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Abstract: This review paper explores the evolution of transaction models in database systems, highlighting their foundational principles 

and advancements. It begins by examining the limitations of classical ACID-based models in handling modern, complex database systems, 

including distributed, real-time, and long-duration transactions. Advanced models, such as nested, distributed, and real-time transactions, 

are introduced to address scalability, fault tolerance, and performance challenges. Key issues such as deadlock management and scalability 

are explored, alongside emerging trends like machine learning for optimization and blockchain for secure processing. The paper identifies 

future research directions, including energy-efficient management, AI-driven optimizations, and support for heterogeneous environments, 

ultimately emphasizing the need for adaptive transaction frameworks to meet evolving demands in database systems. 

Index Terms: ACID Properties, Distributed Systems, Nested Transactions, Real-Time Transactions. Transaction Models. 

I.INTRODUCTION 

This section outlines the evolution of data management 

systems, from manual filing systems to Centralized 

Database Systems (CDBS) and Distributed Database 

Systems (DDBS), addressing scalability and global 

access. It also introduces Real-Time Database Systems 

(RTDBS) and Distributed Real-Time Database Systems 

(DRTDBS) for time-sensitive applications. The section 

emphasizes the importance of transaction models, 

adhering to ACID properties, in ensuring data integrity 

and reliability in these advanced systems. Additionally, it 

provides an overview of the paper's structure, which 

includes discussions on classical and advanced transaction 

models, key challenges, and future research directions. 

The evolution of data management systems has 

significantly transformed the way information is stored, 

accessed, and processed. Initially, manual filing systems 

were used to organize information, but they had several 

limitations. These early systems lacked integrated data 

definitions, were prone to redundancy, and were 

inefficient when it came to scalability and data control. As 

data management became more complex, these 

deficiencies highlighted the need for more robust 

solutions, leading to the development of Centralized 

Database Systems (CDBS). CDBS centralized data 

management, ensuring greater consistency, reducing 

redundancy, and offering better control over data [1]. 

These systems provided a more structured and systematic 

approach to data storage and retrieval, allowing 

organizations to manage vast amounts of data more 

effectively. However, as businesses and applications 

expanded beyond localized environments, the limitations 

of CDBS became apparent, particularly in terms of 

geographical reach and scalability. The growing need for 

accessing and managing data from multiple locations led 

to the emergence of Distributed Database Systems 

(DDBS). DDBS allow databases to be spread across 

multiple locations, providing users with global access to 

data. These systems address the challenge of data 

distribution by enabling databases to be physically 

distributed but logically integrated, ensuring that users 

across various geographical regions can access the same 

data seamlessly [2]. DDBS support improved data 

availability and fault tolerance, although they introduce 

challenges in synchronization, data consistency, and 

transaction management. At the same time, advancements 

in technology began to push the boundaries of data 

processing beyond simple storage and retrieval. The 

demand for real-time applications, which require 

guaranteed timing constraints and immediate processing 

of data, led to the rise of Real-Time Database Systems 

(RTDBS) [3]. RTDBS are designed to handle time-

sensitive operations such as air traffic control, financial 

markets, and industrial automation, where delays in data 

processing or missed deadlines could have severe 

consequences [4] [5]. These systems integrate timing 

constraints into transaction management, ensuring that 

operations are executed within specified time frames [6]. 

The need for both real-time and distributed capabilities 

gave rise to Distributed Real-Time Database Systems 

(DRTDBS). DRTDBS combine the features of RTDBS 

with the benefits of distributed architectures, enabling 

time-sensitive transactions to be processed across multiple 

distributed locations [7]. These systems are particularly 

suited for applications that require global coordination 

while adhering to strict timing constraints, such as in 
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defence systems, telecommunications, and large-scale 

industrial operations. 

 To ensure the effective and reliable operation of these 

systems, transaction models have been developed to 

manage the execution of operations within databases [8]. 

These transaction models define how operations are 

grouped, executed, and committed while adhering to the 

critical ACID properties—Atomicity, Consistency, 

Isolation, and Durability. These properties are essential for 

maintaining the integrity of data and ensuring the 

reliability of database systems, especially in environments 

where data is subject to constant updates, potential system 

failures, and concurrent access. 

