
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5312 

Nested Transaction Model: A Comprehensive Review of Mechanisms, 

Challenges, Applications, and Future Prospects 

Meenu 

Submitted:12/03/2024       Revised: 27/04/2024        Accepted: 04/05/2024 

Abstract: This review paper explores the foundational and advanced elements of nested transaction models in database systems, presenting 

a structured analysis across key areas. Beginning with an introduction to nested transactions, the paper reviews essential concurrency 

control and commit protocols tailored for nested environments, highlighting their impact on transaction management. Deadlock detection 

techniques are analysed with a focus on their applicability and efficiency in nested scenarios. The study also examines various recovery 

models designed to maintain consistency and reliability within nested transactions. Key research issues are identified, pinpointing gaps and 

limitations in current methodologies. The paper further discusses challenges associated with implementing nested transactions, including 

performance constraints and scalability issues. Applications of nested transactions within database contexts are presented, alongside 

broader applications in complex data environments, showcasing the versatility and potential of these models. Finally, future research 

directions are proposed, emphasizing areas for improvement and innovation, followed by a comprehensive conclusion summarizing 

insights gained and their implications for advancing nested transaction models in database systems. 

Index Terms: Challenges of Nested Transactions, Commit Protocols, Concurrency Control, Database Applications, Deadlock Detection. 

I.INTRODUCTION 

This section traces the journey from manual filing 

systems to advanced database solutions, focusing on the 

transition to centralized (CDBS) and distributed database 

systems (DDBS) that support networked data access. It 

highlights the emergence of real-time database systems 

(RTDBS) for applications with strict timing 

requirements, including Distributed Real-Time Database 

Systems (DRTDBS). It then categorizes transaction 

models, noting significant contributions by researchers, 

and introduces the Advanced Transaction model. The 

section also distinguishes between closed and open 

nested transactions, emphasizing the benefits of nested 

transactions like failure independence, intratransaction 

parallelism, and modularity. Finally, it outlines the 

paper’s key focus areas, including the progression of 

concurrency control mechanisms and the unique 

challenges posed by nested transactions. 

The shift from manual filing systems to computerized 

solutions has marked significant milestones in 

information management. Early file-based and database 

systems aimed to improve data management efficiency 

but faced challenges like the lack of integrated data 

definitions and limited data control. This evolution laid 

the groundwork for centralized database systems 

(CDBS), which enabled users to define, create, maintain, 

and control database access [1] . With the growth of 

network technologies, distributed database systems 

(DDBS) emerged to link databases across computer 

networks [2] . Recently, real-time database systems 

(RTDBS) have gained traction, particularly in 

applications that require time-sensitive data and specific 

transaction deadlines [3]. Key sectors benefiting from 

RTDBS include aircraft control, stock trading, network 

management, and factory automation [4], [5].In real-time 

applications, transactions are categorized as hard, firm, 

or soft real-time based on their deadline requirements [6] 

. This categorization has extended to interconnected 

databases, leading to the development of Distributed 

Real-Time Database Systems (DRTDBS) [7] .A 

fundamental unit in database transactions, represented as 

T = << t, Ai, Ni >⋯ i=1…n>, involves operations such 

as reading and writing data, consisting of predefined 

steps [8] .Transaction models are essential in database 

management systems, providing frameworks to manage 

and ensure the consistency and reliability of database 

transactions. Over the years, various transaction models 

have been proposed, each targeting specific challenges 

and optimizing data management processes. These 

models, developed by distinguished researchers and 

database experts, exemplify the diverse strategies 

employed to enhance transaction processing efficiency. 

The evolution of transaction models has been pivotal in 

enhancing data management and addressing the 

complexities of modern database systems. These models 

have undergone significant transformations to cater to 

various requirements, from simple operations to complex 

applications involving real-time constraints. Below is a 

comprehensive overview of different transaction models 

Department of CSE, M. M. M. U. T., Gorakhpur, India 

*myself_meenu@yahoo.co.in 

 

mailto:*myself_meenu@yahoo.co.in


 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5313 

presented in Table I, highlighting their structures, merits, 

demerits, and challenges. This classification includes both 

traditional and advanced transaction models, providing 

insights into their respective functionalities and 

applicability in database management. 

TABLE I 

COMPARATIVE ANALYSIS OF VARIOUS TYPES OF TRANSACTION MODELS 

S.No. Type of Transaction Model Description 
Transaction 

Structure 
Merits Demerits Challenges 

1.  

Gray's Model [9], [10] 
Efficient data 

management 

Multi-level 

locking, 

Two-phase 

commit 

High 

concurrency, 

Robust 

recovery 

Complexity, 

Locking 

overhead 

Data 

consistency, 

Distributed 

transactions 

2.  

Read/Write Model [11] 

Considers 

database 

objects as pages 

in memory 

Read/Write 

operations 

Sequences of 

read and write 

operations 

Ignores user 

program 

computations 

in main 

memory 

Handling 

complex 

computations 

within 

transactions 

3.  

Relational Updates [12] 

Basic 

operations: 

insertions, 

deletions, 

modifications 

Single 

tuples 

Atomic 

execution of 

insertions, 

deletions, 

modifications 

Applied to 

relations in a 

given 

database 

Ensuring 

consistency 

in concurrent 

insertions, 

deletions, 

modification

s 

4.  

Online/Batch Transactions 

[13] 

Classifies 

transactions as 

online (short 

life) or batch 

(long-life) 

Individual 

transactions 

for online, 

grouped for 

batch 

Short 

response 

times for 

online, longer 

for batch 

Online: 

Small portion 

of the 

database; 

Batch: Larger 

portion 

Optimizing 

resource 

usage and 

response 

times for 

both online 

and batch 

transactions 

5.  

 

 

 

 

General/TwoStep/Restricte

d Two-Step [14], [15], [16] 

Based on read 

and write 

actions 

Defined 

read and 

write action 

sequences 

Various based 

on read/write 

actions 

Various 

based on 

read/write 

restrictions 

Managing 

transactions 

with specific 

read and 

write 

ordering 

constraints 

6.  

 

Single, Uniform, 

Distributed DBMS [17]. 

Distributed 

DBMS model 

with four 

components 

Distributed 

components 

across sites 

with 

consistency 

control 

Study of 

concurrency 

control 

algorithms 

and 

performance 

Complexity 

in distributed 

environments 

Developing 

effective 

concurrency 

control 

algorithms 

for 

distributed 

databases 

7.  Flat Transaction Model [18] 

/ Advanced Transaction 

Model [19] 

Classifies 

transactions as 

Flat model 

(Single level) 

Flat for Flat 

model, 

Hierarchica

l for 

Flat: 

Improvement 

over manual 

file systems; 

Flat: Limited 

to simple 

transactions; 

Advanced: 

Handling 

large 

datasets, 

Integrity 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5314 

or Advanced 

(multi-level) 

Advanced 

model 

Advanced: 

Suitable for 

complex 

applications 

Performance 

overhead 

checks; 

Complexity 

in design for 

Advanced 

model 

7.1.  

SAGA [20] (Advanced) 

Single level of 

nesting with 

compensating 

transactions 

Hierarchica

l 

Simpler than 

nested model, 

has 

compensating 

transactions 

Defining 

compensatin

g transactions 

in advance 

Limited 

nesting 

levels, 

Complex 

recovery 

actions 

7.2.  

Workflow Model [21] 

(Advanced) 

Combines open 

and nested 

transactions, 

with workflow 

specification 

Hierarchica

l 

Application-

specific 

correctness 

Workflow 

specification 

complexity 

Efficient 

specification 

and 

execution of 

workflows 

7.3.  

Dynamic Restructuring [22] 

(Advanced) 

Adaptive 

recovery with 

split and join-

transaction 

operations 

Hierarchica

l 

Adaptive 

recovery, 

Reduced 

isolation 

Not suitable 

for modelling 

business 

activities 

Handling 

transaction 

joins, 

Complexity 

in 

restructuring 

7.4.  Flex Transaction Model 

[23] 

(Advanced) 

Extends ACID 

properties 

hierarchically, 

enhancing 

flexibility 

Hierarchica

l 

Greater 

flexibility in 

transaction 

management 

Increased 

complexity 

and 

performance 

overhead 

Balancing 

flexibility 

with 

manageable 

complexity 

7.5.  

Nested Model [24] 

(Advanced) 

Allows 

arbitrary level 

of nesting with 

a transaction 

tree structure 

Hierarchica

l 

Failure 

independence

, Intra-

transaction 

parallelism, 

Modularity 

Complexity 

Managing 

nested 

transactions 

and increased 

development 

time 

7.6.  

Multilevel Model [25] [26] 

(Advanced) 

Balanced tree 

of 

subtransactions

, specialization 

of open nested 

model 

Hierarchica

l 

Balanced tree 

structure 

Not suitable 

for business 

activities 

Lack of 

flexibility, 

Limited 

scalability 

 

  

The Table I above captures a range of transaction models, 

encompassing both foundational and advanced structures. 

