Maintaining timeliness

while ensuring

consistency and isolation

is challenging in real-

time systems.

Use real-time transaction

models with deadline-

aware scheduling and

priority mechanisms.

10.

Security and Privacy

Relaxed isolation raises

concerns about secure

and private data handling

in shared environments.

Adopt encryption

protocols, secure access

control, and isolation-

aware privacy policies.

11.

System Complexity and

Overheads

Advanced models

introduce significant

management complexity

in states, compensations,

and dynamic operations.

Design streamlined

management frameworks

with modular approaches

to handle complexity in

advanced models.

 The Table I highlights the diverse challenges encountered

in transaction models and offers potential solutions to

address them effectively. It underscores the evolving

demands on transaction systems, particularly in modern

environments like distributed databases, real-time

systems, and heterogeneous platforms. Scalability,

concurrency, and fault tolerance remain pressing

concerns, necessitating innovative approaches like

distributed transaction protocols, advanced concurrency

controls, and robust recovery mechanisms. Additionally,

the relaxation of ACID properties to achieve greater

flexibility introduces trade-offs, demanding hybrid

consistency models and compensating mechanisms. Real-

time constraints, execution control, and task sequencing

challenges emphasize the need for deadline-aware models

and dynamic workflow management systems to meet

stringent performance requirements. Furthermore, issues

related to security and privacy in shared environments call

for stronger encryption techniques and privacy-aware

transaction protocols. While the proposed resolutions aim

to mitigate these challenges, it is evident that transaction

models must continuously adapt to accommodate

emerging technologies and application domains. Research

into scalable, adaptive, and energy-efficient transaction

models, along with integration into modern frameworks

such as IoT, blockchain, and multi-cloud environments,

will be pivotal in addressing the future needs of

transaction systems. By focusing on these challenges and

leveraging advancements in technology, transaction

models can evolve to provide robust, efficient, and secure

solutions for complex database environments.

V.FUTURE RESEARCH DIRECTIONS

This section outlines future research directions for

enhancing transaction models to meet the evolving

demands of modern computing systems.

The evolution of transaction models has been driven by

the need to address the limitations of traditional

approaches and to meet the requirements of increasingly

complex database environments. As computing systems

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5267

continue to expand into areas like distributed systems,

real-time applications, and heterogeneous platforms,

transaction models must adapt to these emerging

challenges. The rapid advancement of technologies such

as cloud computing, IoT, and blockchain introduces new

demands on transaction systems, including the need for

scalability, fault tolerance, real-time responsiveness, and

secure processing. Furthermore, the relaxation of

traditional ACID properties to accommodate flexibility in

collaborative applications adds another layer of

complexity to transaction management. Addressing these

issues requires innovative solutions and a forward-looking

approach to transaction model design. Future research in

this domain must explore cutting-edge techniques and

methodologies to ensure that transaction models remain

robust, efficient, and adaptable to diverse application

scenarios. Below is an overview of key future research

directions that will shape the development of transaction

models.

Future research in transaction models is poised to address

the growing complexity and demands of modern

computing environments. Scalable transaction models are

essential for managing large-scale, distributed, and

heterogeneous systems, such as cloud and edge

computing, with a focus on lightweight protocols that

enhance scalability without sacrificing consistency.

Enhanced concurrency control mechanisms are another

critical area, involving novel techniques to minimize

deadlocks and boost throughput, potentially leveraging

machine learning for adaptive lock management and

dynamic scheduling. Fault-tolerant systems will benefit

from robust recovery mechanisms for nested and

distributed transactions, along with proactive fault

detection and mitigation strategies for real-time

applications. The integration of transaction models with

emerging technologies such as blockchain, IoT, and multi-

cloud systems will require adaptations to meet unique

consistency and performance requirements, with hybrid

models combining traditional and blockchain-based

management solutions. Relaxation of ACID properties to

achieve optimized trade-offs between strict compliance

and flexibility is crucial for collaborative and real-time

systems, complemented by eventual consistency models

with bounded convergence guarantees. Energy-efficient

transaction protocols will be vital for sustainable

computing, especially in mobile and edge devices. Real-

time and predictive transaction management can optimize

resource allocation and deadline adherence by

anticipating transaction patterns, particularly in time-

critical domains like healthcare and finance. Security and

privacy enhancements will involve developing secure

protocols to protect data integrity and address

cryptographic challenges in lightweight, real-time

applications. Additionally, flexible transaction models for

dynamic workflows can enable seamless task sequencing

and execution in evolving systems. Hybrid transaction

models, combining the strengths of nested, saga, and

multilevel approaches, hold promise for complex and

collaborative environments. Establishing standards for

transaction protocols will enhance interoperability across

diverse platforms, while AI-driven optimization can

enable real-time decision-making for execution, conflict

resolution, and anomaly detection.

