

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5302

Software Transactional Memory: A Comprehensive Review of Design,

Challenges, Applications, and Future Prospects

Meenu

Submitted:13/03/2024 Revised: 28/04/2024 Accepted: 05/05/2024

Abstract: This paper provides a comprehensive review of Software Transactional Memory (STM) systems, emphasizing their evolution,

design, challenges, and applications. STM has emerged as a key solution for managing concurrency in modern software, offering a flexible

alternative to traditional synchronization methods. The study traces the evolution of Transactional Memory models, including Hardware

(HTM), Software (STM), and Hybrid (HyTM), comparing their features, benefits, and limitations. It explores crucial design elements

affecting STM’s performance, such as contention management, concurrency control, and memory overhead, while addressing the

complexities of nested transactions and ensuring global consistency. The paper highlights STM's versatility, showcasing applications in

diverse domains that benefit from its ability to enable scalable and high-performance parallel programming. It also examines challenges

such as scalability, optimization, and integration with existing systems, presenting opportunities for future research. Proposed directions

include improving STM’s efficiency, scalability, and adoption in real-world scenarios. By summarizing the advancements and limitations

of STM, this study underscores its role as a powerful tool for enhancing concurrency control in parallel computing. It serves as a valuable

resource for researchers and practitioners aiming to optimize software systems through improved concurrency mechanisms.

Index Terms: Concurrency Control, Nested Transactions, Parallel Programming, Software Transactional Memory (STM), Transactional

Memory Models.

I.INTRODUCTION

This section highlights the challenges of concurrency in

multicore systems and introduces Transactional Memory

(TM) as a solution [1]. It explains the core principles of

TM—atomicity and isolation—and discusses three TM

models: HTM, STM, and HyTM. The section also outlines

the paper's structure.

The advent of multicore and multiprocessor systems has

revolutionized parallel programming, enabling significant

performance gains in modern computing [2]. However,

these advancements bring inherent challenges,

particularly in managing concurrent access to shared

memory. Efficiently coordinating multiple threads

accessing shared resources is vital to harness the full

potential of multicore systems. Traditional

synchronization mechanisms, such as locks, semaphores,

and monitors, are widely used to handle concurrency. Yet,

they suffer from well-documented drawbacks, including

deadlocks, convoying, priority inversion, and complexity

in fault tolerance [3] [4]. These issues often result in

reduced system efficiency, making it difficult for

developers to achieve optimal performance in parallel

computing environments. To address these challenges,

Transactional Memory (TM) has emerged as a promising

paradigm for simplifying concurrent programming [5].

TM systems allow multiple threads to perform operations

on shared memory through transactions—a sequence of

operations executed atomically and in isolation. This

abstraction eliminates the need for manual lock

management, reducing complexity and minimizing

common synchronization problems. TM provides an

intuitive and robust approach to managing concurrency,

making it easier for developers to design and implement

high-performance parallel applications.

Transactional Memory operates by ensuring two core

properties for transactions:

A. ATOMICITY: Ensures that a transaction's

operations are completed entirely or not at all, preventing

partial updates to shared memory.

B. ISOLATION: Guarantees that intermediate states of a

transaction are not visible to other concurrent transactions,

preserving consistency.

These properties enhance reliability and predictability in

parallel applications, especially in scenarios where

multiple threads interact frequently with shared resources.

Over the years, researchers have developed various

models of TM to address specific needs and limitations in

different environments. These models include:

A. HARDWARE TRANSACTIONAL MEMORY

(HTM): Relies on specialized hardware to manage

transactions [6].

Department of CSE, M. M. M. U. T., Gorakhpur, India

*myself_meenu@yahoo.co.in

mailto:*myself_meenu@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5303

B. SOFTWARE TRANSACTIONAL MEMORY

(STM): Implements TM purely through software

mechanisms [7].

C. HYBRID TRANSACTIONAL MEMORY

(HYTM): Combines hardware and software approaches to

leverage their respective strengths [8].

 Each model has unique advantages and limitations,

making them suitable for different types of applications

and system configurations.

This paper focuses primarily on Software Transactional

Memory (STM), exploring its evolution, design,

challenges, and applications. It reviews the development

of TM models, with particular emphasis on STM’s role in

optimizing parallel programming. The paper aims to guide

researchers and developers toward more efficient and

scalable STM implementations.