These models collectively illustrate the evolution from 

simple flat transactions, which suit basic data 

management, to sophisticated advanced models like 

Nested and Workflow, which address the complexities of 

modern database systems. Flat and basic models lay the 

groundwork by focusing on straightforward transaction 

execution, while advanced models, such as Nested and 

Dynamic Restructuring, introduce structures that support 

failure independence, modularity, and adaptability. These 

advanced models are critical in environments requiring 

high concurrency and resilience, especially in real-time 

and distributed systems. Together, they highlight the 

ongoing advancements in transaction management, which 

cater to both traditional needs and the dynamic 

requirements of complex applications. Further 

development and research in this field will continue to 

optimize and expand these models to support future 

challenges in database technology. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5315 

In transaction model development, a variety of 

approaches aim to achieve efficient data management 

across complex applications. The transition from the Flat 

transaction model to more sophisticated, advanced 

models emerged from the limitations of flat models in 

addressing engineering complexities, particularly in 

fields like CAD and software engineering. The Flat 

model, characterized by a single initiation and 

termination point, is insufficient for handling intricate, 

prolonged processes. Advanced models, particularly the 

Nested transaction model, play a critical role in these 

scenarios by offering operational abstractions and 

flexible handling of ACID properties. Moss introduced 

the Nested transaction model, drawing on the "spheres of 

control" concept from Bjork and Davies [27], [28].This 

model structures transactions hierarchically, with a top-

level transaction and subtransactions forming a 

"transaction tree." The N-ACID properties apply 

primarily to the top-level transaction, while 

subtransactions maintain a limited subset of these 

properties [29] .Nested transactions are classified into 

closed and open types. Closed nested transactions keep 

subtransactions' effects within the parent’s scope, with 

their commitment dependent on the parent’s 

commitment [20], [30] .In contrast, open nested 

transactions allow subtransactions to operate and commit 

independently, releasing leaf-level locks early if 

operation semantics are known [19] , [31], [32] .Unlike 

flat models, nested transactions support independent 

failure and rollback of subtransactions without affecting 

the parent, known as "failure independence," reducing 

the need for full transaction rollbacks. They also enable 

intra-transaction and intertransaction parallelism, 

enhancing performance and modularity, which in turn 

provides benefits like improved encapsulation and 

security. These key advantages—failure independence, 

intratransaction parallelism, and modularity—make 

nested transactions particularly suitable for real-time, 

complex, and distributed applications [33].In addition to 

Nested transactions, models like Sagas, Multilevel, 

Dynamic Restructuring, and Workflow Models represent 

significant advancements, providing more adaptable 

frameworks for applications with complex transaction 

needs. This research paper focuses on closed nested 

transaction models, examining their commit and 

concurrency control protocols and analysing parallelism 

types, including parent/child and sibling parallelism 

[33]. 

The upcoming sections provide a comprehensive 

exploration of nested transactions, addressing key 

concepts and issues integral to their implementation and 

optimization Section 2 focuses on Concurrency Control 

and Commit Protocols in Nested Transaction, 

discussing  the development of database concurrency 

control mechanisms, including various concurrency 

control protocols, the issue of priority inversion within 

Two-Phase Locking (2PL), and advancements in commit 

and concurrency control protocols tailored for nested 

transaction. Section 3 examines Deadlock Detection in 

Nested Transaction, exploring types of deadlocks, 

detection strategies, and the challenges involved in 

resolving deadlocks in complex systems. The review 

continues with Section 4, which covers Recovery Models 

in Nested Transaction, focusing on recovery concepts and 

examining various recovery algorithms designed to 

handle hierarchical dependencies and ensure 

consistency. Section 5 highlights Research Issues in 

Nested Transaction Model, identifying open questions and 

areas for further investigation aimed at optimizing system 

performance. Section 6 addresses the Issues and 

Challenges of Nested Transaction, analysing difficulties 

related to scalability, system complexity, and 

implementation. Section 7 explores Applications of 

Nested Transaction in Databases, illustrating practical use 

cases and benefits of nested transactions in modern 

database systems. Section 8 extends the discussion to Key 

Applications of Nested Transaction, broadening the scope 

to include domains beyond databases, such as distributed 

systems and real-time applications. Section 9 looks 

toward Future Research Directions, outlining emerging 

areas of research to enhance the scalability, concurrency, 

and fault tolerance of nested transaction systems. 

Finally, Section 10 concludes the review with a summary 

of the key findings and opportunities for further research. 

II.CONCURRENCY CONTROL and COMMIT 

PROTOCOLS in NESTED TRANSACTION 

This section explores the progression of database 

concurrency control mechanisms, with a particular focus 

on the unique challenges presented by nested 

transactions in distributed real-time databases. It 

underscores the need for advanced protocols to achieve 

global serializability and optimize real-time 

performance. The discussion addresses various 

concurrency control protocols and their vital role in 

ensuring data consistency, as well as managing issues 

like deadlocks and resource contention. It also covers 

priority inversion challenges associated with the Two-

Phase Locking (2PL) protocol, tracing the development 

of concurrency control and commit protocols designed 

specifically for nested transactions. The review 

highlights major advancements while acknowledging 

persistent issues, such as cascading intra-aborts, 

reinforcing the demand for specialized protocols to 

enhance transaction processing efficiency in distributed 

systems. 

In database management, enabling concurrent access for 

multiple users is crucial, as it leads to increased 

throughput, decreased transaction waiting times, and 

enhanced overall system performance. While read 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5316 

operations generally do not cause conflicts, the 

simultaneous execution of write operations can create 

complexities, resulting in issues such as lost updates, 

uncommitted dependencies (dirty reads), and 

inconsistent analyses. To mitigate these challenges and 

maintain consistency and reliability in database 

operations, effective concurrency control mechanisms 

are essential. Despite significant advancements in real-

time concurrency control across various transaction 

models, the unique challenges posed by nested 

transactions in distributed real-time databases necessitate 

specialized protocols. This proposed research seeks to 

address these challenges by emphasizing global 

serializability and real-time performance in the context 

of nested distributed transactions. Building upon a 

thorough examination of existing literature, this work 

provides a comprehensive overview of the historical 

evolution of concurrency control protocols and the 

development of commit protocols tailored specifically 

for nested distributed real-time database systems. By 

innovatively addressing the distinct challenges 

associated with nested transactions within dynamic 

distributed environments, this research aims to bridge 

existing gaps in knowledge. Ultimately, it contributes  

valuable insights to the complex field of concurrency 

control in distributed real-time databases, pushing the 

boundaries of current understanding and practice. 

In conclusion, this research advances the field of 

concurrency control by tackling the specific challenges 

of nested transactions in distributed real-time databases. 

By proposing innovative approaches to improve global 

serializability and real-time performance, it provides 

valuable insights and addresses key limitations in 

existing protocols, thereby filling critical gaps and 

contributing meaningfully to the evolving landscape of 

concurrency control. 

A. DATABASE CONCURRENCY CONTROL 

MECHANISMS 

This section examines concurrency control protocols 

critical for ensuring data integrity and consistency in 

multi-user databases. It categorizes protocols into 

locking and timestamping, highlighting pessimistic and 

optimistic approaches. Real-time databases face specific 

challenges that require priority-based scheduling 

methods. The discussion emphasizes the importance of 

choosing the appropriate protocol for effective 

transaction management as technology advances. 

In database management, concurrency control protocols 

are essential for ensuring transaction integrity and data 

consistency across concurrent operations. These 

protocols are broadly categorized into locking, 

timestamping, and real-time mechanisms, employing 

various strategies to manage and resolve conflicts. 

Locking and timestamp-based protocols can utilize 

either pessimistic or optimistic approaches; pessimistic 

methods assume a high likelihood of conflict and 

proactively prevent issues, while optimistic methods 

operate under the assumption that conflicts are rare, only 

intervening when necessary. Notably, Two-Phase 

Locking (2PL) and Timestamp Ordering (TO) protocols 

offer variations designed for scalability and specific use 

cases, particularly in distributed systems. In real-time 

databases, where timing is crucial, priority-based 

approaches like First Come First Serve (FCFS) and 

Earliest Deadline First (EDF) optimize performance and 

predictability. Additionally, concurrency control is a 

critical aspect of database management systems, 

ensuring transactions are executed in a controlled and 

consistent manner within multi-user environments. This 

involves managing access to shared resources to prevent 

conflicts and maintain data integrity. A key concept in 

concurrency control is serializability, which aims to 

identify schedules where transactions can run 

concurrently without conflicts [14] thereby ensuring that 

the database state accurately reflects a sequential 

execution. The Table II below summarizes key 

concurrency control protocols, their approaches, 

descriptions, and practical applications. 

TABLE II OVERVIEW OF DATABASE CONCURRENCY CONTROL MECHANISMS 

S.NO. 

Concurrency Control 

Protocol Approaches Description 

1 Locking and 

Timestamping 

Pessimistic Approaches 

[34]. 

Pessimistic Techniques: 

Assuming conflicts are 

frequent, these 

approaches—covering 

lock-based, order-

based, and hybrid 

methods—focus on 

preventing conflicts 

proactively. Two-Phase 

Locking (2PL) is a 

prominent example of 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5317 

pessimistic locking that 

helps prevent issues like 

lost updates, 

uncommitted 

dependencies, and 

inconsistent reads. 

Optimistic Approaches 

[34]. 

Optimistic Techniques: 

Based on the 

assumption that 

conflicts are rare, 

optimistic approaches 

involve reading, 

validating, and writing 

data at distinct stages. 

Techniques such as 

optimistic locking and 

timestamp ordering are 

commonly used to 

increase concurrency. 

[35] [36], [37] 

1.1 Two-Phase Locking 

(2PL) [38] 

 Two-Phase Locking 

Protocol (2PL): Divided 

into growing and 

shrinking phases, 2PL is 

designed to achieve 

conflict serializability. 

To address challenges 

like cascading 

rollbacks, variants such 

as rigorous 2PL and 

strict 2PL have been 

developed. In 

distributed systems, 

variations such as 

Primary Site 2PL [39] , 

Primary Copy 2PL [40], 

Voting 2PL [36], , and 

Distributed Two-Phase 

Locking (D2PL) help 

reduce data redundancy, 

with implementations 

found in systems like 

System R* [41] and 

NonStop SQL. 

[42], [43], [44] 

1.2 Timestamp Ordering 

(TO) 

Pessimistic TO Pessimistic Timestamp 

Ordering: This method 

prioritizes transactions 

by timestamps to 

manage conflicts. Basic 

TO ensures conflict 

serializability [45] , 

while Conservative TO 

variants introduce 

delays to minimize 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5318 

transaction restarts and 

reduce system 

overhead. Multiversion 

TO further enhances 

concurrency by 

allowing multiple data 

versions [46], [47] [48], 

[49], [50] . 

Optimistic TO Optimistic Timestamp 

Ordering: This approach 

defers timestamp 

assignment until 

validation, promoting 

concurrency in low-

conflict scenarios. 

Although effective in 

such cases, it may result 

in higher storage 

overhead and 

transaction restarts. 

