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Abstract: Spoofing attacks in biometric systems pose significant challenges to security and reliability, especially 

in the context of finger vein recognition. This paper investigates spoofing techniques targeting finger vein 

authentication systems and explores the effectiveness of texture descriptors in counteracting such attacks. We 

propose a novel approach that utilizes advanced texture descriptors, such as Local Binary Patterns (LBP), Gabor 

filters, and Gray-Level Co-occurrence Matrix (GLCM), to capture the unique textural features of authentic finger 

vein patterns. These descriptors are employed to differentiate between genuine and spoofed finger vein images, 

enhancing the robustness of the system against presentation attacks. Our experimental results demonstrate that 

texture descriptors can significantly improve the accuracy of finger vein recognition systems, effectively 

identifying counterfeit or altered finger vein patterns, and mitigating spoofing risks. The proposed method offers 

a promising solution to enhance the security of biometric authentication systems, providing a higher level of 

protection against fraudulent attempts. 

Keywords: Finger Vein Authentication, Biometric Security, Spoofing Attacks, Texture Descriptors, Local Binary 

Patterns, Presentation Attack Detection. 

1.Introduction 

Biometric authentication systems have 

gained widespread adoption due to their ability to 

provide secure and convenient identity verification. 

Among these, finger vein recognition has emerged 

as a promising method due to its high accuracy, 

security, and difficulty in spoofing. Finger vein 

patterns are unique to individuals and are located 

beneath the skin, making them challenging to 

replicate using conventional spoofing techniques. 

However, as the use of biometric systems continues 

to rise, so does the sophistication of spoofing 

attacks, which aim to deceive the system by using 

fake biometric traits, such as synthetic or altered 

finger vein images (Jain et al., 2008). 

Spoofing attacks present a significant 

challenge for biometric systems, including those 

based on finger vein recognition. These attacks can 

undermine the integrity of biometric authentication 

by tricking the system into accepting fraudulent 

identities. To address this, various countermeasures 

have been proposed to detect and prevent spoofing, 

but many still struggle with effectively identifying 

sophisticated presentation attacks. One of the critical 

areas of focus in improving the security of finger 

vein authentication is the analysis of texture features 

that capture the subtle details of authentic finger 

vein patterns, which can distinguish them from fake 

or manipulated images (Zhang et al., 2015). 

Texture descriptors play a crucial role in 

improving the robustness of finger vein recognition 

systems against spoofing. These descriptors analyze 

the surface patterns and textural features of the vein 

images, which are essential for distinguishing 

genuine biometric data from counterfeits. Several 

texture analysis techniques, such as Local Binary 

Patterns (LBP), Gabor filters, and Gray-Level Co-

occurrence Matrix (GLCM), have shown promise in 

extracting the intricate features of finger vein 

patterns. By leveraging these texture descriptors, it 

becomes possible to enhance the discrimination 

between authentic and spoofed finger vein images, 

increasing the overall accuracy and reliability of the 

system. 
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This paper explores the use of texture 

descriptors in countering spoofing attacks in finger 

vein recognition systems. We propose an innovative 

approach that integrates these descriptors to improve 

the detection of spoofed finger vein patterns. 

Through extensive experimentation, we 

demonstrate how texture-based techniques can be 

employed to identify fake or altered biometric data 

with higher accuracy, offering a more secure 

solution for biometric authentication. Our findings 

suggest that leveraging advanced texture analysis 

methods is an effective strategy for mitigating the 

risks of spoofing in finger vein authentication 

systems, ultimately strengthening their security and 

reliability. 

2. Review of literature 

Biometric authentication, especially finger 

vein recognition, has emerged as a robust solution 

for identity verification due to its high accuracy and 

difficulty in being forged. The uniqueness of vein 

patterns, their internal location, and the difficulty in 

replicating these patterns with external materials 

make finger vein biometrics a promising avenue for 

secure authentication. This review explores various 

approaches and techniques in finger vein spoof 

detection, particularly focusing on the use of texture 

descriptors to improve the security of these systems. 