The structure of the paper is organized as follows: Section

2 explores the evolution of Transactional Memory (TM),

focusing on the three primary models—Hardware

Transactional Memory (HTM), Software Transactional

Memory (STM), and Hybrid Transactional Memory

(HyTM)—and provides a comparative analysis of their

features, advantages, and challenges. Section 3 delves into

the critical design parameters that influence the

performance and behaviour of STM systems. Section 4

examines the challenges associated with implementing

nested transactions in TM systems and discusses potential

solutions. Section 5 highlights various applications of

STM, showcasing its relevance across different domains.

Section 6 outlines future directions for STM, emphasizing

innovative approaches to address current limitations and

improve its scalability and efficiency. Finally, Section 7

concludes the paper by summarizing the key insights and

contributions.

II.EVOLUTION of TRANSACTIONAL MEMORY

This section covers the evolution of Transactional

Memory (TM), focusing on three models: HTM, STM,

and HyTM. It compares their features, advantages, and

challenges, summarized in Table I, helping to understand

their practical applications and trade-offs.

Transactional Memory (TM) has evolved into three

distinct models, each with unique structures, advantages,

limitations, and challenges. These models—Hardware

Transactional Memory (HTM), Software Transactional

Memory (STM), and Hybrid Transactional Memory

(HyTM)—address different application needs and system

constraints. Their comparative analysis is outlined in

Table I, offering a comprehensive view of their core

characteristics and trade-offs.

TABLE I

COMPARATIVE EVALUATION OF VARIOUS TRANSACTIONAL MEMORY MODELS

In conclusion, Transactional Memory (TM) models

include Hardware Transactional Memory (HTM),

Software Transactional Memory (STM), and Hybrid

Transactional Memory (HyTM), each with distinct

features and challenges. HTM utilizes hardware

components for transaction management, offering high

efficiency and low overhead but faces scalability

limitations and implementation complexities due to

hardware dependency. STM operates at the software level,

providing flexibility and ease of programming, yet incurs

higher overhead from metadata maintenance and access

S.No. Transaction

Model

Transaction

Structure

Merits Demerits Challenges

1. Hardware

Transactional

Memory (HTM)

Hardware-based High efficiency

with minimal

overhead

Dependent on

hardware,

limited

scalability

Complexity in

implementation

2. Software

Transactional

Memory (STM)

Software-based Simple to program,

offers flexibility

Higher overhead

costs, conflicts

in access,

metadata

management

Durability is unnecessary

but adds overhead

3. Hybrid

Transactional

Memory (HyTM)

Combination of

hardware and

software

Combines

advantages of both

HTM and STM

Increased

complexity in

managing the

hybrid system

Need for dynamic

adaptation between HTM

and STM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5304

conflicts, which can impact performance despite not

requiring durability. HyTM combines hardware and

software advantages, enhancing adaptability and

performance, but the integration introduces significant

complexity, particularly in dynamically adapting between

HTM and STM systems. The comparative analysis in

Table I provides a clear and concise overview of the TM

models, aiding in understanding their practical

applications, strengths, and areas where further

improvements are necessary. Each model's adoption

depends on the specific needs of the application, balancing

trade-offs between performance, flexibility, and

implementation challenges.

In conclusion, the evolution of Transactional Memory

(TM) has resulted in the development of three distinct

models—HTM, STM, and HyTM—each tailored to

different system requirements and application needs.

While HTM offers high efficiency and low overhead

through hardware-based transaction management, it is

limited by scalability and complexity. STM, on the other

hand, provides flexibility and ease of programming but

incurs performance overhead due to metadata

maintenance and access conflicts. HyTM combines the

strengths of both HTM and STM, enhancing adaptability

and performance but adding complexity in managing the

hybrid system. The comparative analysis of these models

highlights their unique trade-offs, and the choice of model

depends on the specific requirements of the application,

balancing performance, scalability, and implementation

complexity. Further advancements in TM will likely focus

on optimizing these trade-offs to achieve more efficient

and scalable concurrency solutions.

III. ARCHITECTURAL ASPECTS of SOFTWARE

TRANSACTIONAL MEMORY

This section examines the key design aspects that

significantly affect the performance and behaviour of

Software Transactional Memory (STM) systems. It

emphasizes the importance of understanding these

parameters to fine-tune STM implementations for specific

application needs, ultimately enhancing concurrency

management, efficiency, and reliability.