2 Real-Time Concurrency 

Control 

 Challenges and Priority 

Schemes in RTDBS: 

Real-Time Database 

Systems (RTDBS) face 

unique challenges, such 

as restarts, repeated 

restarts, and chained 

blocking [51] . Priority-

based scheduling, 

including First-Come-

First-Serve (FCFS), 

Earliest Deadline First 

(EDF), Minimum Slack 

Time First (MSTF), and 

Shortest Job First (SJF), 

is applied to increase 

predictability and 

efficiency in managing 

transactions [52], [53], 

[54].     

 

Following the overview of concurrency control protocols 

presented in the Table II, it is evident that each approach 

plays a vital role in maintaining data integrity and 

consistency within database systems. The choice 

between pessimistic and optimistic protocols 

significantly impacts how transactions are managed, 

particularly in multi-user environments where the 

likelihood of conflicts varies. Pessimistic methods, such 

as Two-Phase Locking (2PL) and Pessimistic Timestamp 

Ordering, are designed to prevent conflicts proactively, 

ensuring a high level of data integrity but often at the cost 

of reduced concurrency. Conversely, optimistic methods, 

which include Optimistic Locking and Optimistic 

Timestamp Ordering, allow for greater concurrency by 

assuming conflicts are infrequent, but they may 

introduce overhead when conflicts do occur. 

Furthermore, in the context of real-time databases, 

implementing effective concurrency control is crucial for 

meeting strict timing constraints. Priority schemes like 

FCFS and EDF enhance predictability and 

responsiveness, ensuring that high-priority transactions 

receive timely access to resources. As technology 

continues to evolve, the development of more 

sophisticated concurrency control mechanisms will be 

essential for managing increasingly complex and 

dynamic database environments, facilitating efficient 

transaction processing and maintaining the overall 

reliability of database systems. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5319 

In conclusion, the discussed concurrency control 

protocols are crucial for maintaining data integrity and 

consistency in multi-user database environments. The 

choice between pessimistic and optimistic approaches, 

along with adaptations for real-time and distributed 

systems, emphasizes the need for tailored solutions. As 

technology evolves, these protocols will continue to play 

a key role in ensuring efficient and reliable transaction 

processing. 

B. PRIORITY INVERSION in 2PL (TWO-PHASE 

LOCKING) 

 This section discusses priority inversion in Real-Time 

Database Systems (RTDBS) and its impact on high-

priority transactions. It presents two strategies for 

addressing this issue: the Priority Abort Protocol and the 

Priority Inheritance Protocol, both aimed at ensuring 

timely execution of critical transactions. 

In Real-Time Database Systems (RTDBS), managing 

priority inversion within the Two-Phase Locking (2PL) 

protocol is essential for maintaining performance and 

meeting deadlines of high-priority transactions. Priority 

inversion occurs when high-priority transactions are 

delayed due to locks held by lower-priority transactions, 

which can lead to missed deadlines and compromised 

system efficiency [55]. This challenge is typically 

classified into two types: bounded and unbounded 

priority inversion [56]. Addressing this issue involves 

strategies such as the Priority Abort Protocol (2PL-HP) 

and the Priority Inheritance Protocol. 

The Priority Abort Protocol (2PL-HP) addresses priority 

inversion by aborting lower-priority transactions holding 

locks needed by high-priority transactions, allowing the 

latter to proceed without delay [4] While effective in 

reducing priority inversion, this approach may lead to 

increased transaction restarts, particularly under high 

contention scenarios. Alternatively, the Priority 

Inheritance Protocol offers another solution by 

temporarily raising the priority of a lower-priority 

transaction holding a lock to match that of the waiting 

high-priority transaction. This propagation of priority 

helps prevent indefinite delays, allowing the lower-

priority transaction to complete its critical section and 

release the lock for the higher-priority transaction [57] . 

In conclusion, effectively managing priority inversion 

within Real-Time Database Systems (RTDBS) is crucial 

for ensuring that high-priority transactions can meet their 

stringent deadlines. The Priority Abort Protocol and the 

Priority Inheritance Protocol provide practical solutions 

to mitigate the adverse effects of priority inversion, 

enhancing the reliability and efficiency of transaction 

processing. By addressing the challenges posed by locks 

held by lower-priority transactions, these strategies 

contribute to maintaining optimal system performance 

and ensuring timely execution of critical operations, 

which is essential in dynamic and time-sensitive 

environments. 

C. EVOLUTION of CONCURRENCY CONTROL 

and COMMIT PROTOCOLS in NESTED 

TRANSACTIONS 

This section examines the progression of concurrency 

control and commit protocols specifically designed for 

nested transactions. It provides a summary of diverse 

protocols in Table  

III, emphasizing their distinct characteristics, 

advantages, and associated challenges. The continuous 

advancement of these protocols reflects a commitment to 

improving scalability and efficiency in managing nested 

transactions. Database professionals are encouraged to 

explore these protocols to optimize performance in their 

systems. 

The field of database management has seen significant 

advancements in both concurrency  

control and commit protocols for nested transactions. 

Table III offers a concise overview of various protocols, 

detailing their advantages, disadvantages, and the 

specific challenges they address. This section will 

explore these protocols, focusing on their origins and 

unique features, including innovative strategies for 

managing concurrency and handling intra-abort 

cascades. By understanding these developments, 

database administrators can improve their transaction 

management practices and enhance overall system 

efficiency. 

TABLE III OVERVIEW OF CONCURRENCY CONTROL AND COMMIT PROTOCOLS FOR NESTED 

TRANSACTIONS 

S.No. Protocol Description Merits/ Demerits Challenges 

1.  2PL-NT  

Concurrency 

control 

protocol 

[24] 

Developed 

Concurrency 

Control Algorithm 

for Nested 

Transactions by 

integrating 

Eswaran's  [38] 

Designed for nested 

transactions. May have 

limitations in scenarios 

beyond nested 

transactions. 

Ensuring 

compatibility and 

scalability in various 

transaction 

scenarios. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5320 

two-phase locking 

mechanism. 

1.  Exclusive 

Locking 

Algorithm for 

Nested 

Transactions 

[58] [59] 

Extending the 

multi-granularity 

algorithm tailored 

for nested 

transactions. 

Tailored for nested 

transactions. Potential 

complexity in managing 

exclusive locks. 

Optimizing 

performance in 

scenarios with high 

contention for 

resources. 

2.  Formalization 

and 

Generalized 

Locking 

Algorithm 

[60] 

Formal proof of 

Moss's read/write 

algorithm, 

introducing a 

generalized read-

update locking 

algorithm. 

 

Provides a formal proof 

for concurrency control 

algorithm. May have 

overhead in terms of 

formality and generality. 

Application and 

adaptation in 

different database 

architectures. 

3.  Extension of 

Multi-

granularity 

Algorithms 

[61] 

Extended multi-

granularity 

algorithms for 

nested transactions. 

Enhances multi-

granularity approaches 

for nested transactions. 

Complexity may increase 

with the extension. 

Ensuring backward 

compatibility with 

existing systems. 

4.  Serialization 

Graph 

Construction 

for Nested 

Transactions 

[62] 

Serialization graph 

construction based 

on I/O automaton 

models, 

contributing to 

nested transaction 

systems. 

Contributes to nested 

transaction systems 

through serialization 

graph construction. ay 

have computational 

overhead in constructing 

serialization graphs. 

Optimizing the 

construction process 

for large-scale 

databases. 

5.  Formalization 

of 

Concurrency 

Control 

Algorithms 

[63] 

Formalizing 

concurrency 

control algorithms 

for open and safe 

nested transactions, 

utilizing an I/O 

approach. 

Formalizes concurrency 

control algorithms for 

open and safe nested 

transactions. May 

introduce additional 

complexity in 

implementation 

Applying the 

formalized 

algorithms in real-

world scenarios. 

6.  Application 

of Nested 

Transactions 

in KBMSs 

[64] 

Applies nested 

transactions in 

knowledge base 

systems (KBMSs). 

Applications of nested 

transactions in KBMSs. 

Compatibility challenges 

with existing KBMS 

architectures. 

Adapting to 

different knowledge 

base structures and 

information models. 

7.  Extension of 

Gifford's 

basic quorum 

consensus 

algorithm for 

data 

replication to 

incorporate 

nested 

transactions 

and 

transactions 

aborts 

[65] 

 

Extends Gifford's 

algorithm for data 

replication to 

include nested 

transactions. 

Incorporates nested 

transactions and 

transaction aborts into 

Gifford's basic quorum 

consensus algorithm. 

Complexity in managing 

nested transactions within 

a consensus algorithm. 

Ensuring fault 

tolerance and 

consistency in data 

replication with 

nested transactions. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5321 

8.  Concurrency 

Control 

Algorithm for 

B-trees 

within nested 

transactions 

[66] 

Proposed 

concurrency 

control algorithm 

specifically 

designed for B-

trees within nested 

transaction models. 

Tailored for B-trees 

within nested 

transactions. May have 

limitations when applied 

to other data structures. 

Adapting the 

algorithm to 

different types of 

databases and 

structures. 

9.  Concurrency 

Control 

Algorithm 

utilizing 

linear hash 

structures for 

nested 

transactions. 

[67] 

 

Presented a 

concurrency 

control algorithm 

utilizing linear hash 

structures for 

nested transactions. 

Potential limitations in 

scalability for large 

databases. 

Optimizing the 

algorithm for 

diverse database 

sizes and access 

patterns. 

10.  Multi-version 

Timestamp 

Concurrency 

Control 

[46] 

Introduces a multi-

version timestamp 

concurrency 

control algorithm 

for nested 

transactions. 

Provides support for 

multi-version 

concurrency control in 

nested transactions. May 

increase storage 

requirements for 

maintaining multiple 

versions. 

Managing and 

optimizing storage 

space while 

ensuring data 

consistency. 

11.  2PL-NT-HP  

concurrency 

control 

protocol 

[68] 

[69] 

Introduces 

concurrency 

control protocol for 

Nested Distributed 

Real-Time 

Database Systems  

Tailored for nested 

distributed real-time 

database systems. 