Wang et al. (2019) proposed a robust spoof 

detection method using Local Binary Patterns (LBP) 

to extract texture features from finger vein images. 

LBP has shown promise in capturing fine-grained 

textural information, which can distinguish between 

genuine and fake vein patterns. One of the 

advantages of using LBP is its simplicity and 

computational efficiency, making it suitable for real-

time applications. However, LBP may struggle with 

high-resolution vein patterns and may not perform 

well in scenarios involving high-quality spoofed 

images, where subtle textural differences are harder 

to detect. 

The authors Xie and Wu (2015) employed Gabor 

wavelet features to enhance vein pattern recognition, 

combining these features with support vector 

machines for better spoof detection performance. 

Gabor filters are effective at capturing frequency 

and orientation information, making them 

particularly useful in detecting fine-grained vein 

texture details. The computational complexity of 

Gabor filters can be a limitation, especially when 

applied to large datasets or real-time systems. Chen 

and Li (2020) reviewed several texture analysis 

methods and their application in spoof detection for 

biometric systems. They highlighted the efficacy of 

LBP and GLCM in detecting minute differences 

between genuine vein patterns and counterfeits. One 

of the advantage is GLCM provides valuable 

statistical information about the image texture, 

offering robust performance in varying 

environmental conditions. GLCM’s computational 

cost increases with image size and may lead to 

slower performance on high-resolution 

images.Zhang et al. (2015) demonstrated that 

combining multiple texture descriptors with deep 

learning models can significantly improve the 

classification accuracy of spoof detection in finger 

vein systems. The fusion of multiple descriptors 

allows for a more comprehensive feature extraction 

process, increasing the detection capability for 

complex spoofing methods. The fusion of multiple 

texture descriptors often results in higher 

computational costs, which could affect real-time 

processing. 

Deep learning has also been applied to enhance the 

robustness of spoof detection systems. Kang and 

Cho (2021) proposed a deep learning-based 

approach that integrated texture analysis with 

convolutional neural networks (CNNs) for detecting 

spoofed finger vein images. This model showed 

superior performance by automatically learning 

features directly from raw vein images, which 

significantly reduced the need for manual feature 

extraction. Deep learning models excel in feature 

extraction and can achieve high accuracy without 

the need for domain-specific knowledge or 

handcrafted features. These models require large 

labeled datasets for training and can be 

computationally expensive, making them less 

feasible for low-resource environments. 

Li and Du (2016) demonstrated the potential of deep 

neural networks (DNNs) for finger vein spoof 

detection. Their approach used a combination of 

deep feature extraction techniques and classification 

layers to distinguish between authentic and spoofed 

finger vein images. DNNs are highly effective in 

detecting intricate patterns and have the flexibility to 

be adapted to various biometric systems. Training 

deep neural networks requires significant 

computational resources and time, making them less 

suitable for systems with limited hardware. 
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3. Proposed Method: Finger Vein Spoof Detection 

Using Texture Descriptors and Deep Learning 

The proposed method combines texture 

descriptors and deep learning models for enhanced 

finger vein spoof detection. The objective is to 

improve the robustness and accuracy of spoof 

detection while maintaining computational 

efficiency for real-time applications. The method 

leverages the complementary strengths of traditional 

texture analysis techniques, such as Local Binary 

Patterns (LBP) and Gray-Level Co-occurrence 

Matrix (GLCM), alongside the advanced feature 

learning capabilities of deep neural networks.  

3.1 Image Acquisition and Preprocessing 

Finger vein images are captured using 

Near-Infrared (NIR) imaging. This imaging 

technique enhances the visibility of veins due to the 

absorption of infrared light by the veins, making 

them distinct from the surrounding tissue. 