STM systems are shaped by various interconnected

factors that influence transaction handling, conflict

detection, memory management, and contention

resolution. A thorough understanding of these design

parameters is crucial for developers seeking to optimize

STM systems for different application scenarios, such as

real-time systems, high-performance computing, or

distributed environment [6] [9] [10]. s. These parameters

directly impact how STM systems manage transactions,

detect conflicts, handle memory, and resolve contention.

The way these factors interact contributes to the overall

efficiency and stability of STM systems, particularly in

high-concurrency environments. By carefully selecting

and adjusting these design parameters, developers can

tailor STM systems to meet the specific needs of diverse

applications, ensuring optimal performance and

reliability. The following Table II summarizes these key

design parameters and their associated examples and

considerations.

TABLE II

STM DESIGN ASPECTS

S.No. Category Description Examples/Notes

I. Transaction

Granularity

The basic unit over

which STM detects

conflicts.

Word-based STM: Detects conflicts at the word level

(high accuracy but high cost).

Object-based STM: Uses object-level granularity

(easier to implement, lower cost).

e.g. STM Haskell uses object based.

II. Update Policy Defines how a

transaction updates an

object.

 Direct Update: Direct modification of the object.

Deferred Update: Updates made to a private copy,

applied at commit time.

STM Haskell uses deferred update.

III. Read Policy [11]. Defines how

transactions read shared

resources.

 Invisible Reads: No conflict detection until commit.

Visible Reads: Locks and reader lists used.

STM Haskell uses visible reads.

IV. Acquire Policy

[11].

Defines how

transactions acquire

shared resources.

 Eager Acquire: Transaction acquires and modifies

resources immediately.

Lazy Acquire: Modifies memory at commit time

(better for buffered writes).

V. Write Policy Defines how

transactions write

changes to memory.

Write-through or Undo: Direct writes to shared

memory, but more costly on abort.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5305

Buffered Write: Writes occur only on successful

commit.

VI. Conflict Detection Identifies conflicts when

multiple transactions try

to operate on the same

object.

Early Conflict Detection: Detects conflicts before

commit.

Late Conflict Detection: Detects conflicts at commit

time.

e.g. STM Haskell uses lazy conflict detection.

VII. Concurrency

Control [12]

Manages simultaneous

transactions accessing

shared resources.

Pessimistic Concurrency Control: All events (conflict

occurrence, detection, and resolution) happen during

execution. A transaction claims exclusive access to a

resource and prevents others from accessing it.

Two-Phase Locking (2PL): Transactions acquire a lock

before accessing resources.

Optimistic Concurrency Control: Allows concurrent

access to resources. Conflicts are detected and resolved

only before a transaction commits.

Blocking Synchronization (Lock-based): Transactions

are blocked until they acquire a lock on a resource,

ensuring exclusive access. Does not guarantee forward

progress for all threads. Lock-based STM:

Transactions are blocked until a lock is acquired for

accessing shared resources.

Non-blocking Synchronization: Guarantees that

threads can make progress without blocking each other.

Includes wait-free, lock-free, and obstruction-free

techniques.

Wait-free STM: Guarantees that all threads make

progress without waiting.

Lock-free STM: At least one thread progresses even if

others are stalled.

Obstruction-free STM: Progress is made when there is

no contention between threads.

VIII. Memory

Management [11]

Manages allocation and

deallocation of memory

used in transactions.

Proper handling of memory allocation and deallocation

to prevent memory leaks and ensure recovery on

transaction failure.

IX. Contention

Management

Resolves conflicts when

transactions compete for

resources.

e.g. Timid: Always aborts a transaction on conflict.

[13]

Polka: Backs off based on priority difference. [14]

Greedy: Guarantees commits within bounded time.

[15]

Serializer: Like greedy but with priority adjustment.

[16] [11]

X. Isolation Ensures one transaction

does not interfere with

another.

e.g. STM Haskell uses weak isolation, allowing some

transactions to access shared resources outside the

atomic block.

XI. Nesting Model [9]

[17]

Supports composability

and nested transactions.

Flattening: Transactions are flattened into the

outermost level, and sub-transactions are managed by

the outer transaction.

e.g.

DSTM (Dynamic STM): Synchronizes dynamic data

structures like lists and trees without locks [18] .

 RSTM: Provides flattened transactions to support

nesting [19].

Linear Nesting: Hierarchical structure with one nested

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5306

transaction active at a time. Both closed) [4], and open

nested transactions [20] [21] are supported.

Closed Nested Transactions (CNTs):

e.g.