Overhead associated with 

high-priority-based 

scheme. 

Ensuring effective 

conflict resolution 

and real-time 

performance. 

12.  S-PROMPT 

commit 

protocol 

[68] 

[69] 

Specifically crafted 

commit protocol 

for nested 

transactions to 

address intra-abort 

cascade issues. 

Addresses issues with 

intra-abort cascade in 

nested transactions using 

PROMPT [70]. Overhead 

associated with 

maintaining before and 

after images. 

Optimizing the 

protocol to 

minimize 

performance impact 

in real-time 

databases. 

                

The variety of concurrency control and commit protocols 

for nested transactions in Table III reflects ongoing 

efforts to enhance database management in complex 

scenarios. Each protocol addresses specific challenges 

and introduces innovative strategies. As developers 

continue to refine their approaches, the future promises 

more advanced solutions focused on scalability, 

compatibility, and efficiency. This overview encourages 

database professionals to explore these protocols to 

improve nested transaction management. 

In conclusion, the evolution of concurrency control and 

commit protocols for nested transactions highlights 

significant advancements in database management. The 

diverse protocols in Table III showcase strategies to 

tackle challenges while offering distinct advantages, 

inviting professionals to leverage these innovations for 

better performance in nested transaction management. 

In conclusion, this research highlights the necessity for 

enhanced concurrency control and commit protocols in 

nested transactions within distributed real-time 

databases. By addressing critical challenges such as 

global serializability, priority inversion, and cascading 

intra-aborts, the proposed solutions aim to optimize 

performance and resource management for timely 

execution of high-priority transactions. This work not 

only fills significant gaps in existing literature but also 

sets the stage for future advancements in the field, 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5322 

ensuring that the complexities of modern applications are 

effectively managed. 

III.DEADLOCK DETECTION in NESTED 

TRANSACTION 

This Section explores deadlock detection in nested 

transactions, highlighting the complexities due to 

hierarchical dependencies. It covers types of deadlocks, 

strategies for detection, and challenges such as resource 

contention and performance impact. Solutions and 

algorithmic approaches are discussed to optimize 

detection and maintain system performance. 

In modern transactional systems, managing concurrency 

and ensuring data consistency are essential but 

challenging, particularly in environments with nested 

transactions. In database systems, transactions require 

locks on data objects to maintain consistency by 

preventing issues from concurrent access. However, this 

locking mechanism can lead to deadlocks, where a cycle 

of transactions waits indefinitely on one another (e.g., T1 

→ T2 → ... → T1) [35] [71]. Detecting and resolving these 

deadlocks is critical. One basic approach is the timeout 

method, where a transaction is aborted if it waits too long 

for a lock, assuming a deadlock [72]. Although simple, 

this approach is often imprecise, leading to unnecessary 

transaction aborts and restarts. A more accurate approach 

is the waits-for graph (WFG) method, in which the system 

maintains a directed graph of transactions waiting on each 

other [73]. Here, each node represents a transaction, and 

each edge represents a waiting relationship. Deadlocks are 

identified by detecting cycles within this graph, and the 

system resolves them by aborting one transaction in the 

cycle, rolling back its effects, and restarting it. This 

method is effective for all transaction types and durations, 

making it a robust deadlock detection solution. Given the 

rarity of deadlocks, WFG cycle detection is triggered only 

when needed, which helps optimize performance [74]. 

However, deadlock detection becomes more complex in 

nested transactions, where transactions can contain 

multiple levels of subtransactions. In these cases, 

deadlocks can occur both across different transaction 

levels and within the same hierarchy of subtransactions. 

Unlike single-level transactions, which depend solely on 

direct waits-for-lock relations, nested transactions require 

tracking both waits-for-lock and waits-for-commit 

relationships to fully capture potential deadlock scenarios. 

This added complexity increases the cost and difficulty of 

deadlock detection in nested environments. 

A. TYPES of DEADLOCKS in NESTED 

TRANSACTION 

This section explores deadlock detection in nested 

transactions, emphasizing the adaptation of single-level 

transaction concepts to address hierarchical complexities 

[75]. It identifies two main types of deadlocks: direct-wait 

and ancestor-descendant, utilizing the Wait-For Graph 

(WFG) for cycle detection. 

Effective deadlock detection requires extending single-

level transaction principles and incorporating additional 

mechanisms. 

1) DIRECT-WAIT DEADLOCKS: Occur when a 

transaction waits for a lock held by another transaction, 

detectable through direct-waits-for-lock relations in the 

WFG. A cycle indicates a deadlock, exemplified by 

mutual waiting between transactions A and B. 

2) ANCESTOR-DESCENDANT DEADLOCKS: Arise 

when a transaction waits for a lock held by its ancestor, 

affecting the entire hierarchy. Detection involves both 

direct-waits-for-lock and waits-for-commit relations, 

ensuring all superior transactions remain in a waiting state 

until resolution. 

In conclusion, the section underscores the importance of 

effective deadlock detection in nested transactions for 

maintaining system integrity and performance, 

highlighting the mechanisms that enable comprehensive 

detection and management of both direct-wait and 

ancestor-descendant deadlocks. 

B. DEADLOCK DETECTION STRATEGIES in 

NESTED TRANSACTION 

This section examines various deadlock detection 

strategies in nested transactions, emphasizing the 

challenges posed by hierarchical dependencies. It 

compares different approaches, showcasing their unique 

strengths and limitations. The selection of a strategy must 

align with the specific requirements of the system, 

balancing detection accuracy with resource efficiency. 

Deadlock detection in nested transactions (NTs) involves 

unique challenges due to the hierarchical nature of 

transaction dependencies. In NT systems that utilize locks 

for concurrency control, committed transactions retain 

their locks to their parent transactions instead of releasing 

them. This necessitates that deadlock detection algorithms 

consider these nested relationships. Numerous algorithms 

have been developed to tackle these challenges, each 

presenting distinct advantages and disadvantages. 

The Table IV below summarizes a comparative analysis 

of prominent deadlock detection strategies in NT systems, 

including Moss's, Rukoz's, Shin's, and Rezende's 

approaches, highlighting their key features, benefits, and 

drawbacks. Each deadlock detection strategy in nested 

transactions has its own strengths and weaknesses. Moss's 

approach effectively manages nested relationships but 

may lead to performance overhead. Rukoz's distributed 

method fits well with nested transaction structures but 

requires strong communication. Shin's edge-chasing 

algorithm avoids tree traversal but risks phantom 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5323 

deadlocks, while Rezende's detection arcs enhance 

performance but need careful management for accuracy. 

Choosing a strategy should align with the specific needs 

of the nested transaction system, balancing effective 

detection with efficient resource use. 

 

TABLE IV 

 OVERVIEW OF DEADLOCK DETECTION STRATEGIES FOR NESTED TRANSACTIONS 

        

In conclusion, analysing deadlock detection strategies 

highlights their unique attributes and challenges. Each 

method—Moss's, Rukoz's, Shin's, and Rezende's—offers 

distinct advantages, emphasizing the need for careful 

selection based on system requirements to achieve a 

balance between detection accuracy and resource 

efficiency. 

C. ISSUES AND CHALLENGES in DEADLOCK 

DETECTION in NESTED TRANSACTIONS 

This section highlights the complexities associated with 

deadlock detection in nested transactions, emphasizing the 

need for advanced strategies to effectively manage 

dependencies, dynamic behaviours, and resource 

contention. These factors are crucial for ensuring reliable 

performance in transactional systems. 

Detecting deadlocks in nested transactions presents 

several challenges arising from the intricate nature of 

transaction dependencies, fluctuating transaction 

behaviours, and competition for resources. Below is a 

comprehensive analysis of the primary issues related to 

deadlock detection in nested transactions, along with 

potential solutions for each challenge. A summary of these 

issues and their resolutions is provided in Table V. 

 

TABLE V 

 DEADLOCK DETECTION IN NESTED TRANSACTIONS ISSUES AND REMEDIES 

Deadlock Detection Strategy Advantages Disadvantages 

Analyses edges in the wait-for 

graph to find cycles, managing 

nested relationships. [76] 

Effectively handles nested 

transactions. 

Can incur performance overhead 

from extensive graph traversal. 

Uses a distributed representative 

graph for hierarchical deadlock 

detection. [77] 

Aligns with nested structures and 

reduces detection steps after root 

failures. 

Requires robust communication 

and relies on the root process's 

reliability. 

Implements an edge-chasing 

algorithm for indirect waiting in 

parallel nested transactions. [78] 

Avoids tree traversal and maintains 

consistent message overhead. 

Prone to phantom deadlocks due to 

communication delays. 

Introduces detection arcs to 

enhance deadlock management in 

the wait-for graph. [79] 

Improves performance by focusing 

on fewer graph edges. 

Needs careful management to 

ensure accurate deadlock 

detection. 

S.No. 

Issues in Deadlock 

Detection in Nested 

Transactions 

Description Resolution 

1 
Hierarchical 

Dependencies 

Nested transactions 

create a hierarchical 

structure that complicates 

the modelling and 

analysis of dependencies. 

Implement advanced 

modelling techniques to 

accurately represent 

dependencies within 

these hierarchies. 

2 Cyclic Dependencies 

Deadlocks occur due to 

cyclic waits, where 

transactions depend on 

each other for resources. 

These cycles can extend 

Develop algorithms 

capable of identifying 

and resolving cycles that 

span various levels of 

nesting. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5324 

 

         

Addressing the challenges of deadlock detection in nested 

transactions requires advanced algorithms tailored for 

these complex environments. Effective strategies for 

resource management, transaction coordination, and 

deadlock resolution are essential for creating reliable 

concurrent systems. The resolutions in Table V highlight 

the need for advanced modelling techniques, adaptive 

algorithms, and efficient resource allocation methods to 

effectively manage deadlocks. Implementing real-time 

detection and resolution systems will help maintain high 

performance and reliability under high-throughput 

conditions. 