In conclusion, the pursuit of these future research

directions represents a transformative opportunity to

redefine transaction model capabilities for modern

computing. As technology evolves, the demand for

scalable, secure, and efficient transaction processing will

continue to rise. Researchers and practitioners must

collaborate to develop innovative solutions that bridge the

gap between theoretical advancements and practical

implementation. Moreover, the integration of emerging

technologies with transaction models highlights the

importance of interdisciplinary research. Collaboration

between fields such as artificial intelligence, distributed

computing, cybersecurity, and real-time systems will be

pivotal in achieving breakthroughs. These advancements

will not only address the limitations of current transaction

models but also create new possibilities for application in

areas like smart cities, autonomous systems, financial

technologies, and healthcare informatics. Ultimately, a

holistic approach that prioritizes adaptability, resource

efficiency, and interoperability will drive the evolution of

transaction models. By addressing challenges proactively

and embracing cutting-edge techniques, the next

generation of transaction models will play a central role in

shaping the future of computing systems, ensuring

reliability and performance in increasingly dynamic and

complex environments.

VI.CONCLUSION

Transaction models have been instrumental in shaping the

evolution of database systems, addressing challenges

related to reliability, consistency, and scalability in

increasingly complex applications. Classical transaction

models laid the foundation by ensuring ACID properties,

but their limitations in handling modern requirements

necessitated the development of advanced models.

Advanced transaction models, including nested

transactions, sagas, and workflow models, introduced

greater flexibility, fault tolerance, and scalability to meet

the demands of distributed, real-time, and long-duration

applications. These models addressed the trade-offs

between consistency and performance while enabling

collaborative and dynamic workflows, thus enhancing

overall system efficiency. Key challenges in transaction

management persist, such as the complexity of distributed

and nested transactions, the trade-offs involved in relaxing

ACID properties, and the constraints imposed by real-time

and large-scale applications. Effective concurrency

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5268

control, fault tolerance mechanisms, and adaptive

transaction protocols are critical to overcoming these

challenges and ensuring robust transaction management.

Future research directions point to promising

advancements, including the integration of machine

learning for transaction optimization, blockchain

technologies for secure and transparent transactions, and

innovative protocols tailored for distributed and real-time

environments. These efforts aim to bridge the gap between

evolving application needs and the limitations of existing

models. This study provides a comprehensive

understanding of transaction models, their evolution, and

the challenges they address. By analysing their trade-offs

and identifying emerging trends, this work underscores

the importance of balancing consistency, scalability, and

fault tolerance. The continuous evolution of transaction

models is vital for meeting the demands of modern

applications and ensuring the adaptability and resilience

of database systems in the future.

References

[1] T. C. a. C. E. Begg, Database Systems: A Practical

Approach to Design, Implementation and

Management, II, Ed., Boston, MA: Addison-Wesley

Longman Publishing Co., Inc., 1998.

[2] M. T. Ö. a. P. Valduriez, Principles of Distributed

Database Systems, IV, Ed., Springer, 2020, pp. pp. 1-

674.

[3] K. Ramamritham, “Real-time databases,”

Distributed and Parallel Databases, vol. 01, no. 02,

pp. 199-226, 1993.

[4] R. A. a. H. Garcia-Molina, “Scheduling Real-Time

Transactions: A Performance Evaluation,” in 34th

International Conference on Very Large Data Bases,

1988.

[5] J. S. a. W. Zhao, “On real-time transactions,” in

ACM SIGMOD , March 1988..

[6] M. C. a. M. L. J. Haritsa, “Data Access Scheduling

in Firm Real-Time Database Systems,” International

Journal of Real-Time Systems, vol. 4, no. 3, 1992.