Haskell STM: Uses type systems and supports

retry and recovery mechanisms [22] [23] [24]

[25] [26] [27] [28].

McRT-STM: Implemented in C++ and Java

with closed nesting [29] .

NOrec: Minimal overhead with closed nested

transactions [30].

Nested LogTM: Supports both open and closed

nested transactions [31] [32] .

Open Nested Transactions (ONTs):

e.g.

ATOMOS: Java extension supporting open nested

transactions with atomicity [33].

Parallel Nesting: Allows for multiple nested

transactions to run in parallel, enabling more complex

and independent tasks.

e.g.

NeSTM: Based on McRT-STM, supports parallel

nesting [34].

 HParSTM: Hierarchical STM with opacity and

progressiveness [35].

NePalTM: Combines parallelism with atomic blocks

using OpenMP and Intel STM [36].

CWSTM: Based on Cilk for multithreaded parallel

programming [37] .

PNSTM: Based on CWSTM with a simpler work-

stealing approach [38] .

SSTM: Based on .NET CLR, uses xfork API for

managing sibling transactions [39].

In conclusion, the design parameters outlined in the Table

II are crucial for shaping the behaviour and performance

of Software Transactional Memory (STM) systems. Each

parameter plays a vital role in determining how

transactions are managed, conflicts are detected, and

resources are allocated. The interplay between these

factors must be carefully considered when optimizing

STM systems for specific applications, ensuring that the

system supports high concurrency, minimizes contention,

and operates efficiently across various environments. By

understanding the trade-offs and selecting the appropriate

parameters, developers can achieve the desired balance

between performance, reliability, and resource utilization.

The careful consideration of STM's design choices

enables the development of robust and scalable systems,

particularly in scenarios that require complex transaction

handling and high-performance computing. Thus, the

successful implementation and optimization of STM

systems depend on the nuanced understanding and

application of these key design parameters.

IV.CHALLENGES AND ISSUES OF

TRANSACTIONAL MEMORY SYSTEM

This section addresses the challenges encountered when

implementing nested transactions in Transactional

Memory (TM) systems, emphasizing key difficulties and

their respective solutions [40]. The solutions are detailed

in Table III to enhance system performance and ensure

effective operation in complex transactional

environments.

The Nested Transaction Model brings about specific

challenges that can significantly hinder performance if not

properly managed [41]. Therefore, implementing robust

solutions is crucial for optimizing system efficiency and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5307

ensuring stability. Table III below outlines these

challenges along with the proposed solutions, based on

existing research [10] [34].aimed at improving the

execution of nested transactions and minimizing the risk

of system failures.

TABLE III

TRANSACTIONAL MEMORY (TM) CHALLENGES AND RESOLUTIONS

S.No Issues in Transactional

Memory (TM) systems

Description Issues Resolution

1. Transformation of

Transactional Code

Non-transactional code may

run as a transaction in STM.

Develop methods to

separate or dynamically

classify transactional and

non-transactional code.

2. Conflict Detection Scheme Tracking dependencies

hierarchically in nested

parallel transactions is

challenging.

Create a scheme that tracks

dependencies hierarchically

and manages conflicts

without aborting the parent

transaction.

3. Memory Overhead Minimizing memory overhead

for tracking nested

transactions.

Implement efficient

memory management

techniques to reduce

tracking overhead.

4. Single Level of Parallelism Managing overhead in single-

level parallelism applications.

Optimize STM to efficiently

handle single-level

parallelism and streamline

resource allocation.

In conclusion, the solutions presented in Table III provide

a comprehensive overview of how to address the

challenges posed by the Nested Transaction Model in

Transactional Memory (TM) systems. These solutions

focus on enhancing system efficiency, reducing memory

overhead, and ensuring smooth execution of nested

transactions. By implementing these strategies, TM

systems can overcome the complexities introduced by

nested transactions and improve overall performance. The

proposed resolutions, derived from existing research offer

valuable insights for optimizing the management of nested

transactions, minimizing the risk of failures, and

maintaining system stability in complex transactional

environments.

V.APPLICATIONS of SOFTWARE

TRANSACTIONAL MEMORY

This section highlights the broad applications of Software

Transactional Memory (STM) as a concurrency control

mechanism, emphasizing its effectiveness in ensuring

atomicity, consistency, and scalability across various

computational domains.