This paper provides an in-depth exploration of transaction 

models in database systems, highlighting their evolution 

and addressing the key challenges and future directions. 

Section 1 introduces the importance of transaction models 

in ensuring consistency, reliability, and performance in 

modern database systems, outlining the limitations of 

traditional models in the context of complex applications. 

Section 2 examines the classical transaction models, 

including the ACID properties and their application in 

various database scenarios, discussing their strengths and 

limitations. Section 3 delves into advanced transaction 

models, such as nested, distributed, and real-time models, 

emphasizing their ability to address the challenges of 

scalability, fault tolerance, and performance in modern 

systems. Section 4 explores critical issues in transaction 

models, including deadlock management, distributed 

constraints, and scalability challenges, while also 

discussing the trade-offs involved in implementing such 

models. Section 5 highlights emerging trends and 

potential areas of future research, including the integration 

of machine learning, blockchain, and energy-efficient 

transaction management strategies. Section 6 concludes 

the paper by summarizing the key findings and identifying 

the ongoing need for adaptive, innovative transaction 

models that meet the evolving demands of complex 

database systems. 

II.TRANSACTION MODELS in DATABASE 

SYSTEMS 

This section explores the evolution of transaction models 

in database systems, highlighting their key principles, 

strengths, limitations, and applications across various 

scenarios. The discussion begins with foundational 

concepts and progresses to specific models, addressing the 

unique challenges faced by modern database systems. 

Database systems play a critical role in managing data 

efficiently across a wide range of applications, from 

enterprise solutions to real-time systems. At the heart of 

database management is the transaction model, which 

defines how transactions are executed, controlled, and 

maintained. A transaction consists of a sequence of 

operations—such as reads, writes, inserts, and deletes—

that ensure the consistency and integrity of the database. 

Effective transaction models are designed to adhere to the 

ACID properties—Atomicity, Consistency, Isolation, and 

Durability—which guarantee reliable data management 

even during system failures or concurrent access. 

However, traditional flat transaction models often fall 

short as application requirements become more complex, 

leading to the development of advanced transaction 

models. These models modify or extend traditional 

frameworks to address challenges like distributed 

databases, nested transactions, long-duration operations, 

and real-time constraints. Transaction models are essential 

for defining how transactions are executed and maintained 

in a system. They help ensure data integrity and 

consistency in the presence of failures or concurrent 

operations. The ACID properties, which form the 

foundation of transaction management, play a crucial role 

in ensuring reliable transaction behaviour: 

A. ATOMICITY ensures that a transaction is 

indivisible, either fully completing or not executing at all. 

If a failure occurs, all changes made by the transaction are 

undone to maintain consistency. 

B. CONSISTENCY ensures that a transaction moves 

the database from one valid state to another, adhering to 

predefined rules like constraints and triggers. 

C. ISOLATION guarantees that concurrent 

transactions do not interfere with each other, preventing 

inconsistent intermediate states. Depending on isolation 

levels, some interactions between transactions are allowed 

to balance performance and consistency. 

D. DURABILITY ensures that once a transaction is 

committed, its effects are permanent, even in the event of 

failures like power outages or system crashes. 

Transaction models abstract how transactions are 

structured and managed. Over time, various transaction 

models have been developed to meet the needs of more 

complex applications. For example, in real-world 

scenarios, transactions may involve long durations or 

nested operations, such as in Computer-Aided Design 

(CAD) or real-time systems. Models like the nested 

transaction model address such complexities, allowing 

subtransactions to fail without affecting the parent 

transaction, which improves failure recovery. Similarly, in 

distributed database systems, where transactions span 

multiple locations, models like the Flex transaction model 

relax some ACID properties to enhance scalability and 

performance in distributed environments. 

The following sections introduce several key transaction 

models, each designed to address specific challenges 

within database systems, starting with Gray's Model. 
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A. GRAY’S MODEL 

Gray's Model introduced multi-level locking and two-

phase commit protocols to enhance data management in 

distributed systems [9] [10] . This model was designed to 

support high concurrency and ensure robust recovery 

mechanisms, making it particularly useful in 

environments where many transactions occur 

simultaneously across different sites. The goal of Gray's 

Model is to maintain data consistency and offer efficient 

recovery from system failures, even in highly distributed 

systems. One of its main advantages is its strong support 

for concurrency and its ability to handle recovery 

effectively, which is crucial for distributed systems. 