In conclusion, successful deadlock detection in nested 

transactions is crucial for system reliability and 

performance. By focusing on advanced strategies and 

optimizing resource allocation, we can improve the 

efficiency of detection and resolution, resulting in robust 

concurrent systems that thrive in demanding 

environments. 

across multiple nesting 

levels, complicating 

detection efforts. 

3 
Dynamic Transaction 

Behaviour 

Transactions in 

concurrent environments 

display dynamic 

behaviours, with shifts in 

states and resource 

allocations, complicating 

deadlock detection and 

resolution. 

Utilize adaptive 

algorithms that can adjust 

to real-time changes in 

transaction states and 

resource allocations. 

4 Resource Contention 

Resource contention is a 

key issue in deadlock 

scenarios, as transactions 

vie for shared resources, 

potentially leading to 

starvation and deadlocks. 

Enhance resource 

allocation strategies to 

reduce contention and 

avert cyclic waits. 

5 Performance Impact 

Mechanisms for 

detecting and resolving 

deadlocks can impose 

computational overhead, 

adversely affecting 

system performance. 

Balancing accurate 

detection with minimal 

performance impact is 

crucial, particularly in 

high-throughput 

environments. 

Create efficient detection 

mechanisms that 

optimize for both 

accuracy and 

performance. 

6 
Transaction Rollback and 

Recovery 

Deadlock resolution 

frequently requires 

rolling back transactions 

and managing recovery 

processes, which can be 

complex in nested 

transactions due to the 

need for consistency 

across multiple levels. 

Design robust rollback 

and recovery protocols to 

maintain data 

consistency throughout 

all levels of nesting. 

7 
Scalability and 

Complexity 

The increasing number of 

transactions and nesting 

levels raises the 

complexity and 

scalability challenges for 

deadlock detection 

algorithms. 

Develop scalable 

algorithms that can 

effectively manage a 

large volume of 

transactions and 

extensive nesting. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5325 

In conclusion, deadlock detection in nested transactions is 

crucial for maintaining system integrity and performance. 

The hierarchical dependencies and dynamic behaviours in 

nested transactions require advanced detection strategies 

that balance accuracy and efficiency. Challenges such as 

cyclic dependencies, resource contention, and 

performance impact must be addressed with scalable 

algorithms and effective resource management. By 

leveraging adaptive techniques and robust rollback 

protocols, systems can efficiently detect and resolve 

deadlocks, ensuring reliability in complex transactional 

environments. 

IV.RECOVERY MODELS IN NESTED 

TRANSACTION 

This section introduces the concept of recovery in nested 

transactions, highlighting the importance of restoring 

databases to a consistent state after a failure. It also 

explores various recovery algorithms tailored for nested 

transactions, each offering distinct methods for 

addressing hierarchical dependencies and ensuring 

consistency across complex transaction environments. 

A. RECOVERY IN NESTED TRANSACTION 

This section provides an overview of recovery in nested 

transaction systems, focusing on the need for specialized 

methods to manage hierarchical dependencies and ensure 

data integrity. 

Recovery in transaction systems refers to the process of 

restoring a database to a consistent state after an error, 

crash, or failure. In transaction processing, recovery 

mechanisms are critical to maintaining the integrity and 

reliability of data by ensuring that incomplete or faulty 

transactions do not leave the database in an inconsistent 

state. When a failure occurs—whether due to system 

crashes, power outages, or software malfunctions—

recovery protocols work to either commit successfully 

completed transactions or roll back incomplete ones, 

preserving data consistency and protecting against data 

loss. In traditional flat transactions, recovery focuses on 

handling individual transactions, either completing them 

or undoing changes to return the system to a previous 

consistent state. However, as systems have evolved to 

support more complex applications, such as database 

management in large-scale, distributed, or real-time 

systems, the need for more advanced recovery models 

has grown. Nested transactions, which allow transactions 

to be structured hierarchically, require specialized 

recovery models to handle the dependencies between 

parent transactions and their subtransactions. This 

hierarchical structure introduces complexities that flat 

transaction recovery models cannot address, such as 

coordinating rollback operations across multiple levels 

and ensuring the consistency of interdependent 

transactions. Recovery techniques originally developed 

for flat transactions have been extended to support the 

unique requirements of nested transactions, where 

transactions are structured hierarchically with multiple 

levels [80]. In nested transaction systems, recovery is not 

limited to restoring individual transactions; it must also 

consider dependencies and hierarchical relationships 

between parent and subtransactions. 

B. TYPES of RECOVERY ALGORITHMS for 

NESTED TRANSACTIONS 

This section explores various recovery algorithms 

developed to address the unique requirements of nested 

transactions, focusing on their ability to maintain data 

consistency and integrity in hierarchical and complex 

environments. 

Various recovery algorithms have been adapted to this 

model, each with specific approaches to managing 

operations and ensuring consistency across transaction 

levels. 

1) INTENTION LIST AND UNDO-LOGGING 

RECOVERY ALGORITHMS: These two algorithms, 

initially designed for flat transactions, have been 

generalized to handle nested transactions by taking 

advantage of the commutative properties of operations 

[60] [62] [81]. Both methods focus on the semantics of 

operations at the leaf level, addressing recovery 

primarily for individual, lowest level subtransactions. 

The Intention List records planned changes without 

immediately applying them, allowing the system to 

revert to a consistent state if necessary. Undo-Logging 

records changes before they are executed, enabling 

rollback by reversing these logged changes. While 

effective at the leaf level, these algorithms do not fully 

capture dependencies between higher-level transactions. 

2) SYSTEM R MODEL FOR NESTED 

TRANSACTIONS: The System R recovery model 

expands upon flat transaction approaches by 

incorporating layer-specific semantics for two levels of 

nesting [10]. Unlike the Intention List and Undo-

Logging algorithms, which only consider the lowest 

level of transactions, the System R model accounts for 

the specific needs of each hierarchical layer. Different 

recovery rules apply to both parent and subtransaction 

levels, providing finer control over recovery actions and 

better handling dependencies. System R’s layered 

approach thus offers a robust and flexible framework for 

recovery in nested transactions. 

3) MULTI-LEVEL TRANSACTION RECOVERY 

MODEL: Supporting inter-transaction recovery, this 

model addresses dependencies and interactions across 

the transaction hierarchy, which is especially beneficial 

in nested transactions where subtransactions may span 

multiple levels [25] [82]. By implementing recovery 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5326 

mechanisms across the entire structure, the multi-level 

model ensures consistent restoration not only of 

individual subtransactions but also of their relationships 

with other transactions, reducing the risk of cascading 

failures and preserving the nested structure's integrity. 

4) WRITE-AHEAD LOGGING (WAL): The Write-

Ahead Logging (WAL) algorithm is a crash recovery 

method adapted for nested transactions, ensuring that any 

changes are logged before they are applied to the 

database [83] [84]. This enables recovery by replaying 

the log to restore a consistent state after a crash. In nested 

transactions, WAL provides a systematic approach to 

record changes across all levels, allowing reliable data 

recovery even in complex, multi-level environments. 

Each of these recovery models enhances flat transaction 

techniques to address nested transactions' unique 

requirements. Through adaptations for hierarchical 

structures and inter-transaction dependencies, these 

models support robust, reliable recovery processes that 

maintain data consistency and system integrity in 

complex transaction environments. 

In conclusion, effective recovery models are essential for 

maintaining data integrity in nested transaction systems, 

especially in the event of failures. By adapting traditional 

methods such as Intention List, Undo-Logging, System 

R, Multi-level Transaction Recovery, and Write-Ahead 

Logging, these advanced models meet the specific needs 

of hierarchical transactions. Together, they provide 

reliable mechanisms for restoring data consistency and 

system integrity across complex, multi-level 

environments. 

V.RESEARCH ISSUES in NESTED TRANSACTION  

This section addresses key challenges in real-time nested 

transactions, focusing on deadline propagation to align 

subtransactions deadlines and conflict resolution to 

prevent lower-priority transactions from blocking higher-

priority ones, ensuring timely execution in real-time 

systems. 

Real-time nested transaction models are a structured 

approach in time-sensitive systems, organizing complex 

tasks hierarchically where a main transaction (or parent) 

governs multiple dependent subtransactions. These 

models are crucial for applications requiring precise 

timing, with parent transactions overseeing multiple 

subtransactions. A major challenge in this context is 

ensuring that both parent and subtransactions adhere to 

deadlines while maintaining concurrency and consistency. 

The primary research issues in these models centre around 

deadline propagation and conflict resolution [18]. 

Deadline propagation involves assigning appropriate 

deadlines to subtransactions through methods such as 

absolute, normal, and average propagation. In absolute 

propagation, all transactions within a family share the 

same deadline; normal propagation adjusts deadlines 

based on the relationship between parent and child; and 

average propagation assigns deadlines based on the 

average deadlines of subtransactions. Conflict resolution 

focuses on addressing the Priority Inversion Problem, 

which arises when a lower-priority transaction blocks a 

higher-priority one, thereby disrupting the intended 

priority order. This issue is particularly pronounced in 

nested transactions, where parent and child transactions 

may run concurrently. In such cases, a high-priority parent 

transaction might be blocked by its lower-priority child, 

causing delays. Techniques like Priority Inheritance and 

Priority Abort Protocol help to resolve this. Priority 

Inheritance temporarily raises the priority of a lower-

priority transaction to match that of its parent, ensuring 

that the parent’s priority is respected [57]. Alternatively, 

the Priority Abort Protocol handles conflicts by aborting 

lower-priority transactions to maintain the correct priority 

order [4]. These strategies aim to ensure that higher-

priority transactions execute first, minimizing delays and 

preserving the correct sequence of transactions in real-

time systems. 

In conclusion, real-time nested transaction models 

effectively manage complex tasks in time-sensitive 

applications by addressing key issues like deadline 

propagation and conflict resolution. Methods such as 

absolute, normal, and average deadline propagation 

ensure aligned deadlines for subtransactions, while 

Priority Inheritance and Priority Abort Protocol tackle the 

Priority Inversion Problem. These strategies work 

together to support timely, priority-driven execution, 

enhancing consistency and concurrency in real-time 

systems. 