Software Transactional Memory (STM) is a powerful

concurrency control mechanism designed to simplify

synchronization in multi-threaded environments. Unlike

traditional locking mechanisms, which can introduce

complexities such as deadlocks and performance

bottlenecks, STM ensures that memory updates are atomic

and consistent by executing transactions in isolation and

committing them only when they are conflict-free. This

approach not only improves scalability and performance

but also provides a more straightforward programming

model for managing shared memory.STM has proven its

versatility across a variety of domains. In concurrent data

structures, it enables safe and efficient access to shared

resources, such as linked lists and hash maps, without

relying on locks [7]. Similarly, in parallel computing,

STM facilitates synchronization among tasks, allowing

parallel algorithms to execute seamlessly without the

overhead of traditional locking mechanisms [42] .

Database systems also benefit from STM's capabilities, as

it simplifies transaction management by ensuring atomic

operations and enabling safe concurrent access to data

structures in multi-threaded environments [27].

Functional programming languages, such as Haskell,

leverage STM to maintain stateful computations while

preserving immutability, thus providing a safe and

predictable framework for multi-threaded programming

[43]. High-performance computing (HPC) systems utilize

STM to manage synchronization in large-scale scientific

simulations, ensuring efficient memory updates across

massive computational tasks [42] .STM is equally

valuable in embedded systems, where its ability to handle

atomic updates in resource-constrained environments

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5308

makes it an efficient alternative to traditional

synchronization methods [6] . Moreover, STM plays a

crucial role in multicore and manycore systems by

enabling atomic memory updates across multiple cores,

simplifying synchronization, and enhancing parallel

performance in shared memory environments [7].

In conclusion, Software Transactional Memory (STM)

has revolutionized the management of concurrency in

multi-threaded and parallel systems, offering an

abstraction that ensures atomic, consistent, and deadlock-

free synchronization. Its broad applications, from

concurrent data structures and HPC to embedded systems

and functional programming, underscore its critical role in

modern computing. By abstracting traditional

complexities and enhancing performance, STM represents

a cornerstone technology for scalable and efficient system

design. Its continued evolution promises to unlock new

opportunities in concurrent programming, making it an

indispensable tool for the future of computing.

VI. FUTURE RESEARCH DIRECTIONS

Software Transactional Memory (STM) has established

itself as a transformative paradigm for managing

concurrency in parallel computing. Its ability to simplify

synchronization and eliminate challenges like deadlocks

and race conditions positions it as a promising alternative

to traditional lock-based methods. However, to unlock its

full potential, several critical research areas demand

attention. Scalability remains a pressing concern,

especially in large-scale systems where performance

bottlenecks arise due to contention in many-core

processors and distributed environments. Developing

hierarchical models, adaptive contention management

strategies, and optimization techniques for distributed

STM systems could address these challenges and enable

efficient scaling across thousands of processors or nodes.

Integrating STM with Hardware Transactional Memory

(HTM) offers another promising avenue. While STM

provides flexibility, it incurs overhead from software-

based conflict detection, whereas HTM ensures faster

transaction execution but lacks STM’s adaptability.

Hybrid STM-HTM models that dynamically switch

between the two based on workload characteristics can

leverage the strengths of both, achieving optimal

flexibility and performance. Furthermore, STM’s

adaptation to real-time systems is crucial, particularly for

applications with stringent timing constraints, such as

embedded systems and robotics. Deadline-aware

scheduling, real-time prioritization mechanisms, and

integration with real-time operating systems are essential

to ensure transaction completion within predefined time

bounds. Fault tolerance is another critical challenge,

especially for distributed STM systems operating in

unreliable environments. Techniques like checkpointing,

transactional snapshots, and undo logs can enhance

reliability, allowing systems to recover seamlessly from

failures. Similarly, energy efficiency is an area of growing

importance, particularly in energy-constrained

environments such as IoT and mobile systems.

Lightweight STM designs and optimizations in conflict

detection and retries are necessary to minimize power

consumption while maintaining performance. High

contention in STM systems often leads to frequent

transaction rollbacks, degrading performance. Advanced

conflict resolution algorithms, including transaction

prioritization and reordering, can mitigate this issue and

ensure smooth execution. Additionally, STM’s

application-specific optimizations hold significant

promise for domains like machine learning, high-

frequency trading, and scientific computing, where

tailored STM frameworks can address unique

requirements for latency, throughput, and scalability.

Security is increasingly vital as STM systems are

deployed in distributed and cloud environments.