However, the model introduces complexity, especially 

with multi-level locking and two-phase commit, which 

can increase overhead and slow down performance, 

particularly as the number of transactions increases. The 

main challenge lies in maintaining consistency and 

managing the complexity inherent in distributed 

transaction management. 

B. READ/WRITE MODEL 

The Read/Write Model treats database objects as pages in 

memory and defines transactions based on sequences of 

read and write operations [11]. This model simplifies the 

design of transactions by focusing on basic read and write 

actions, making it ideal for simpler transaction 

environments where complex computations are not 

needed. The primary goal is to provide a straightforward 

approach to managing database transactions by focusing 

on the core data access functions. It offers the advantage 

of being easy to implement, making it suitable for systems 

with basic transactional needs. However, it has limitations 

as it overlooks computations that may occur in main 

memory, making it unsuitable for applications requiring 

more advanced processing during transactions. The 

challenge in this model is its inability to handle complex 

transactional logic, especially for applications that need 

more than just basic data manipulations. 

C. RELATIONAL UPDATES MODEL 

The Relational Updates Model focuses on atomic 

operations such as insertions, deletions, and updates 

within a relational database [12]. It was designed to ensure 

the atomicity and consistency of fundamental relational 

operations, providing a robust foundation for database 

transactions that require basic relational data 

manipulation. The model's goal is to manage database 

operations in such a way that ensures all transactions are 

executed atomically, maintaining integrity in the database. 

Its primary advantage is that it guarantees atomic 

execution, which is essential for ensuring data consistency 

during simple database operations. However, it is limited 

in scope, as it primarily caters to relational databases and 

doesn’t account for more complex transactional 

requirements. The main challenge is maintaining 

consistency in concurrent operations, especially when 

multiple transactions access the same data simultaneously. 

D. ONLINE/BATCH TRANSACTIONS MODEL 

The Online/Batch Transactions Model categorizes 

transactions into short-lived (online) and long-lived 

(batch) transactions, each with different processing needs 

[13]. Online transactions are designed for quick responses, 

while batch transactions handle larger volumes of data 

over longer periods. The goal of this model is to optimize 

resource usage by tailoring the processing strategy based 

on the transaction type. Online transactions offer quick 

response times, making them ideal for real-time 

applications, while batch transactions allow for more 

efficient processing of large data sets. However, online 

transactions are often limited to smaller portions of the 

database, which may reduce their efficiency when dealing 

with large datasets. Conversely, batch transactions can 

require more system resources, especially when handling 

large amounts of data. The challenge lies in balancing the 

system’s resource usage to optimize both response times 

for online transactions and the efficiency of batch 

processing. 

E.  GENERAL/TWO-STEP/RESTRICTED TWO-

STEP MODEL 

The General/Two-Step/Restricted Two-Step Model 

defines transactions through a sequential order of read and 

write actions, ensuring strict consistency in systems that 

require specific operational constraints [14] [15] [16]. 

This model is particularly useful when transactions need 

to follow a strict sequence of actions to guarantee data 

integrity. Its primary goal is to maintain consistency by 

enforcing a structured order of operations during 

transaction execution. The advantage of this model is its 

customizability, allowing it to cater to applications with 

specific transactional order requirements. However, it 

introduces complexity due to the need for strict 

sequencing, making it difficult to implement in systems 

that require flexibility in the order of operations. 

Additionally, if not carefully managed, the model is prone 

to deadlocks, especially when multiple transactions 

require different sequences of operations. The main 

challenge is ensuring that the transaction flows do not 

result in deadlocks while maintaining the strict 

consistency requirements. 