VI.ISSUES and CHALLENGES of NESTED 

TRANSACTION 

This section explores the challenges posed by nested 

transactions in database management and presents 

targeted solutions to address these complexities. It 

underscores the importance of continued research to 

optimize performance and uphold data integrity in 

sophisticated transactional environments.           

The implementation of nested transactions brings forth a 

unique array of challenges, requiring innovative 

solutions for effective database management. Table VI 

below provides a detailed examination of specific issues 

encountered in the nested transaction model, alongside 

descriptions and proposed resolutions. It explores how 

developers and researchers have approached 

complexities such as managing intra-transaction 

parallelism, establishing prioritization policies for 

subtransactions, and detecting deadlocks within nested 

transaction structures. Each challenge is matched with 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5327 

targeted solutions, including advanced concurrency 

control mechanisms and specialized protocols that 

uphold database coherence and ensure global 

serializability. This  

overview illuminates the intricacies of nested transaction 

management, offering valuable insights  

into ongoing efforts to enhance performance, maintain 

data consistency, and address the inherent complexities 

of layered transactional models. 

TABLE VI 

NESTED TRANSACTION ISSUES AND REMEDIES 

S. No Issues in 

Nested 

Transaction 

Model 

Description Issues Resolution 

1.  Handling of 

intra-

transactions 

parallelism  

In nested 

transactions, 

both intra-

transaction 

parallelism and 

inter-

transaction 

parallelism are 

present. 

To address this issue, implement the following 

solutions: Concurrency Control Mechanisms, 

Isolation Levels, Transaction Scheduling Policies, 

Resource Management, Performance Monitoring, and 

Tuning, Documentation and Best Practices. 

2.  Priority 

assignment 

policy for 

subtransactions 

[29] 

Data sharing 

among 

subtransactions 

can cause 

delays, so 

prioritization is 

needed to 

avoid 

execution 

delays. 

To address this issue, implement a priority assignment 

policy for subtransactions to ensure efficient execution 

and avoid delays. 

3.  Detecting 

deadlock in 

nested 

transactions 

[70] 

Nested 

transactions 

require both 

waits-for-lock 

and waits-for-

commit 

relations for 

deadlock 

detection. 

To address this issue, extend deadlock detection 

mechanisms to consider both waits-for-lock and waits-

for-commit relations in the context of nested 

transactions. 

4.  Priority 

assignment 

policy [52] 

[53] 

Traditional 

protocols for 

RTDBS often 

neglect 

transaction 

priorities. 

To address this issue, develop and incorporate priority 

assignment policies in protocols for real-time database 

systems to consider transaction priorities. 

5.  Concurrency 

control 

protocol for 

subtransactions 

[68], [69] 

Existing 

concurrency 

control 

protocols 

designed for 

flat 

transactions 

may lead to 

To address this issue, design concurrency control 

protocols specifically tailored for the concurrency of 

parent and child transactions in nested transaction 

models. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5328 

issues when 

applied in a 

nested 

environment. 

6.  Commit 

protocol for 

subtransactions 

[49] [69]  

Existing 

commit 

protocols may 

face challenges 

when applied 

to concurrent 

parent and 

child 

transactions in 

nested models. 

To address this issue, develop commit protocols that 

address the unique challenges presented by concurrent 

execution of parent and child transactions in nested 

environments. 

7.  Handling of 

priority 

inversion [55]  

Priority 

Inheritance and 

Priority Abort 

Protocols are 

used for 

priority 

inversion in 

advanced 

transaction 

models. 

To address this issue, implement Priority Inheritance 

and Priority Abort Protocols to address priority 

inversion issues in nested transaction models. 

8.  Preserving 

database 

coherence [85] 

Nested 

transactions 

are not atomic; 

thus, the 

definition of 

"N-ACID" 

properties 

(nested-all-or-

nothing, nested 

consistency, 

nested 

isolation, and 

nested 

durability) is 

necessary. 

To address this issue, define and ensure N-ACID 

properties (N-A, N-C, N-I, N-D) for nested 

transactions to preserve database coherence. 

9.  Adjusting 

transaction 

recovery 

according to 

control 

structure [79] 

Nested 

transactions 

have more 

splitable 

execution 

modules and 

finer control 

for recovery 

and 

concurrency 

compared to 

flat 

transactions. 

To address this issue, adapt transaction recovery 

mechanisms to account for the specific control 

structure and finer granularity of recovery in nested 

transactions. 

10.  Insurance of 

global 

Nested 

transaction 

models have 

To address this issue, research and develop methods to 

ensure the global serializability of distributed real-

time nested transactions in real-time database systems. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5329 

serializability 

[24] 

not been fully 

applied to real-

time database 

systems, 

raising 

concerns about 

the global 

serializability 

of distributed 

real-time 

nested 

transactions. 

11.  Handling of 

transaction 

parameters in 

nested 

transaction 

[32].   

The number of 

leaves and 

levels in nested 

transactions 

can impact 

performance. 

To address this issue, consider and optimize 

transaction parameters, such as the number of leaves 

and levels, to enhance the system's performance in 

nested transaction models. 

Table VI above encapsulates the varied challenges inherent 

in nested transaction models and presents practical 

solutions across key areas of database management. 

Navigating the complexities of nested transactions 

highlights the need for tailored approaches to ensure smooth 

execution and preserve data integrity. This examination 

emphasizes the ongoing efforts in research and 

development, showcasing the dynamic evolution of 

database systems. By refining protocols, addressing 

deadlock scenarios, and implementing priority assignment 

policies, the database community is unlocking the full 

potential of nested transactions. As technology advances, so 

too will our capacity to address these complexities, paving 

the way for resilient and efficient database management 

within intricate transactional environments.    

In conclusion, this exploration of challenges within nested 

transactions underscores the complexities of managing such 

systems. By pinpointing critical issues and suggesting 

targeted solutions, this section highlights the need for 

continued research and development to improve 

performance and uphold data integrity. As the field 

advances, the database community must persist in 

innovating and refining protocols to effectively handle the 

intricacies of nested transactions, setting the stage for more 

resilient and efficient database management in complex 

environments. 

VII. APPLICATIONS of NESTED TRANSACTION in 

DATABASES 

 This section highlights the importance of nested 

transactions in databases, focusing on their role in error 

isolation, concurrency, and fault tolerance. It outlines key 

advancements and their impact on database management 

systems. 

Nested transactions are foundational for managing complex 

operations in object-oriented and distributed databases. By 

structuring transactions into subcomponents, they enhance 

error isolation, support concurrent operations, and improve 

fault tolerance. This structured approach is essential for 

maintaining data consistency and reliability across 

distributed environments, making nested transactions 

integral to advanced database management systems. The 

following sections explore key advancements and 

applications in this area. Early work introduced a 

generalization of classical serializability theory, aimed at 

handling complex object bases with nested structures. 

Following this, a locking protocol was developed to address 

the commutativity of higher-level methods, allowing 

conflicts between lower-level methods to be ignored when 

applicable. Another concurrency control protocol was 

introduced to provide uniform handling of both class and 

instance objects. Semantic-based locking protocols were 

also implemented to enhance traditional nested transaction 

protocols by incorporating the rich semantics available in 

object-oriented databases. An open nested transaction 

model was later applied to mobile databases, organizing 

mobile transactions as sets of subtransactions. 

Subsequently, the multi-level transaction model was 

adapted to maintain replicated data and materialized views 

by parallelizing updates, and nested transactions were 

utilized to define workflow processes in hierarchical 

transaction management environments, streamlining 

complex transactions. These advancements highlight the 

essential role of nested transactions in achieving robust and 

efficient database transaction management. 

In conclusion, nested transactions are vital for robust 

database management, enabling fault tolerance, 

concurrency, and data integrity in complex, distributed 

environments. Their evolution through various protocols 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5330 

and models has strengthened their role in maintaining 

efficient and resilient transaction processing across modern 

systems. 

VIII.KEY APPLICATIONS of NESTED TRANSACTION 

This section explores the key applications of nested 

transactions in distributed systems, focusing on their ability 

to enhance fault tolerance by isolating errors within 

individual components. This isolation allows systems to 

handle partial failures smoothly, maintaining overall 

stability and reliability. Through these applications, nested 

transactions demonstrate their effectiveness in supporting 

consistency, recovery, and resilience, making them essential 

for robust distributed computing environments. 

Nested transactions are essential for enhancing fault 

tolerance and recovery within distributed systems by 

isolating failures within specific components, thus 

maintaining overall stability and reliability. This structured 

approach allows systems to handle partial failures in a way 

that prevents disruptions to entire transactions. Key 

applications leveraging nested transactions demonstrate 

these benefits across various distributed environments. For 

instance, the Argus System [86], [87] applies nested 

transactions to manage distributed computations with built-

in error isolation  while the System R [10]Database ensures 

data consistency through localized recovery mechanisms. 

Similarly, the Camelot Facility offers robust distributed 

transaction management, enhancing reliability [88]. The 

Clouds Operating System [89]increases system resilience 

by containing local failures, and the Eden File System 

[90]maintains distributed file consistency along with error 

isolation. Additionally, the Locus Operating System 

[91]supports hierarchical failure recovery, and Encina 

[92]provides atomic, reliable operations for distributed 

applications. Collectively, these applications underscore 

how nested transactions strengthen fault tolerance, stability, 

and reliability, making them invaluable for modern 

distributed computing systems.  

In conclusion, nested transactions enhance fault tolerance, 

consistency, and reliability in distributed systems by 

isolating errors within specific subcomponents. Their 

application across databases and operating systems 

demonstrates their role in ensuring robust, seamless 

operations, making them essential for resilient, distributed 

computing environments. 

IX.FUTURE RESEARCH DIRECTIONS 

This section discusses future research directions in nested 

transaction models, highlighting areas for improvement. It 

also explores the expanding applications of nested 

transactions, with a focus on enhancing transactional 

integrity in diverse and dynamic environments. 

