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Abstract

This paper presents advanced optimization methods for transportation and trans-
shipment problems under uncertainty. We extend classical models by integrating mul-
tiple factors such as transportation cost, transit time, capacity constraints, and uncer-
tainty (modeled via fuzzy and interval data) into a unified framework. Novel heuristics,
including the Penalty Cost Method (PCM), are proposed to generate high-quality ini-
tial solutions, while multi-objective and time-minimizing transshipment models address
dynamic and deadline-constrained scenarios. Rigorous analytical proofs—including
convergence, duality, and error estimates—support our methods, which are validated
by extensive numerical experiments, sensitivity analyses, and graphical comparisons.
The results demonstrate significant improvements in cost efficiency, computational
performance, and robustness, making the proposed methodologies highly relevant for

modern logistics and supply chain management.
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1 Introduction and Motivation

Transportation problems are a cornerstone of operations research, dealing with the optimal
allocation of resources from multiple sources to various destinations at minimal cost. In
practice, logistics networks also encounter challenges such as transit time variability, capacity
restrictions, and uncertainty in parameters. These factors necessitate advanced models that
extend beyond classical formulations.

In this work, we integrate several new dimensions:

Penalty Cost Method (PCM): A heuristic for generating high-quality initial solutions.

Fuzzy and Interval Modeling: Representing uncertain parameters using intervals to

capture data imprecision.

Multi-Objective Optimization: Considering both cost and transit time simultaneously.

Time-Minimizing Transshipment with Deadlines: Incorporating strict deadline

constraints into transshipment models.

Our approach is supported by rigorous theoretical analysis and extensive computational

studies, offering practical benefits for logistics and supply chain management.

2 Literature Review

Classical transportation models have been studied since the work of Monge (1781) and
were refined by Hitchcock and Koopmans in the 1940s [2]. Dantzigs simplex method [1]
further advanced the field. More recent research has focused on robust optimization and
multi-objective models [7, 8]. Our work builds on these foundations and introduces novel
heuristics and models that accommodate capacity constraints, uncertain data, and time-

sensitive transshipment requirements.
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3 Mathematical Formulation

We briefly review the classical transportation model before presenting our extended formu-

lations.

3.1 Classical Transportation Model

Let a; and b; denote the supply at source i and the demand at destination j, respectively,

and let ¢; be the unit cost. The classical formulation is:

*3
Minimize Z = CiiXij,
=1 j=1
. = .
Subject to Xijg=a; 1=1,...,m,
71 @
b4
Xij=bj, j=1,...,n,
=1
Xi =0, Vij.

3.2 Extended Models

Our extensions include:

— Capacity Constraints: X;; < Uj, where U is the maximum capacity on the route from

i to .
- Fuzzy/Interval Data: Uncertain parameters are modeled as intervals, e.g.,

Cij € [cE,cV], a; €[akaV], bje[bLbY].
g i i JJ

— Multi-Objective Optimization: We consider transit time t; as an additional objective:

Zor= tinij-

LY
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— Time-Minimizing Transshipment with Deadlines: For any shipment path Psq from

source S to destination d, we require

t;y < T,
(ij)€Psa

where T is a prescribed deadline.

4 Proposed Methods

We now describe the novel methodologies introduced in this paper.

4.1 Penalty Cost Method (PCM) for Initial Solutions

The PCM allocates flow in inverse proportion to the cost, thereby emphasizing lower-cost

routes. For each i and j, define:

a 1/cij

i Z';;1(1/Cﬂc)

and set the initial allocation:

VYij = ajj a;.

An iterative adjustment is then performed to convert y;; into a feasible integer solution X;
while preserving supply and demand constraints. Section 5.1 provides the detailed proof of

PCMs convergence and error bounds.

4.2 Fuzzy and Interval Transportation Models

In uncertain environments, parameters are given as intervals. We define the regret function:

R(X) = max {Z(x,¢) -~ Z*()}
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where Z*(c) is the optimal cost for a given realization c. A splitting algorithm partitions
the parameter space into regions, solving the deterministic problem in each and selecting the
solution with the minimum maximum regret. Detailed convergence proofs are provided in

Section 5.2.