Preprocessing is applied to improve the quality of 

the captured images. The proposed method involves 

the following steps: 

• Hybrid Infrared (IR) and Visible Spectrum Imaging 

• Multi-scale Image Enhancement 

• Deep Image Denoising 

3.1.1. Hybrid Infrared (IR) and Visible Spectrum 

Imaging 

To enhance the quality and visibility of the 

finger vein patterns, a hybrid imaging system is 

proposed, which combines both infrared (IR) and 

visible light spectra. This hybrid approach can 

address the limitations of traditional infrared-based 

imaging systems by capturing both surface and sub-

surface features of the finger. The visible spectrum 

provides additional surface texture, while the 

infrared spectrum highlights internal features, such 

as veins, with greater contrast. 

• Infrared (IR) Imaging: This technique relies on the 

fact that veins absorb infrared light, making them 

highly visible in near-infrared (NIR) wavelengths. 

This allows for clearer visualization of the internal 

structure of veins. 

• Visible Spectrum Imaging: The visible light imaging 

helps capture the skin surface texture, which can be 

useful for distinguishing between genuine vein 

patterns and potential spoofing materials. 

By using both spectra, the system can 

provide a more comprehensive representation of the 

finger, improving the accuracy of vein pattern 

detection and spoof detection. 

3.1.2. Multi-scale Image Enhancement 

To address the issues of low contrast and 

blurry vein images, a multi-scale enhancement 

technique is proposed. This method involves 

applying wavelet transform-based multi-scale 

enhancement to improve vein visibility while 

preserving the fine details of the image. The key 

steps include: 

• Wavelet Transform: The wavelet transform is 

applied to decompose the image into different 

frequency sub-bands (low, medium, and high-

frequency components). This allows for the 

enhancement of different image details at multiple 

scales. 

• Contrast Adjustment: The contrast of each scale is 

adjusted separately, followed by recombination of 

the enhanced scales to generate an overall sharpened 

and more detailed image. The use of wavelet 

transforms helps to highlight the vein structure 

without amplifying noise. 

This technique ensures that vein patterns 

are more distinguishable, making them easier to 

analyze for spoof detection. 

3.1.3. Deep Image Denoising 

To reduce the impact of noise and other 

artifacts (such as background clutter), deep 

convolutional autoencoders (DCAE) are employed 

for image denoising. This deep learning-based 

approach uses a convolutional neural network 

(CNN) to automatically learn the optimal 

representation for denoising finger vein images. Key 

features of this method include: 

• Autoencoder Network: The network is trained to 

map noisy images to their clean counterparts by 

learning the inherent structure of finger vein images. 

• Layer-wise Denoising: The encoder-decoder 

architecture progressively denoises the image by 

removing low-frequency noise while preserving 

high-frequency vein details. 

3.2 Feature Extraction Using Texture Descriptors 

Texture descriptors are utilized to capture 

fine-grained information from the vein images. 

Three popular techniques, Local Binary Patterns 
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(LBP), Gray-Level Co-occurrence Matrix (GLCM), 

and Gabor filter are used. 

3.2.1 Local Binary Patterns (LBP) 

Local Binary Patterns (LBP) is a popular 

texture descriptor for capturing local image patterns 

based on the relationship between a central pixel and 

its surrounding neighbors. It is widely used in 

various biometric recognition systems due to its 

simplicity and computational efficiency. 

Steps in LBP Extraction: 

• Neighborhood Comparison: For each pixel in the 

image, a comparison is made between the intensity 

value of the pixel and the surrounding pixels in a 

local neighborhood (typically a 3x3 or 5x5 region). 

• Binary Encoding: A binary code is generated based 

on whether the neighboring pixels have a greater or 

lesser intensity than the central pixel. A "1" is 

assigned if the neighbor’s intensity is greater than 

the central pixel, and a "0" otherwise. 

• Pattern Formation: The binary values are 

combined to form a unique pattern (i.e., a binary 

number), which represents the local texture of the 

region. 

• Histogram Representation: The binary codes are 

then converted into a histogram of the LBP values, 

which is used to represent the local texture 

characteristics of the vein patterns. 