Transaction-level encryption, secure conflict resolution

protocols, and access control mechanisms must be

seamlessly integrated to ensure data integrity and

confidentiality. Another barrier to STM adoption is the

complexity of its programming models. Developing high-

level abstractions, intuitive libraries, and debugging tools

can simplify its implementation, making STM more

accessible to developers. Moreover, embedding STM

capabilities into modern programming languages like

Java, Python, and Rust, as well as frameworks like

TensorFlow and Spark, will facilitate its integration into

contemporary software ecosystems. Emerging

technologies such as quantum computing, neuromorphic

computing, and robotics also present exciting

opportunities for STM research. Adapting STM principles

to manage concurrency in these advanced domains can

address unique challenges, such as quantum bit state

management or neural architecture synchronization.

By addressing these research challenges, STM can

overcome its current limitations, broaden its applicability,

and evolve into a cornerstone technology for managing

concurrency in modern and future computing systems. Its

ongoing refinement and adaptation will ensure its

continued relevance in the dynamic landscape of parallel

computing.

VII. CONCLUSION

This paper provides a thorough examination of Software

Transactional Memory (STM) and its significant role in

enhancing concurrency control in multi-threaded systems.

Introduction highlighted the fundamental aspects of STM,

emphasizing its ability to simplify synchronization and

provide an efficient alternative to traditional locking

mechanisms. The concept of STM as a tool for managing

memory transactions atomically and consistently was

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5309

introduced, showcasing its potential for improving

parallel computing environments. In the Evolution of

Transactional Memory, the evolution of memory

management techniques from traditional locking

mechanisms to STM was explored. The development

process was outlined, demonstrating how STM has

addressed many of the limitations of earlier approaches,

offering better scalability and flexibility for handling

concurrent operations in multi-core systems. The Design

Parameters of Software Transactional Memory were then

discussed, focusing on key factors that influence the

performance and efficiency of STM. These parameters,

including transaction size, conflict detection, and rollback

strategies, are essential to ensuring that STM systems

perform optimally in various environments. The

importance of these design choices in balancing

performance and reliability was emphasized. The Issues

and Challenges of TM Systems section examined the

primary obstacles that STM faces when implementing

nested transactions, such as conflict detection, memory

overhead, and handling parallelism in nested transactions.

Solutions such as dynamic conflict detection, efficient

memory management, and optimizing single-level

parallelism were proposed to mitigate these challenges,

improving STM’s overall performance. In the

Applications of STM, the paper highlighted STM’s

versatility in various domains, including parallel

computing, high-performance computing, functional

programming, and embedded systems. Its ability to

simplify synchronization and manage atomic updates in

concurrent data structures made it invaluable across

different fields. The wide range of applications

demonstrates STM's flexibility and utility in modern

computing. Finally, Future Research Directions addressed

key challenges STM still faces, such as scalability, real-

time system integration, fault tolerance, and energy

efficiency. The importance of hybrid STM-HTM models,

as well as research in conflict resolution algorithms and

security mechanisms, was discussed. The section

emphasized the need for future research to enhance

STM’s scalability, flexibility, and robustness in an

increasingly diverse range of computing environments.

In conclusion, this paper has provided a comprehensive

analysis of STM’s evolution, its design considerations,

current challenges, and its applications. It has also

highlighted key areas for future research, offering

valuable insights into how STM can continue to evolve

and meet the growing demands of modern and future

computing systems. These insights offer a solid

foundation for ongoing research and development in

Software Transactional Memory, ensuring its continued

relevance in the field of concurrency control.

References

[1] H. Grahn, “Transactional memory,” Journal of

Parallel and Distributed Computing, vol. 70, no. 10,

pp. 993-1008, 2010.

[2] J. B. K. C. L. K. R. a. Y. Z. J. R. Blumofe, “Cilk :

An efficient multithreaded runtime system,” Journal

of Parallel and Distributed Computing, vol. 37, no.

1, pp. 55-69, August 1996.

[3] P. B. a. N. Goodman, “Concurrency Control in

Distributed Database Systems,” ACM Computing

Surveys, vol. 13, no. 2, p. 185 – 221, 1981.

[4] R. a. M. M. S. Alexandru Turcu, “ On closed nesting

in distributed transactional memory,” in Seventh

ACM SIGPLAN workshop on Transactional

Computing, 2012.

[5] J. R. L. a. R. R. T. Harris, Transactional Memory, 2

ed., Synthesis Lectures on Computer Architecture

Morgan & Claypool Publishers, 2010, pp. 1-247.