4.3 Time-Minimizing Transshipment with Deadlines

To handle deadline constraints in transshipment networks, we incorporate a deadline T such

that every feasible path Psq satisfies:

>
t'y'S T.
(i,j)€EPsa

A binary search algorithm is utilized to find the minimal feasible T*. The monotonicity of

the feasibility function F(T) is proven in Section 5.3.

4.4 Multi-Objective Transportation Model

We consider the bi-objective problem:

o b o b
Minimize Z1 = CyXj, Minimize Z2 = t;Xjj,
ij ij
subject to the standard constraints. Both weighted-sum and e-constraint methods are ap-
plied to derive the Pareto frontier. Convexity and Pareto optimality proofs are provided in

Section 5.4.

4.5 Pseudocode for the Splitting Algorithm

Input: Intervals for c_ij, a_i, b_j

Output: Optimal solution x*
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1. Identify critical endpoints and fuzzy breakpoints.

2. Partition parameter space into subsets S_k.

3. For each subset S k:
a. Solve the deterministic transportation problem to obtain x_k.
b. Compute optimal cost Z*(c) for the parameters in S_k.
c. Evaluate regret R_k(x_k).

4. Select x* corresponding to the smallest maximum regret.

5 Theoretical Analysis and Proofs

In this section, we provide key proofs supporting our methodologies.

5.1 Proof of Convergence for PCM

Theorem 5.1. The Penalty Cost Method converges to a feasible solution x* with bounded

error relative to the optimal solution.
Proof. We begin by noting that the initial allocation

y =a a, Withoc”=¢j—,

v 72 (e

ensures that for each source i,

3
Yy = &
1

Thus, the supply constraints are satisfied initially, although the demand constraints at the
destinations may not be met exactly. The adjustment process then redistributes the excess
or deficit at the destinations iteratively.

At each iteration, let the current allocation be x%). Define the residual at destination j

as
wm )
K - ) .
=1
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If ro > 0 (excess supply) or r® < 0 (deficit), the algorithm adjusts the flows along the
routes connected to destination j proportionally to the penalty costs associated with those
routes. Since the adjustments are performed using projections onto the convex set defined
by the supply and demand constraints—and because the transportation problems constraint
matrix is totally unimodular —the iterative projection converges to a point in the feasible
region.

Moreover, each adjustment decreases a norm of the residual vector r* by at least a
tixed factor (as shown in convergence proofs for projection methods in convex optimization).
Thus, the error

1P > 0 as k- oo.
An error estimate can be obtained by comparing the residuals with dual variables corre-
sponding to the transportation problem, ensuring that the solution x* satisfies

[IxX* = xP| < ¢

for any prescribed tolerance € > 0 after a finite number of iterations. Hence, the PCM

converges to a feasible solution with bounded error relative to the optimum. O

5.2 Convergence of the Fuzzy/Interval Splitting Algorithm

Lemma 5.2. For fixed parameters C, the cost function

>
Z(x,c) = CiXij
ij

1s linear in X and hence convex.

Proof. Since Z(x, €) is a linear function of x (with coefficients c; being constants for fixed
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C), it satisfies the convexity property:
Z(/x1+ (1 = A)X2, C) = AZ(X1,C) + (1 — A)Z(X2, C)

for any X1, x2 in the feasible region and 4 € [0, 1]. Thus, each local optimization problem in

the splitting algorithm is convex and yields a global minimum within its partition.
Furthermore, the splitting algorithm partitions the entire interval parameter space into

a finite number of disjoint regions. In each region, the optimal solution Xk is computed and

its regret Ri(Xx) is evaluated. Since the regret function is defined as
R(x) = max{Z(x, c) - Z*(c)},
ceC

and because Z(X, C) is continuous and piecewise linear in ¢, the algorithms exhaustive search
over the partitions guarantees that the selected solution x* minimizes the worst-case regret

over C. ]

5.3 Monotonicity in the Time-Minimizing Transshipment Model

Proposition 5.3. The feasibility function F(T), indicating whether a transshipment plan

exists under deadline T, is monotonic.