3.2.2 Gray-Level Co-occurrence Matrix (GLCM) 

Gray-Level Co-occurrence Matrix 

(GLCM) is a statistical method used to extract 

texture features based on the spatial relationship 

between pixels in an image. The GLCM captures 

how frequently pairs of pixel with specific values 

and in a specified spatial relationship occur in an 

image. 

Steps in GLCM Extraction: 

• Matrix Construction: A GLCM is generated for 

each pixel pair based on their relative position (e.g., 

horizontal, vertical, diagonal). This matrix 

represents the joint probability distribution of pixel 

intensity values in the image. 

• Calculation of Texture Features: From the GLCM, 

various statistical features can be derived, such as 

contrast, correlation, energy, and homogeneity, 

which describe different aspects of the texture. 

3.2.3 Gabor Filters 

Gabor Filters are another effective feature 

extraction technique that captures texture 

information by analyzing spatial frequency 

components of an image. Gabor filters can 

efficiently capture the orientation and frequency 

characteristics of vein patterns, making them 

particularly useful for vein pattern recognition. 

Steps in Gabor Filter Extraction: 

• Filtering: A series of Gabor filters, each 

corresponding to a specific frequency and 

orientation, is applied to the image. These filters 

help capture both spatial and frequency features, 

which are critical for identifying vein structures. 

• Feature Representation: The output of the Gabor 

filters is used to form feature maps that represent the 

spatial frequency characteristics of the vein image. 

• Statistical Analysis: The Gabor-filtered images are 

then analyzed to extract features like energy, 

entropy, and standard deviation, which are used to 

characterize the vein texture. 

3.3 Deep Learning Model for Classification 

A convolutional neural network (CNN) is 

employed to learn high-level features directly from 

the raw vein images. The CNN model is designed to 

automatically detect patterns in the images that can 

differentiate between authentic and spoofed vein 

patterns. The CNN consists of multiple layers, 

including convolutional layers, pooling layers, and 

fully connected layers, which enable the model to 

learn spatial hierarchies of features. The advantage 

of using CNNs is that they eliminate the need for 

manual feature extraction and can automatically 

learn complex features from the data. 

The CNN is trained on a labeled dataset 

containing both genuine and spoofed vein images. 

The model learns to classify the images based on the 

learned feature representations. In addition to using 

the CNN, the texture descriptors (LBP and GLCM) 

are fused with the CNN-based features to provide a 

more comprehensive set of features. The feature 

fusion improves the model’s performance by 

incorporating both low-level texture information 

and high-level learned features. 

3.3.1 Model Architecture for Finger Vein 

Recognition 

A typical CNN architecture for finger vein 

classification can be structured as follows: 

1. Input Layer: 
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• The input layer receives the finger vein image, 

which is usually resized to a fixed resolution, such 

as 224x224 or 128x128 pixels. 

2. First Convolutional Block: 

• The first convolutional layer applies a set of filters 

to the input image to detect low-level features like 

edges. 

• Activation function: ReLU 

• Pooling: Max pooling with a 2x2 window to reduce 

the spatial resolution. 

3. Second Convolutional Block: 

• A second set of convolutional layers is applied to 

detect more complex patterns (e.g., vein structures, 

texture). 

• Activation function: ReLU 

• Pooling: Max pooling to further reduce image size 

and focus on important features. 

4. Additional Convolutional Blocks (Optional): 

• If necessary, additional convolutional blocks can be 

added to detect even more intricate patterns and 

textures in the finger vein images. 

5. Fully Connected Layers: 

• After the convolutional layers, the feature maps are 

flattened and passed through one or more fully 

connected layers to make decisions based on the 

learned features. 

• Dropout layers may be added to prevent overfitting 

by randomly setting a fraction of the weights to zero 

during training. 

6. Output Layer: 

• The output layer uses a softmax activation for 

multi-class classification (e.g., "genuine" or 

"spoofed"). 