F.  DISTRIBUTED DBMS MODEL 

The Distributed DBMS Model is designed to manage 

distributed databases across multiple locations, ensuring 

consistency and fault tolerance in environments where 

data is spread across different sites [17]. The primary goal 

of this model is to maintain data consistency and ensure 
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the fault tolerance of the system despite the geographical 

distribution of the data. The distributed nature of the 

model allows for scalability, enabling systems to handle 

larger volumes of data and transactions. However, the 

implementation of distributed DBMS models is complex 

due to the need to coordinate transactions across multiple 

locations, often leading to higher system overhead. The 

main challenge is ensuring low latency, high consistency, 

and fault tolerance, particularly in large-scale distributed 

systems where maintaining consistency and 

synchronization between multiple nodes becomes 

increasingly difficult. 

G. FLAT TRANSACTION MODEL / ADVANCED 

TRANSACTION MODEL 

The Flat Transaction Model and Advanced Transaction 

Model cater to different levels of transactional complexity. 

The Flat Transaction Model handles single-level 

operations, making it simple and efficient for basic 

transaction needs [18]. In contrast, the Advanced 

Transaction Model supports hierarchical transactions, 

which are more suitable for complex systems that require 

multi-level or nested operations [19]. The goal of the Flat 

Transaction Model is to simplify transaction design, while 

the Advanced Transaction Model aims to efficiently 

manage more complex transaction flows through 

hierarchical structures. The advantage of the Flat Model is 

its simplicity, making it easy to design and implement for 

basic tasks. On the other hand, the Advanced Model 

handles complex transactions better, offering improved 

performance for sophisticated applications. However, the 

Flat Model is limited to simple operations, making it 

unsuitable for more intricate applications, while the 

Advanced Model can introduce higher performance costs 

and greater complexity, which can impact system 

efficiency. The main challenge lies in ensuring integrity 

checks and managing complexity in the Advanced 

Transaction Model, especially when dealing with nested 

or hierarchical transaction structures. 

In conclusion, Transaction models form the foundation of 

database systems, ensuring data integrity, reliability, and 

efficient management across a wide range of applications. 

From simple flat transactions to complex hierarchical and 

distributed models, each framework addresses unique 

operational challenges. As database systems evolve to 

meet the demands of real-time, distributed, and large-scale 

environments, choosing the right transaction model is 

crucial to achieving a balance between performance, fault 

tolerance, and data integrity. By leveraging tailored 

models, modern systems can efficiently handle 

increasingly complex scenarios while maintaining robust 

functionality. 

III. ADVANCED TRANSACTION MODEL in 

DATABASE SYSTEM 

This section examines the evolution of advanced 

transaction models, outlining their principles, strengths, 

limitations, and applications. The discussion advances to 

specific models, highlighting how they address challenges 

in modern databases by introducing flexibility, scalability, 

and fault tolerance for complex scenarios. 

The evolution of database systems has necessitated the 

development of advanced transaction models to address 

the growing complexity and requirements of modern 

applications. Traditional flat transaction models, although 

foundational, are limited in their ability to handle intricate 

scenarios such as long-running processes, collaborative 

workflows, and distributed systems. As the demand for 

high-performance, scalable, and resilient database 

systems has grown, the need for innovative transaction 

models has become increasingly apparent. Advanced 

transaction models are designed to overcome these 

challenges by introducing flexibility and robustness into 

transaction management. These models are particularly 

critical in environments where maintaining strict 

adherence to ACID (Atomicity, Consistency, Isolation, 

Durability) properties is impractical or counterproductive. 

By providing mechanisms for concurrency, fault 

tolerance, and dynamic restructuring, advanced models 

enable efficient management of complex transactions, 

often spanning multiple systems or domains. Applications 

such as Computer-Aided Design (CAD), real-time 

databases, and workflow systems exemplify the necessity 

of these models. Advanced transaction models introduce 

two critical innovations: enhanced operational 

abstractions and relaxation of the strict ACID (Atomicity, 

Consistency, Isolation, and Durability) properties. 