[6] M. H. a. J. E. B. Moss, “Transactional memory:

architectural support for lock-free data structures,”

in Proceedings of the 20th annual international

symposium on Computer architecture (ISCA '93).,

May 1993.

[7] N. &. T. D. Shavit, “Software transactional

memory,” in Proceedings of the 14th Annual ACM

Symposium on Principles of DistributedComputing,

Ottawa, Can, 1995.

[8] F. Y. L. V. L. M. M. D. N. Peter Damron, “Hybrid

transactional memory,” in Proceedings of the 12th

ACM International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS 2006, San Jose, CA, USA,

October 21-25, 2006.

[9] N. C. J. Diegues, “Review of nesting in transactional

memory,” Tech. rep., Technical Report RT/1/2012,

Instituto Superior Técnico/INESC-ID , 2012.

[10] G. A. Asi, “Performance Tradeoffs in Software

Transactional Memory,” Master Thesis Computer

Science, School of Computing Blekinge Institute of

Technology, No:MCS-2010-28, Sweden, May 2010.

[11] S. Classen, “LibSTM: A fast and flexible STM

Library,” Master's Thesis, Laboratory for Software

Technology, Swiss Federal Institute of Technology,

ETH Zurich, Feb, 2008.

[12] I. a. M. Raynal, “A Lock-Based STM Protocol That

Satisfies Opacity and Progressiveness,” in

Proceedings of the 12th International Conference on

Principles of Distributed Systems (OPODIS'08,

2008.

[13] W. N. S. I. a. M. L. Scott, “Contention Management

in Dynamic Software Transactional Memory,” in

Proceedings of the ACM PODC Workshop on

Concurrency and Synchronization in Java Programs,

Canada, July 2004.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5310

[14] N. S. a. M. L. S. y, “Advanced contention

management for dynamic software transactional

memory,” in Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed

computing, Las Vegas, NV, USA, 2005.

[15] e. a. R. Guerraoui, “Toward a theory of transactional

contention managers,” in Proceedings of the twenty-

fourth annual ACM symposium on Principles of

distributed computing, Las Vegas, NV, USA, 2005.

[16] M. L. Scott, “Applications Included with RSTM

WebPage,” [Online]. Available:

http://www.cs.rochester.edu/research/synchronizati

on/rstm/applications.shtml.

[17] T. H. a. S. Stipic, “Abstract nested transactions,” in

Second ACM SIGPLAN Workshop on

Transactional Computing, 2007.

[18] M. &. L. V. &. M. M. &. S. W. Herlihy, “ Software

Transactional Memory for Dynamic-Sized Data

Structures,” in Proceedings of the Annual ACM

Symposium on Principles of Distributed Computing,

2003.

[19] M. S. C. H. A. A. D. E. W. S. I. a. M. S. V. Marathe,

“Lowering the overhead of Software Transactional

Memory,” in 1st ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT '06), 2006 .

[20] T. a. B. Ravindran, “ On open nesting in distributed

transactional memory,” in 5th Annual International

Systems and Storage Conference (SYSTOR) ’12,

2012.

[21] S. M. A.-R. A.-T. A. L. H. R. L. H. J. E. B. M. S. a.

T. S. Y. Ni, “Open nesting in software transactional

memory,” in PPoPP ’07: Proceedings of the 12th

ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming ,ACM Press, New

York, NY, USA, 2007.

[22] R. C. Ammlan Ghosh and Haskell, Implementing

Software Transactional Memory using STM, vol. 2,

Advanced Computing and Systems for Security

,Springer AISC, 2016, pp. 235-248.

[23] M. R. Y. a. M. F. Le, “Revisiting software

transactional memory in Haskell,” ACM SIGPLAN

Notices, vol. 51, no. 12, pp. 105-113, 2016.

[24] Du Bois, “An Implementation of Composable

Memory Transactions in Haskell,” in Software

Composition, SC 2011,Lecture Notes in Computer

Science,Springer, Berlin, Heidelberg., 2011.

[25] H. T. M. S. J. S. S. S. Discolo, “Lock Free Data

Structures Using STM in Haskell,” in Functional and

Logic Programming, FLOPS , 2006.

[26] M. L. V. &. M. M. Herlihy, “A flexible framework

for implementing software transactional memory,”

ACM SIGPLAN Notices, vol. 41, no. 10, pp. 253-

262, 2006.