Future research on nested transaction models can build 

upon the foundations discussed in this review by exploring 

several critical areas. In concurrency control and commit 

protocols, there is an opportunity to develop more robust 

solutions that address the specific needs of distributed and 

real-time systems, enabling smoother transaction execution 

in high-concurrency environments. Enhanced deadlock 

detection mechanisms are also essential; these methods 

should focus on minimizing detection time and resource 

consumption, particularly as transaction complexity grows 

with deeper nesting levels. Improvements in recovery 

models for nested transactions can ensure data consistency 

and system reliability, especially under failure conditions, 

while handling the unique dependencies between parent and 

subtransactions. In the realm of research issues, addressing 

scalability, flexibility, and performance bottlenecks in 

nested transaction models remains a priority. Issues and 

challenges related to interoperability, fault tolerance, and 

resource management also offer significant potential for 

research advancements, particularly in handling nested 

transactions in diverse and distributed database 

architectures. The applications of nested transactions in 

databases present further avenues for study, with 

opportunities to enhance database resilience and efficiency 

across a range of applications, from high-frequency trading 

to global supply chains. Lastly, the expansion of key 

applications of nested transactions beyond databases, 

including fields like IoT, blockchain, and complex event 

processing, suggests new frontiers for applying these 

models to maintain transactional integrity in dynamic, 

multi-system environments. 

X.CONCLUSION 

This section provides a comprehensive summary of the 

review paper, covering various aspects of nested 

transactions and highlighting key insights for advancing 

research in this area. 

In conclusion, this review paper provides a thorough 

analysis of nested transactions, beginning 

with Concurrency Control and Commit Protocols in Nested 

Transactions, which are critical for ensuring consistency 

and coordination across transaction hierarchies. The 

discussion on Deadlock Detection in Nested 

Transactions highlights specific methods for addressing 

complex inter-transaction dependencies and preventing 

deadlock situations. We examined Recovery Models in 

Nested Transactions, focusing on specialized recovery 

mechanisms that maintain data integrity by addressing the 

unique hierarchical structures of nested transactions. The 

section on Research Issues in Nested Transaction 

Model outlined open questions that remain to be addressed 

to further optimize transactional performance and 

reliability. Additionally, we analysed the Issues and 

Challenges of Nested Transactions, recognizing the 

complexities and potential limitations in implementing 

nested transaction models. The review of Nested 

Transaction Applications in Databases demonstrated the 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5331 

practical value of nested transactions in managing complex 

operations, while Key Applications of Nested 

Transactions showed their adaptability and utility in diverse 

fields, including distributed and real-time environments. 

Lastly, Future Research Directions were discussed, 

identifying opportunities to enhance scalability, 

concurrency, and fault tolerance to meet the demands of 

increasingly complex systems. These insights offer a 

comprehensive foundation for ongoing research and 

development in nested transaction management. 

References 

[1] T. C. a. C. E. Begg, Database Systems: A Practical 

Approach to Design, Implementation and 

Management, II, Ed., Boston, MA: Addison-Wesley 

Longman Publishing Co., Inc., 1998.  

[2] M. T. Ö. a. P. Valduriez, Principles of Distributed 

Database Systems, IV, Ed., Springer, 2020, pp. pp. 1-

674. 

[3] K. Ramamritham, “Real-time databases,” Distributed 

and Parallel Databases, vol. 01, no. 02, pp. 199-226, 

1993.  

[4] R. A. a. H. Garcia-Molina, “Scheduling Real-Time 

Transactions: A Performance Evaluation,” in 34th 

International Conference on Very Large Data Bases, 

1988.  

[5] J. S. a. W. Zhao, “On real-time transactions,” in ACM 

SIGMOD , March 1988..  

[6] M. C. a. M. L. J. Haritsa, “Data Access Scheduling in 

Firm Real-Time Database Systems,” International 

Journal of Real-Time Systems, vol. 4, no. 3, 1992.  

[7] M. M. a. A. K. S. U. Shanker, “Distributed real-time 

database systems: Background and literature review,” 

International Journal of Distributed and Parallel 

Databases, vol. 23, no. 2, p. 127–149, 2008.  

[8] J. Gray, “A Transaction Model,” in ICALP, 1980.  

[9] J. Gray, “Notes on database operating systems,” in 

Lecture Notes in Computer Science,Operating 

Systems -- An Advanced Course, vol. 60, Berlin, 

Springer-Verlag, 1978, pp. 393-481. 

[10] J. Gray, “The recovery manager of the system R 

database manager,” ACM Computing Surveys, vol. 

13, p. 223–244 , 1981.  

[11] S. M. Y. B. H. K. a. A. S. R. Rastogi, “On correctness 

of non-serializable executions,” in 12th ACM 

SIGACT-SIGMOD-SIGART Symposium on 

Principles of Database Systems, 1993.  

[12] S. A. a. V. Vianu, “Equivalence and optimization of 

relational transactions,” Journal of the ACM, vol. 35, 

pp. 70-120, 1988.  

[13] J. Gray, “Why do computers stop and what can be 

done about it,” in CIPS (Canadian Information 

Processing Society) Edmonton '87 Conference 

Tutorial Notes, Edmonton, Canada, 1987.  

[14] H. Papadimitriou, “Serializability of concurrent 

database updates,” Journal of the ACM, vol. 26, no. 4, 

p. 631–653, 1979.  

[15] P. M. L. I. a. D. J. R. R. E. Stearns, “Concurrency 

controls for database systems,” in 17th Symposium on 

Foundations of Computer Science, 1976.  

[16] H. T. K. a. C. H. Papadimitriou, “An optimality theory 

of concurrency control for databases,” in ACM 

SIGMOD International Conference on Management 

of Data, 1979.  

[17] M. J. C. a. M. Livny, “Distributed Concurrency 

Control Performance: A Study of Algorithm, 

Distribution, and Replication,” in 14th VLDB 

Conference, Los Angeles, California, 1988.  

[18] Y. C. a. L. Gruenwald, “Research Issues for a Real-

Time Nested Transaction Model,” in 2nd IEEE 

Workshop on Real-Time Applications, July 1994.  

[19] M. O. A. E. B. Medjahed, “Generalization of ACID 

Properties,” in Encyclopedia of Database Systems, 

Boston, MA, 2009.  

[20] H. G.-M. a. K. Salem, “Sagas,” in ACM SIGMOD 

International Conference on Management of Data, 

1987.  

[21] M. R. a. A. Sheth, Specification and execution of 

transactional workflows, K. W, Ed., ACM 

Press/Addison-Wesley, 1995, p. 592–620. 

[22] Pu, “Superdatabases for composition of 

heterogeneous databases,” in 4th International 

Conference on Data Engineering, 1988.  

[23] Z. a. B. Bhargava, Flex Transactions, Ö. M. Liu L., 

Ed., Boston, MA: Springer, 2009.  

[24] J. E. B. Moss, “Nested Transactions: An Approach to 

Reliable Distributed Computing,” Cambridge, MA, , 

1981. 

[25] G. Weikum, “ Principles and realization strategies of 

multi-level transaction management,” ACM Trans. 

Database System, vol. 16, no. 1, p. 132–180, 1991.  

[26] G. W. a. H. Schek, “Multi-level transactions and open 

nested transactions,” 1991. 

[27] L. A. Bjork, “Recovery scenario for a DB/DC 

system,” in ACM Annual Conference, 1973.  

[28] T. Davies, “Recovery semantics for a DB/DC system,” 

in ACM Annual Conference, 1973.  

[29] R. Guerraoui, “Nested transaction: Reviewing the 

coherence contract,” Elsevier Sciences Journal, vol. 

84, p. 161–172, 1995.  

[30] G. Karabatis, “Nested Transaction Models,” in 

Encyclopedia of Database Systems, New York, 2017.  

[31] Buchmann, “Open Nested Transaction Models,” in 

Encyclopedia of Database Systems, New York, 2016.  

[32] H. S. H. a. M. E. E.-S. A. A. EI-Sayed, “Effect of 

shaping characteristics on the performance of nested 

transactions,” Information and Software Technology, 

vol. 43, no. 10, pp. 579-590, 2001.  



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5332 

[33] T. H. a. K. Rothermel, “Concurrency Control Issue in 

Nested Transactions,” VLDB J, vol. 2, no. 1, pp. 39-

74, 1993.  

[34] P. A. B. a. N. Goodman, “Concurrency control in 

distributed database systems,” ACM Computing 

Surveys, vol. 13, no. 2, p. 185–222, 1981.  

[35] V. H. a. N. G. P. A. Bernstein, Concurrency Control 

and Recovery in Database Systems, Addison Wesley, 

1987.  

[36] R. H. Thomas, “A majority consensus approach to 

concurrency control for multiple copy databases,” 

ACM Transactions on Database Systems, 1979.  

[37] H. T. K. a. J. T. Robinson, “On optimistic methods for 

concurrency control,” ACM Transactions on Database 

Systems, vol. 6, no. 2, p. 213–226, 1981.  

[38] J. N. G. R. A. L. a. I. L. T. K. P. Eswaran, “The notions 

of consistency and predicate locks in a database 

system,” Communications of the ACM, vol. 19, no. 

11, p. 624–633, 1976.  

[39] P. A. A. a. J. D. Day, “A principle for resilient sharing 

of distributed resources,” in 2nd Int. Conf. on 

Software Engineering, 1976.  

[40] M. Stonebraker, “Concurrency control and 

consistency of multiple copies of data in distributed 

INGRES,” IEEE Transactions on Software 

Engineering, vol. 5, no. 3, pp. 188-194, May 1979.  

[41] L. a. R. O. C. Mohan, “Transaction management in the 

r* distributed database management system,” ACM 

Transactions on Database Systems, vol. 11, no. 4, p. 

378–396, 1986.  

[42] Tandem, “Nonstop SQL – a distributed high-

performance, high-availability implementation of 

SQL,,” in Int. Workshop on High-Performance 

Transaction Systems,, 1987.  

[43] Tandem, “A benchmark of NonStop SQL on the debit 

credit transaction,” in ACM SIGMOD Int. Conf. on 

Management of Data, 1988.  

[44] Borr, “High performance SQL through low-level 

system integration,” in ACM SIGMOD Int. Conf. on 

Management of Data, 1988.  