• The model outputs a probability distribution over the 

possible classes. 

3.3.2 Model Training 

The CNN model needs to be trained using labeled 

finger vein data (genuine and spoofed images). The 

process involves the following steps: 

1. Dataset Preparation: 

• The dataset is split into training, validation, and test 

sets to ensure the model is not overfitting and can 

generalize well to unseen data. 

• Data augmentation techniques (e.g., random 

rotations, translations, flipping) are often applied to 

increase the diversity of the training data and reduce 

overfitting. 

2. Optimization: 

• Adam optimizer is widely used for training CNNs 

because of its adaptive learning rate, which helps 

converge quickly and efficiently. 

• The learning rate is gradually reduced during 

training to prevent overshooting and improve 

convergence. 

3. Training Process: 

• The model is trained over multiple epochs, with the 

training set used for forward propagation and 

backpropagation of errors. 

• The model's weights are updated based on the 

gradient of the loss function with respect to the 

weights. 

4. Validation: 

• The model's performance is validated using the 

validation set at the end of each epoch to monitor 

overfitting and adjust hyperparameters (e.g., 

learning rate, batch size). 

• Metrics like accuracy, precision, recall, and F1-score 

are used to evaluate performance. 

3.4 Fusion of Texture Features with CNN 

To improve the accuracy of spoof 

detection, the extracted LBP and GLCM features are 

combined with the deep features learned by the 

CNN. This feature fusion strategy allows the model 

to utilize both traditional texture analysis techniques 

and the powerful representation capabilities of deep 

learning. The fusion process involves concatenating 

the features from LBP, GLCM, and CNN, creating a 

unified feature vector that captures a wide range of 

information about the vein patterns. This process 

consists of the following: 

1. Early Fusion: 

• Concatenate the LBP histogram and other texture 

feature vectors (e.g., GLCM features) with the raw 

image or the feature maps from the CNN’s initial 

layers. 

• Feed the combined features into deeper CNN layers 

for further processing. 

2. Late Fusion: 
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• After extracting features from both the CNN and 

texture descriptors, concatenate the CNN features 

and texture features. 

• Use a classifier (e.g., fully connected layers or 

SVM) to classify the fused feature vector into 

“genuine” or “spoofed”. 

3. Hybrid Fusion: 

• Use LBP features as additional input to the CNN for 

the first few layers. 

• After CNN feature extraction, concatenate the CNN 

features with additional texture features like GLCM 

and Gabor responses. 

• Perform final classification with a fully connected 

layer or another classifier. 

3.5 Spoof Detection and Classification 

The combined feature vector is passed 

through a classifier, such as a support vector 

machine (SVM) or a fully connected neural network 

(FCNN), to perform spoof detection. The classifier 

is trained on a set of labeled data, where each sample 

is either a genuine or a spoofed finger vein image. 

During the classification phase, the classifier 

analyzes the fused feature vector to determine 

whether the vein pattern is real or artificial. 

4. Metrics for spoofing  

4.1. Accuracy 

Accuracy is a standard metric to evaluate 

the model's performance. It calculates the 

percentage of correct predictions made by the 

system, which includes both correct identification of 

genuine and spoofed images. Equation (4.1) 

computes the accuracy. 

Accuracy = 
Number of Correct Predictions

Total Number of Predictions
 ×

100    (4.1) 

4.2. Precision 

Precision is important for understanding 

how reliable your system is when it predicts an 

image as spoofed. High precision means that when 

the system classifies an image as spoofed, it is most 

likely correct.The precision formula is given in 

Equation 4.2. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

     (4.2) 

Where: 

• TP (True Positives): The number of correctly 

predicted positive cases. 

• FP (False Positives): The number of incorrect 

positive predictions. 

4.3. Recall 

Recall (or Sensitivity) measures how 

effectively the model identifies spoofed images. 