[27] S. M. S. P. J. a. M. H. T. Harris, “Composable

memory transactions,” in Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’05,

Chicago, IL, USA, 2005.

[28] G. a. S. F. S. Peyton Jones, “Concurrent Haskell,” in

23rd ACM Symposium on Principles of

Programming Languages (POPL’96), 1996.

[29] A.-R. A.-T. R. H. C. C. M. a. B. H. B. Saha, “McRT-

STM: a high-performance Software Transactional

Memory system for a multi-core runtime,” in

SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP'06), 2006.

[30] M. S. a. M. S. L. Dalessandro, “NOrec: Streamlining

STM by abolishing ownership records,” in

Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP '10), 2010.

[31] B. M. M. M. H. a. D. W. K. Moore, “LogTM: log-

based transactional memory,” in Proceedings of the

12th High-Performance Computer Architecture

International Symposium (HPCA '06), 2006.

[32] B. K. E. M. L. Y. M. D. H. B. L. M. M. S. a. D. M.

J. Moravan, “Supporting Nested Transactional

Memory in LogTM,” in 12th International

Conference on Architectural Support for

Programming Languages and Operating Systems in

SIGPLAN Notices (Proceedings of the 2006

ASPLOS Conference), 2006.

[33] M. H. C. J. C. C. M. C. K. a. K. O. B. Carlstrom,

“The ATOMOS Transactional Programming

Language,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI'06), 2006.

[34] N. B. C. K. a. K. O. W. Baek, “Implementing and

evaluating nested parallel transactions in software

transactional memory,” in Proceedings of the 22nd

ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’10,, Thira, Santorini, Greece,

2010.

[35] R. K. a. K. Vidyasankar, “HParSTM: A Hierarchy-

based STM Protocol for Supporting Nested

Parallelism,” in 6th ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT '11), 2011.

[36] W. A.-R. A.-T. T. S. X. T. a. R. N. H. Volos,

“NePaLTM: Design and Implementation of Nested

Parallelism for Transactional Memory Systems,” in

Proceedings of the 23rd European Conference on

Object-Oriented Programming(ECOOP '09), 2009.

[37] J. T. F. a. J. S. K. Agrawal, “Nested parallelism in

transactional memory,” in Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP '08), 2008.

[38] D. P. F. R. G. a. M. K. J. Barreto, “ Leveraging

parallel nesting in transactional memory,” in

Proceedings of the 15th ACM SIGPLAN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5302-5311 | 5311

Symposium on Principles and Practice of Parallel

Programming (PPoPP '10).

[39] H. R. a. E. Witchel, “The xfork in the road to

coordinated sibling transactions,” in 4th ACM

SIGPLAN Workshop on Transactional Computing

(TRANSACT '09), 2009.

[40] L. H. J. Eliot B. Moss, “Nested transactional

memory: Model and architecture sketches,” Science

of Computer Programming, vol. 63, no. 2, pp. 186-

201, 2006.

[41] J. E. B. Moss, “Nested Transactions: An Approach

to Reliable Distributed Computing,” Ph.D. Thesis,

Technical Report MIT/LCS/TR-260,MIT

Laboratory for Computer Science, Cambridge, MA,

April 1981.

[42] T. L. V. M. B. R. M. B. S. a. T. S. Ali-Reza Adl-

Tabatabai, “Compiler and runtime support for

efficient software transactional memory,” in

Proceedings of the 27th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, Ottawa, Ontario, Canada , 2006.

[43] S. Peyton-Jones, Beautiful concurrency, A. O. a. G.

Wilson, Ed., O'Reilly, 2007.

Mrs. Meenu is an Associate

Professor in the department of

Computer Science &

Engineering at the Madan

Mohan Malaviya University of

Technology, Gorakhpur where

she has been a faculty member

since 2003. She is Chairperson of

Women Cell as well as Women

Welfare and AntiHarassment Cell. She completed her

M.Tech. at Madan Mohan Malaviya University of

Technology. She has served as the Session Chair for

UPCON-2018 (5th IEEE Uttar Pradesh Section

International Conference). She is the author of 64 research

papers, which have been published in various National &

International Journals/Conferences. She is a reviewer of

many International Journals/ Conferences and Editorial

Board member of International Journals. She is also

member of many Professional Societies. Her research

interest lies in the area of Distributed Real Time Database

Systems. She has collaborated actively with researchers in

several other disciplines of computer science, particularly

machine learning.