Proof. Assume that there exists a feasible transshipment plan x such that for every shipment

path Psq used in X, we have

>
tg <T.
(i) € Psa

Now, consider any T' > T. Since

ti<sT<T,
(iﬁj)EPSd

the same transshipment plan x remains feasible under the relaxed deadline T'. Therefore, if
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F (T )=1 (feasible), then F (T') =1 for any T' > T. Conversely, if no feasible plan exists
for some T, then for any T' < T the problem remains infeasible. This monotonicity of F (T)
allows the binary search algorithm to efficiently determine the minimal feasible deadline

T*. D

5.4 Pareto Optimality in the Multi-Objective Model

Theorem 5.4. The weighted sum method applied to the bi-objective transportation problem

generates Pareto optimal solutions.

Proof. Consider the bi-objective problem:

L 2 o >
Minimize Zi(X) = CyXy, Minimize Z2(X) = Xy,
ij ij

subject to the usual transportation constraints. For any weight vector (w1, wz2) with wi, w2 >

0, form the scalarized objective:
Z(X) = WiZi1(X) + W2Z2(X).

Since Zi(x) and Z(X) are linear functions of X, Z(x) is also linear and hence convex. Let
X* be an optimal solution for this weighted sum.
Assume, for the sake of contradiction, that x* is not Pareto optimal. Then there exists

another feasible solution X' such that
Zi(X) < Zi(x*) and Zz(X) < Z>(x*)

with at least one inequality being strict. Multiplying these inequalities by wi and w: respec-

tively and summing, we obtain:

wWiZ1(X') + WaZ2(X) < wiZi(X*) + WaZa(X*).
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This contradicts the optimality of x* for the scalarized problem. Therefore, x* must be
Pareto optimal.

By varying the weight vector over the positive quadrant, the weighted sum method can
generate a complete set of Pareto optimal solutions. Additionally, the e-constraint method
can be used to further refine the Pareto frontier by fixing one objective at a desired level
and optimizing the other, ensuring that every Pareto optimal point can be approximated

arbitrarily closely. O

6 Computational Results and Graphical Analysis

We tested our models on synthetic datasets with varying problem sizes and uncertainty

levels.

6.1 Total Cost Comparison

Figure 1 compares the total cost achieved by classical methods versus our proposed methods
for different problem sizes.

Total Cost Comparison
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Figure 1: Total cost comparison across different problem sizes.
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6.2 Computation Time Comparison

Figure 2 shows the computational times for different algorithms, highlighting the efficiency

of our advanced methods despite their increased model complexity.

Computation Time Comparison
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Figure 2: Computation time comparison across different problem sizes.

6.3 Sensitivity Analysis

Figure 3 illustrates the sensitivity of total cost with respect to variations in the average
cost coefficient. The proposed methods show less fluctuation compared to classical models,

confirming their robustness under uncertainty.

7 Comparative Analysis and Discussion

Our comparative analysis reveals that:

— Cost Efficiency: Enhanced methods such as PCM and fuzzy/interval models yield lower

total costs by optimizing the flow allocation more effectively.
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.150e4nsitivity Analysis: Total Cost vs. Average Cost Coefficient
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Figure 3: Sensitivity of total cost with respect to variations in cost coefficients.

— Computational Efficiency: Although advanced methods may require slightly more
computational time, the improved cost performance and robustness justify the additional

effort.

— Robustness: Our models exhibit significantly reduced sensitivity to parameter variations,

ensuring stable performance even under uncertainty.

— Time Minimization: The binary search algorithm efficiently identifies the minimal fea-

sible delivery time, critical for deadline-sensitive operations.

Theoretical proofs guarantee that the desirable properties (such as convexity, integrality,
and convergence) are preserved even in these extended formulations. Our extensive numerical

experiments further validate the practical performance gains.

8 Discussion and Concluding Remarks

This paper has presented a unified framework for advanced optimization methods in trans-

portation and transshipment problems under uncertainty. By integrating the Penalty Cost
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Method, fuzzy/interval data handling, multi-objective optimization, and time-minimizing
transshipment models, we have developed methodologies that outperform classical approaches
in cost efficiency and robustness.

Our analytical proofs, computational experiments, and sensitivity analyses provide a
strong foundation for the proposed methods. Future research may explore dynamic, multi-
period extensions and real-time data integration to further enhance decision-making in com-
plex logistics networks.
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