Operational abstractions allow for features like 

parallelism within transactions, nested transaction 

hierarchies, and hybrid operations that combine multiple 

workflows under a unified framework. These structural 

enhancements improve execution control and enable 

collaborative workflows. On the other hand, relaxing strict 

ACID properties—particularly atomicity and isolation—

caters to applications requiring cooperative interactions or 

partial commits for long-running processes. For example, 

traditional isolation protocols, such as locking-based 

mechanisms, can hinder shared workflows and increase 

the likelihood of deadlocks. Gray’s 1981 findings 

highlighted that the frequency of deadlocks rises 

exponentially with transaction size, further demonstrating 

the limitations of traditional protocols in managing large-

scale operations. To address these challenges, advanced 

models such as Nested Transaction Model, Sagas, 

Multilevel Transaction Model, Dynamic Restructuring, 

Workflow Models and Flex Transaction Model have been 

developed. These advanced models ensure resilience, 

efficiency, and flexibility, meeting the demands of modern 

applications while balancing the need for consistency and 
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operational fluidity. By supporting long-duration, 

complex transactions, they provide critical solutions for 

today’s sophisticated and collaborative database 

applications. 

The following sections explore a range of advanced 

transaction models, each designed to address specific 

challenges and application needs. These discussions focus 

on their distinctive features, advantages, and practical uses 

in modern systems. 

The Nested Transaction Model, developed by Moss, is an 

extension of the flat transaction model, where transactions 

are organized hierarchically, allowing subtransactions to 

commit independently [20]. This model improves fault 

tolerance by allowing subtransactions to fail without 

impacting the parent transaction, and it enhances 

concurrency by enabling the parallel processing of 

subtransactions. Despite its advantages, the model 

introduces complexity in managing subtransaction states 

and dependencies, as well as potential issues with 

maintaining isolation and consistency between 

subtransactions. It is particularly suited for complex 

systems requiring high fault tolerance and recovery 

capabilities, such as enterprise software and real-time 

systems. The Sagas model, proposed by Garcia-Molina 

and Salem in 1987, is a variant of nested transactions 

where each subtransaction is associated with a 

compensating transaction [21]. If the saga is aborted, 

compensating transactions are executed to undo the 

effects of the completed subtransactions. This model is 

useful in distributed systems with long-running 

transactions, where it is impractical to lock resources until 

the entire transaction completes. The primary advantages 

of sagas are their flexibility in allowing subtransactions to 

affect the system before the entire saga completes and 

their applicability in distributed systems. However, they 

relax isolation between subtransactions, which may 

violate traditional ACID properties, and introduce 

complexity in managing compensating transactions. 

Sagas are widely used in distributed systems involving 

long-running business processes or workflow systems 

where partial execution is acceptable. The Multilevel 

Transaction Model builds upon open nested transactions 

by organizing subtransactions in a balanced tree structure 

[22] [23]. This approach aims to improve the efficiency of 

transaction execution and management by grouping 

related operations and processing them at different 

abstraction levels. The model's advantages include better 

resource management and enhanced performance due to 

the balanced tree structure, which optimizes execution 

efficiency. However, the complexity of organizing 

transactions and managing different levels of abstraction 

adds overhead to the system. This model is particularly 

suited for large-scale enterprise applications and systems 

that require efficient processing of nested transactions at 

multiple levels of abstraction. The Dynamic Restructuring 

(Split and Join Transaction Model) introduces flexibility 

by enabling transactions to be split into multiple smaller 

transactions or joined together during execution [24]. This 

model is designed to optimize resource management and 

parallelism, especially in systems where transactions can 

benefit from being processed concurrently. The main 

advantage of this approach is the ability to adapt to 

changing system conditions and improve parallelism, 

reducing execution time. However, it increases 

complexity in managing split and join operations and 

introduces potential overhead in dynamically 

restructuring transactions. This model is applicable in 

real-time systems with fluctuating load conditions and 

high-performance systems requiring adaptive transaction 

management. The Workflow Models are designed for 

complex, long-running transactions where tasks are 

executed sequentially or in parallel. These models 

integrate nested transactions and can relax ACID 

properties to allow for more flexible execution [25]. They 

are needed in applications with complex task 

dependencies and dynamic task sequences, such as 

business process management. The key advantages of 

workflow models are flexibility in task execution and 

sequencing, making them suitable for real-world 

applications with interdependent tasks. However, relaxing 

ACID properties can lead to potential inconsistencies, and 

managing dynamic workflows adds complexity. 

Workflow models are typically used in business process 

management systems and complex distributed systems, 

such as e-commerce and supply chain management. 