[45] H. a. J. P. Verjus, “An algorithm for maintaining the 

consistency of multiple copies,” in 1st Int. Conf. on 

Distributed Computing Systems, 1979.  

[46] P. Reed, “Naming and synchronization in a 

decentralized computer system,” Cambridge, Mass., 

Sept., 1978. 

[47] P. Reed, “Implementing Atomic Actions on 

Decentralized Data,” ACM Transactions on Computer 

Systems,, vol. 1, pp. 3-23, 1983.  

[48] B. a. B. Mahbod, “Generalized version control in an 

object-oriented database,” in IEEE 4th Int. Conf. Data 

Engineering, February, 1988.  

[49] H. T. C. a. W. Kim, “A unifying framework for 

versions in a CAD environment,” in Int. Conf. Very 

Large Data Bases, Kyoto, Japan, 1986.  

[50] H. T. C. a. W. Kim, “Versions and change notification 

in an object-oriented database system,” in Design 

Automation Conference, 1988.  

[51] K. a. K. Y. L. A. Chiu, “Comparing two-phase locking 

and optimistic concurrency control protocols in 

multiprocessor real-time databases,” in 5th 

International Workshop on Parallel and Distributed 

Real-Time Systems and 3rd Workshopon Object-

Oriented Real-Time Systems, 1997.  

[52] M. C. a. M. L. R. Agrawal, “Concurrency Control 

Performance Modeling: Alternatives and 

Implications,” ACM Transactions on Database 

Systems, Dec. 1987.  

[53] K. R. a. S. C. J. A. Stankovic, “Evaluation of a Flexible 

Task Scheduling Algorithm for Distributed Hard Real-

Time Systems,” IEEE Transactions on Computers, 

vol. 34, no. 12, pp. 1130-1143, Dec. 1985.  

[54] J. L. P. a. A. Silberschatz, Operating System Concepts, 

Addison-Wesley Publishing Company, 1985.  

[55] J. A. S. a. D. T. J. Huang, “On using priority 

inheritance in real-time databases,” in Twelfth. IEEE 

Real-Time Systems Symposium, 1991.  

[56] S. D. a. L. Sha, “Sources of Unbounded Priority 

Inversion in Real-Time Systems and a Comparative 

Study of Possible Solutions,” ACM Operating 

Systems Review, p. 110–120, 1992.  

[57] W. u. Haque, “Transaction Processing in Real-Time 

Database Systems,” 1993. 

[58] N. Lynch, “Concurrency control for resilient nested 

transactions,” Advances in Computing Research, vol. 

3, p. 335–376, 1986.  

[59] N. L. a. M. Merrit, “Introduction to the theory of 

nested transactions,” Cambridge, Mass, 1986. 

[60] N. L. M. M. a. W. E. W. A. Fekete, “Nested 

transactions and read/write locking,” in 6th ACM 

Symposium on Principles of Database Systems, San 

Diego, CA, 1987.  

[61] J. K. L. a. A. Fekete, “Multi-granularity locking for 

nested transaction systems,” in MFDBS'91, 1991.  

[62] N. L. M. M. a. W. E. W. A. Fekete, “Commutativity-

based locking for nested transactions,” Journal of 

System Sciences, vol. 41, p. 65–156, 1990.  

[63] S. N. M. a. B. C. S. K. Madria, “Formalization and 

correctness of a concurrency control algorithm for an 

open and safe nested transaction model using I/O 

automaton model,” in 8th International Conference on 

Management of Data (COMAD'97), Madras, India, 

1997.  

[64] R. a. T. Harder, “Concurrency control in nested 

transactions with enhanced lock modes for KBMSs,” 

in 6th International Conference on Database and 

Expert Systems Applications (DEXA'95), London, 

UK,, 1995.  



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5333 

[65] K. G. a. N. Lynch, “Nested transactions and quorum 

consensus,” ACM Transactions on Database Systems, 

vol. 19, p. 537–585, 1994.  

[66] F. a. T. Kameda, “Concurrency control of nested 

transactions accessing B-trees,” in 8th ACM 

Symposium on Principles of Database Systems, 1989.  

[67] S. N. M. a. B. C. S. K. Madria, “Formalization of 

linear hash structures using nested transactions and 

I/O automaton model,” in IADT 98, Berlin, Germany, 

1997.  

[68] S. L. A. a. A. M. A. M. Abdouli, “A System Supporting 

Nested Transactions in DRTDBSs,” in 1st 

International High-Performance Computing, 

September 2005.  

[69] S. A. Majed Abdouli, “Scheduling distributed real-

time nested transactions,” in IEEE ISORC, IEEE 

Computer Society, 2005.  

[70] J. H. a. K. Ramamritham, “The prompt real-time 

commit protocol,” IEEE Transactions on Parallel and 

Distributed Systems, 2000.  

[71] P. G. Ceri S, Distributed Database Principles and 

Systems, New York: McGraw-Hill, 1984.  

[72] M. J. H. L. Chandy M, “Distributed deadlock 

detection,” ACM Trans Comput Syst. , vol. 1, no. 2, 

pp. 144-56, 1983.  

[73] RC, “Some Deadlock Properties in Computer 

Systems,” ACM Comput Surveys, vol. 4, no. 3, pp. 

179-96, 1972.  

[74] R. A. Gray J, Transaction Processing: Concepts and 

Techniques, San Mateo: : Morgan Kaufmann Publ, 

1993.  

[75] R. M, “Hierarchical Deadlock Detection for Nested 

Transactions,” Distrib Comput. , vol. 4, no. 3, pp. 123-

129, 1991.  

[76] N. M. Sinha MK, “A Priority Based Distributed 

Deadlock Detection Algorithm,” IEEE Trans Softw 

Eng. , vol. 11, no. 1, pp. 67-80, 1985.  

[77] M. Rukoz, A distributed solution for detecting 

deadlock in distributed nested transaction systems, 

vol. 392, J. R. M. Bermond, Ed., Berlin, Heidelberg: 

In Distributed Algorithms,Lecture Notes in Computer 

Science,Springer, 1989.  

[78] S. C. M. Dong C. Shin, “A deadlock detection 

algorithm for nested transaction model,” 

Microprocessing and Microprogramming, vol. 28, no. 

1, pp. 9-14, 1990.  

[79] T. H. A. G. a. J. L. R. F. Resende, “Detection arcs for 

deadlock management in nested transactions and their 

performance,” in Advances in Databases, BNCOD 

,Lecture Notes in Computer Science,Springer, 

Berlin,Heidelberg, 1997.  

[80] S. K. Madria, “A Study of the Concurrency Control 

and Recovery Algorithms in Nested Transaction 

Environment.,” The Computer Journal, vol. 40, no. 10, 

pp. 630-639, 1997.  

[81] N. L. a. W. E. W. Alan Fekete, “A serialization graph 

construction for nested transactions.,” in Ninth ACM 

SIGACT-SIGMOD-SIGART symposium on 

Principles of database systems (PODS '90), New York, 

NY, USA, 1990.  

[82] H. C. B. P. a. M. P. Weikum, “Multi-level recovery,” 

in 9th ACM Symposium on Principles of Database 

Systems, Nashville, TN, 1990.  

[83] K. a. M. C. Rothermel, “ARIES/NT: a recovery 

method based on write-ahead logging for nested 

transactions,” in In Proceedings of the 15th 

international conference on Very large data bases 

(VLDB '89), San Francisco,CA,USA, 1989.  

[84] H. D. L. B. P. H. a. S. P. Mohan, “ARIES: a transaction 

recovery method supporting fine-granularity locking 

and partial rollbacks using write-ahead logging,” 

ACM Trans. Database Systems, vol. 17, no. 1, pp. 94-

162, 1992.  

[85] K. R. Theo Haerder, “Concepts for transaction 

recovery in nested transactions,” in ACM SIGMOD, 

1987.  

[86] Liskov, “Distributed programming in Argus,” 

Commun. ACM, vol. 31, no. 3, p. 300–312, 1988.  

[87] &. D. M. &. H. M. &. J. P. &. S. R. &. W. W. Liskov, 

Argus Reference Manual, 1987.  

[88] R. F. P. a. G. B. Z. Spector, “Camelot: a flexible, 

distributed transaction processing system,” in Digest 

of Papers, COMPCON Spring 88 Thirty-Third IEEE 

Computer Society International Conference, San 

Francisco, CA, USA,, 1988.  

[89] R. J. L. a. W. F. A. P. Dasgupta, “The Clouds 

distributed operating system: functional description, 

implementation details and related work,” in The 8th 

International Conference on Distributed, San Jose, 

CA, USA, 1988.  

[90] M. J. J. D. N. J.-L. B. a. C. P. W. H. Jessop, “The Eden 

transaction based file system,” in 2nd Symp. 

Reliability in Distributed Software and Database 

Systems, 1982.  

[91] D. M. a. G. J. P. Erik T. Mueller, “A nested transaction 

mechanism for LOCUS,” in ninth ACM symposium 

on Operating systems principles (SOSP '83), New 

York, NY, USA, 1983.  

[92] “Security Service Specification, Version 1.0,” 1996. 

 

Mrs. Meenu is an Associate 

Professor in the department of 

Computer Science & Engineering at 

the Madan Mohan Malaviya 

University of Technology, 

Gorakhpur where she has been a 

faculty member since 2003. She is 

Chairperson of Women Cell as well 

as Women Welfare and 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5312-5334  |  5334 

AntiHarassment Cell. She completed her M.Tech. at Madan 

Mohan Malaviya University of Technology. She has served 

as the Session Chair for UPCON-2018 (5th IEEE Uttar 

Pradesh Section International Conference). She is the author 

of 64 research papers, which have been published in various 

National & International Journals/Conferences. She is a 

reviewer of many International Journals/ Conferences and 

Editorial Board member of International Journals. She is also 

member of many Professional Societies. Her research 

interest lies in the area of Distributed Real Time Database 

Systems. She has collaborated actively with researchers in 

several other disciplines of computer science, particularly 

machine learning. 

 