[7] M. M. a. A. K. S. U. Shanker, “Distributed real-time

database systems: Background and literature

review,” International Journal of Distributed and

Parallel Databases, vol. 23, no. 2, p. 127–149, 2008.

[8] J. Gray, “A Transaction Model,” in ICALP, 1980.

[9] J. Gray, “Notes on database operating systems,” in

Lecture Notes in Computer Science,Operating

Systems -- An Advanced Course, vol. 60, Berlin,

Springer-Verlag, 1978, pp. 393-481.

[10] J. Gray, “The recovery manager of the system R

database manager,” ACM Computing Surveys, vol.

13, p. 223–244 , 1981.

[11] S. M. Y. B. H. K. a. A. S. R. Rastogi, “On correctness

of non-serializable executions,” in 12th ACM

SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, 1993.

[12] S. A. a. V. Vianu, “Equivalence and optimization of

relational transactions,” Journal of the ACM, vol. 35,

pp. 70-120, 1988.

[13] J. Gray, “Why do computers stop and what can be

done about it,” in CIPS (Canadian Information

Processing Society) Edmonton '87 Conference

Tutorial Notes, Edmonton, Canada, 1987.

[14] C. H. Papadimitriou, “Serializability of concurrent

database updates,” Journal of the ACM, vol. 26, no.

4, p. 631–653, 1979.

[15] P. M. L. I. a. D. J. R. R. E. Stearns, “Concurrency

controls for database systems,” in 17th Symposium

on Foundations of Computer Science, 1976.

[16] T. K. a. C. H. Papadimitriou, “An optimality theory

of concurrency control for databases,” in ACM

SIGMOD International Conference on Management

of Data, 1979.

[17] M. J. C. a. M. Livny, “Distributed Concurrency

Control Performance: A Study of Algorithm,

Distribution, and Replication,” in 14th VLDB

Conference, Los Angeles, California, 1988.

[18] Y. C. a. L. Gruenwald, “Research Issues for a Real-

Time Nested Transaction Model,” in 2nd IEEE

Workshop on Real-Time Applications, July 1994.

[19] M. O. A. E. B. Medjahed, “Generalization of ACID

Properties,” in Encyclopedia of Database Systems,

Boston, MA, 2009.

[20] E. B. Moss, “Nested Transactions: An Approach to

Reliable Distributed Computing,” Cambridge, MA, ,

1981.

[21] H. G.-M. a. K. Salem, “Sagas,” in ACM SIGMOD

International Conference on Management of Data,

1987.

[22] G. Weikum, “ Principles and realization strategies of

multi-level transaction management,” ACM Trans.

Database System, vol. 16, no. 1, p. 132–180, 1991.

[23] G. H. C. B. P. a. M. P. Weikum, “Multi-level

recovery,” in 9th ACM Symposium on Principles of

Database Systems, Nashville, TN, 1990.

[24] C. Pu, “Superdatabases for composition of

heterogeneous databases,” in 4th International

Conference on Data Engineering, 1988.

[25] M. R. a. A. Sheth, Specification and execution of

transactional workflows, K. W, Ed., ACM

Press/Addison-Wesley, 1995, p. 592–620.

[26] Z. a. B. Bhargava, Flex Transactions, Ö. M. Liu L.,

Ed., Boston, MA: Springer, 2009.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269 | 5269

Mrs. Meenu is an Associate

Professor in the department of

Computer Science &

Engineering at the Madan

Mohan Malaviya University of

Technology, Gorakhpur where

she has been a faculty member

since 2003. She is Chairperson of

Women Cell as well as Women

Welfare and AntiHarassment Cell. She completed her

M.Tech. at Madan Mohan Malaviya University of

Technology. She has served as the Session Chair for

UPCON-2018 (5th IEEE Uttar Pradesh Section

International Conference). She is the author of 64 research

papers, which have been published in various National &

International Journals/Conferences. She is a reviewer of

many International Journals/ Conferences and Editorial

Board member of International Journals. She is also

member of many Professional Societies. Her research

interest lies in the area of Distributed Real Time Database

Systems. She has collaborated actively with researchers in

several other disciplines of computer science, particularly

machine learning.