Finally, the Flex Transaction Model generalizes ACID 

properties in multidatabase systems by relaxing atomicity 

and isolation to provide greater flexibility in distributed 

and heterogeneous environments [26]. It addresses 

challenges in systems where full ACID compliance is not 

feasible or necessary, such as when transaction 

performance and scalability are prioritized over strict 

consistency. The advantages of this model include 

improved performance, flexibility, and concurrency, as 

well as better scalability in distributed systems. However, 

relaxing these properties can reduce consistency and 

introduce complexity in managing the system. The Flex 

model is most applicable in multidatabase systems and 

distributed environments, such as large-scale e-commerce 

platforms or cloud-based applications where high 

availability is critical.  

In conclusion, advanced transaction models play a pivotal 

role in addressing the limitations of traditional flat 

transaction systems by introducing innovative 

mechanisms tailored to the needs of modern applications. 

Each model offers unique advantages, such as improved 

concurrency, fault tolerance, and flexibility, while catering 

to specific use cases ranging from nested hierarchies to 
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distributed workflows and long-running transactions. 

However, these benefits often come with trade-offs, such 

as increased complexity and the relaxation of strict ACID 

properties. By carefully balancing these factors, advanced 

transaction models provide robust solutions for managing 

complex, high-performance, and distributed database 

systems, making them indispensable for contemporary 

and future applications in diverse domains. 

IV.ISSUES AND CHALLENGES in 

TRANSACTION MODEL 

This section discusses the key issues and challenges faced 

by transaction models in adapting to diverse application 

requirements. These include scalability limitations, 

concurrency management, and deadlocks, as well as 

challenges in fault tolerance, resource management, and 

execution control. 

Transaction models play a pivotal role in maintaining 

consistency, reliability, and performance in database 

systems. However, the growing complexity of modern 

applications, coupled with advancements in distributed, 

real-time, and large-scale systems, has exposed various 

limitations and challenges in these models. Traditional 

transaction models, while robust in ensuring ACID 

properties, often fall short when faced with the demands 

of contemporary applications requiring scalability, fault 

tolerance, and flexibility. Advanced transaction models, 

though addressing some of these shortcomings, introduce 

new layers of complexity and performance trade-offs. The 

Table I below provides a structured overview of these 

challenges, along with potential resolutions that leverage 

modern techniques and technologies to address them 

effectively. 

 

 

 

 

 

 

 

 

 

TABLE I TRANSACTION MODEL ISSUES AND REMEDIES 

S. No. 
Issues in Transaction 

Models 
Description Issues Resolution 

1.  

Scalability Limitations 

Traditional models 

struggle with handling 

large-scale or distributed 

systems, leading to 

bottlenecks in 

processing. 

Implement distributed 

transaction models and 

load-balancing 

mechanisms to enhance 

scalability. 

2.  

Concurrency 

Management 

Ensuring isolation in 

concurrent transactions 

increases resource 

contention and 

deadlocks, especially in 

nested models. 

Use advanced 

concurrency control 

protocols like Optimistic 

Concurrency Control 

(OCC) and Multi-Version 

Concurrency Control 

(MVCC). 

3.  

Deadlocks and 

Performance Overheads 

Locking mechanisms 

often lead to deadlocks; 

advanced models may 

reduce deadlocks but 

increase dependency 

management. 

Use deadlock detection 

techniques (e.g., waits-

for graph cycles) and 

lightweight dependency 

management protocols. 

4.  

Relaxation of ACID 

Properties 

Relaxing atomicity and 

isolation introduce 

inconsistencies and 

partial failures in 

transactions. 

Use compensating 

transactions (e.g., Sagas) 

and hybrid consistency 

models for balancing 

flexibility and integrity. 

5.  Fault Tolerance and 

Recovery 

Failed subtransactions 

can disrupt overall 

Employ nested 

transaction models with 
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system integrity, 

requiring complex 

rollback mechanisms. 

independent 

commit/abort handling 

and robust recovery 

protocols. 

6.  

Resource Management 

Models like Sagas and 

dynamic restructuring 

demand efficient 

resource allocation to 

prevent overloads. 

Use resource scheduling 

algorithms and adaptive 

resource allocation 

strategies for dynamic 

environments. 

7.  

Heterogeneity in 

Distributed Systems 

Coordinating 

transactions across 

diverse data sources and 

protocols increases 

complexity. 