High recall means that the system correctly 

identifies most of the spoofed images. The Recall 

formula is given in Equation 4.3. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

     (4.3) 

Where: 

• TP (True Positives): The number of correctly 

predicted positive cases. 

• FN (False Negatives): The number of actual 

positive cases that were incorrectly predicted as 

negative. 

4.5. False Acceptance Rate (FAR) 

The False Acceptance Rate (FAR) is an 

important metric in biometric systems to assess how 

often a spoofed sample is incorrectly classified as 

genuine. A low FAR is critical to preventing 

unauthorized access. The FAR is computed using 

Equation (4.4). 

 𝐹𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 × 100 

   (4.4) 

In Equation (4.4), the term "Number of false 

acceptance" denotes the instances where the system 

mistakenly recognizes or verifies an unauthorized 

individual as authorized. The term "Total number of 

imposter attempts" refers to the overall attempts 

made by unauthorized individuals to gain access. 

4.6. False Rejection Rate (FRR) 

The False Rejection Rate (FRR) measures 

how often a genuine user’s finger vein pattern is 

falsely rejected. A low FRR is important to ensure 

that authorized users are not denied access.The 

following Equation (4.5) is used to calculate the 

FRR.  

𝐹𝑅𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 × 100

   (4.5) 
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In Equation (5.2), the term "Number of 

false rejections" refers to the count of legitimate 

users who were mistakenly denied access. The term 

"Total number of genuine authentication attempts" 

represents the total number of access attempts made 

by authorized users. 

4.7. Equal Error Rate (EER) 

The Equal Error Rate (EER) is the point at 

which the FAR and FRR are equal. A lower EER 

signifies a more accurate and reliable biometric 

system. It is typically used as a benchmark for 

comparing the performance of different biometric 

systems. EER can be calculated using Equation 

(5.3). 

𝐸𝐸𝑅 =  
𝐹𝐴𝑅(𝑇𝑘)+𝐹𝑅𝑅(𝑇𝑘)

2
  

     (5.3) 

where 

𝑇𝑘 - The threshold closest to the point 

where FAR equals FRR 

5. Advantages of the Proposed Method: 

1. Robustness to Spoofing Attacks: By integrating 

texture descriptors like LBP and GLCM with deep 

learning models, the system becomes more resilient 

to spoofing attacks. Texture analysis techniques 

detect subtle differences in vein patterns, while deep 

learning captures high-level features that are 

challenging for traditional methods. 

2. Computational Efficiency: The use of LBP and 

GLCM provides computational efficiency, as these 

methods are relatively simple and can be calculated 

quickly. Additionally, deep learning models can be 

optimized for real-time applications through model 

compression and hardware acceleration techniques 

(e.g., using GPUs). 

3. Improved Accuracy: The fusion of multiple feature 

extraction methods ensures that both fine-grained 

texture information and high-level features are 

utilized, leading to improved classification accuracy. 

6. Challenges and Limitations: 

1. Computational Complexity: While deep learning 

models like CNNs provide high accuracy, they may 

require significant computational resources, 

especially for large datasets or real-time 

applications. The proposed method aims to address 

this by combining traditional texture descriptors 

with deep learning to strike a balance between 

computational efficiency and detection accuracy. 

2. High-Resolution Spoof Images: While LBP and 

GLCM are effective in many scenarios, they may 

struggle with high-resolution spoof images where 

the fine textural differences are harder to detect. In 

such cases, advanced deep learning models that 

focus on higher-level feature learning can help 

improve performance. 

7. Conclusion 

The proposed method for finger vein spoof 

detection combines traditional texture descriptors 

(LBP and GLCM) with advanced deep learning 

models (CNNs). This approach enhances the 

robustness and accuracy of spoof detection, making 

it suitable for real-time biometric authentication 

systems. The fusion of both handcrafted features and 

deep features ensures that the system can effectively 

differentiate between genuine and spoofed finger 

vein patterns, providing a reliable and secure 

solution for biometric authentication. 
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