Implement middleware 

solutions and consensus 

protocols like Paxos or 

Raft for transaction 

coordination. 

8.  

Execution Control and 

Task Sequencing 

Dynamic task 

dependencies in 

workflows complicate 

execution control and 

scheduling. 

Use workflow 

management systems 

with robust scheduling 

and dependency tracking 

mechanisms. 

9.  

Real-Time Constraints 

Maintaining timeliness 

while ensuring 

consistency and isolation 

is challenging in real-

time systems. 

Use real-time transaction 

models with deadline-

aware scheduling and 

priority mechanisms. 

10.  

Security and Privacy 

Relaxed isolation raises 

concerns about secure 

and private data handling 

in shared environments. 

Adopt encryption 

protocols, secure access 

control, and isolation-

aware privacy policies. 

11.  

System Complexity and 

Overheads 

Advanced models 

introduce significant 

management complexity 

in states, compensations, 

and dynamic operations. 

Design streamlined 

management frameworks 

with modular approaches 

to handle complexity in 

advanced models. 

 The Table I highlights the diverse challenges encountered 

in transaction models and offers potential solutions to 

address them effectively. It underscores the evolving 

demands on transaction systems, particularly in modern 

environments like distributed databases, real-time 

systems, and heterogeneous platforms. Scalability, 

concurrency, and fault tolerance remain pressing 

concerns, necessitating innovative approaches like 

distributed transaction protocols, advanced concurrency 

controls, and robust recovery mechanisms. Additionally, 

the relaxation of ACID properties to achieve greater 

flexibility introduces trade-offs, demanding hybrid 

consistency models and compensating mechanisms. Real-

time constraints, execution control, and task sequencing 

challenges emphasize the need for deadline-aware models 

and dynamic workflow management systems to meet 

stringent performance requirements. Furthermore, issues 

related to security and privacy in shared environments call 

for stronger encryption techniques and privacy-aware 

transaction protocols. While the proposed resolutions aim 

to mitigate these challenges, it is evident that transaction 

models must continuously adapt to accommodate 

emerging technologies and application domains. Research 

into scalable, adaptive, and energy-efficient transaction 

models, along with integration into modern frameworks 

such as IoT, blockchain, and multi-cloud environments, 

will be pivotal in addressing the future needs of 

transaction systems. By focusing on these challenges and 

leveraging advancements in technology, transaction 

models can evolve to provide robust, efficient, and secure 

solutions for complex database environments. 

V.FUTURE RESEARCH DIRECTIONS 

This section outlines future research directions for 

enhancing transaction models to meet the evolving 

demands of modern computing systems. 

The evolution of transaction models has been driven by 

the need to address the limitations of traditional 

approaches and to meet the requirements of increasingly 

complex database environments. As computing systems 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5260–5269  |  5267 

continue to expand into areas like distributed systems, 

real-time applications, and heterogeneous platforms, 

transaction models must adapt to these emerging 

challenges. The rapid advancement of technologies such 

as cloud computing, IoT, and blockchain introduces new 

demands on transaction systems, including the need for 

scalability, fault tolerance, real-time responsiveness, and 

secure processing. Furthermore, the relaxation of 

traditional ACID properties to accommodate flexibility in 

collaborative applications adds another layer of 

complexity to transaction management. Addressing these 

issues requires innovative solutions and a forward-looking 

approach to transaction model design. Future research in 

this domain must explore cutting-edge techniques and 

methodologies to ensure that transaction models remain 

robust, efficient, and adaptable to diverse application 

scenarios. Below is an overview of key future research 

directions that will shape the development of transaction 

models.    

Future research in transaction models is poised to address 

the growing complexity and demands of modern 

computing environments. Scalable transaction models are 

essential for managing large-scale, distributed, and 

heterogeneous systems, such as cloud and edge 

computing, with a focus on lightweight protocols that 

enhance scalability without sacrificing consistency. 

Enhanced concurrency control mechanisms are another 

critical area, involving novel techniques to minimize 

deadlocks and boost throughput, potentially leveraging 

machine learning for adaptive lock management and 

dynamic scheduling. Fault-tolerant systems will benefit 

from robust recovery mechanisms for nested and 

distributed transactions, along with proactive fault 

detection and mitigation strategies for real-time 

applications. The integration of transaction models with 

emerging technologies such as blockchain, IoT, and multi-

cloud systems will require adaptations to meet unique 

consistency and performance requirements, with hybrid 

models combining traditional and blockchain-based 

management solutions. Relaxation of ACID properties to 

achieve optimized trade-offs between strict compliance 

and flexibility is crucial for collaborative and real-time 

systems, complemented by eventual consistency models 

with bounded convergence guarantees. Energy-efficient 

transaction protocols will be vital for sustainable 

computing, especially in mobile and edge devices. Real-

time and predictive transaction management can optimize 

resource allocation and deadline adherence by 

anticipating transaction patterns, particularly in time-

critical domains like healthcare and finance. Security and 

privacy enhancements will involve developing secure 

protocols to protect data integrity and address 

cryptographic challenges in lightweight, real-time 

applications. Additionally, flexible transaction models for 

dynamic workflows can enable seamless task sequencing 

and execution in evolving systems. Hybrid transaction 

models, combining the strengths of nested, saga, and 

multilevel approaches, hold promise for complex and 

collaborative environments. Establishing standards for 

transaction protocols will enhance interoperability across 

diverse platforms, while AI-driven optimization can 

enable real-time decision-making for execution, conflict 

resolution, and anomaly detection.  

In conclusion, the pursuit of these future research 

directions represents a transformative opportunity to 

redefine transaction model capabilities for modern 

computing. As technology evolves, the demand for 

scalable, secure, and efficient transaction processing will 

continue to rise. Researchers and practitioners must 

collaborate to develop innovative solutions that bridge the 

gap between theoretical advancements and practical 

implementation. Moreover, the integration of emerging 

technologies with transaction models highlights the 

importance of interdisciplinary research. Collaboration 

between fields such as artificial intelligence, distributed 

computing, cybersecurity, and real-time systems will be 

pivotal in achieving breakthroughs. These advancements 

will not only address the limitations of current transaction 

models but also create new possibilities for application in 

areas like smart cities, autonomous systems, financial 

technologies, and healthcare informatics. Ultimately, a 

holistic approach that prioritizes adaptability, resource 

efficiency, and interoperability will drive the evolution of 

transaction models. By addressing challenges proactively 

and embracing cutting-edge techniques, the next 

generation of transaction models will play a central role in 

shaping the future of computing systems, ensuring 

reliability and performance in increasingly dynamic and 

complex environments. 

VI.CONCLUSION 

Transaction models have been instrumental in shaping the 

evolution of database systems, addressing challenges 

related to reliability, consistency, and scalability in 

increasingly complex applications. Classical transaction 

models laid the foundation by ensuring ACID properties, 

but their limitations in handling modern requirements 

necessitated the development of advanced models. 

Advanced transaction models, including nested 

transactions, sagas, and workflow models, introduced 

greater flexibility, fault tolerance, and scalability to meet 

the demands of distributed, real-time, and long-duration 

applications. These models addressed the trade-offs 

between consistency and performance while enabling 

collaborative and dynamic workflows, thus enhancing 

overall system efficiency. Key challenges in transaction 

management persist, such as the complexity of distributed 

and nested transactions, the trade-offs involved in relaxing 

ACID properties, and the constraints imposed by real-time 

and large-scale applications. Effective concurrency 
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control, fault tolerance mechanisms, and adaptive 

transaction protocols are critical to overcoming these 

challenges and ensuring robust transaction management. 

Future research directions point to promising 

advancements, including the integration of machine 

learning for transaction optimization, blockchain 

technologies for secure and transparent transactions, and 

innovative protocols tailored for distributed and real-time 

environments. These efforts aim to bridge the gap between 

evolving application needs and the limitations of existing 

models. This study provides a comprehensive 

understanding of transaction models, their evolution, and 

the challenges they address. By analysing their trade-offs 

and identifying emerging trends, this work underscores 

the importance of balancing consistency, scalability, and 

fault tolerance. The continuous evolution of transaction 

models is vital for meeting the demands of modern 

applications and ensuring the adaptability and resilience 

of database systems in the future. 
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