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Abstract: In modern data-driven ecosystems, especially within regulated domains like healthcare and financial technology, 

critical data sources are often distributed across on-premises infrastructure and public cloud environments. These divisions 

may arise due to compliance, system design, or operational constraints. Rather than treating such separation as a limitation, 

this paper explores how secure collaboration between distributed systems can be leveraged to improve machine learning 

models through velocity aggregation, the capture and analysis of real-time transactional or behavioral patterns, and persona 

enrichment, the synthesis of richer user profiles from multiple secure sources. The paper focuses on scenarios where sensitive 

data, such as personal health records or financial transactions, must remain confidential, even during processing. To address 

this, we incorporate confidential computing environments (e.g., AWS Nitro Enclaves) to ensure that data processed in the 

cloud remains encrypted and inaccessible to unauthorized actors, including the cloud provider itself. Further, this paper 

proposes a hybrid cloud architecture that enables bidirectional, privacy-preserving data aggregation and federated model 

enhancement without exposing raw data. The framework demonstrates how secure statistical insights and model signals can 

be exchanged across cloud and on-prem systems, resulting in mutually improved ML model performance, while maintaining 

regulatory compliance and strict data confidentiality. We validate the framework using examples from healthcare and fintech, 

highlighting its broad applicability across any domain that handles personally identifiable information (PII). 

Keywords: Hybrid Cloud, Confidential Computing, AWS Nitro Enclaves, Velocity Aggregation, Persona Enrichment, Data 

Security 

1. Introduction: 

1.1 AI/ML in Regulated Domains: FinTech and 

Healthcare 

In recent years, the adoption of Artificial 

Intelligence (AI) and Machine Learning (ML) has 

transformed industries such as financial technology 

(fintech) and healthcare, offering intelligent 

automation, risk detection, anomaly tracking, and 

personalized services. In fintech, ML models are 

employed for fraud detection, risk scoring, 

transaction monitoring, and creditworthiness 

evaluation [1]. Similarly, in healthcare, ML is used 

for early disease detection, personalized treatment 

planning, clinical decision support, and remote 

patient monitoring. [2] 

However, these advancements rely heavily on the 

availability of rich and relevant data. Due to the 

fragmented nature of enterprise data infrastructures, 

especially in regulated sectors, lot of this data exists 

across on-premises systems and public cloud 

environments, making it challenging to unify, 

analyze, and learn from in a privacy-preserving 

manner. [3] 

1.2 Velocity Aggregation and Persona 

Enrichment: 

Two key techniques that can significantly enhance 

ML models are velocity aggregation and persona 

enrichment: 

a) Velocity Aggregation refers to the process 

of collecting and analyzing high-frequency, 

real-time behavioral or transactional data to 

identify patterns, trends, or risks. It’s 

especially useful in detecting sudden 

changes in user behavior or emerging 

threats. [4] 

b) Persona Enrichment involves building a 

comprehensive, multi-dimensional profile 

of a user or entity by synthesizing data from 

multiple systems. This enables better 

personalization, predictive modeling, and 

risk classification. [5] 
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When combined, these concepts enable systems to 

move beyond siloed analysis, allowing AI/ML 

models to continuously learn and adapt based on 

dynamic behaviors and deeper user context. 

1.3 Motivating Use Cases for Cross-Source 

Aggregation 

1) Financial Use Case:  

A bank may run separate ML pipelines for: 

a. Account-to-account transaction risk 

analysis in the cloud (using scalable real-

time engines), and 

b. Credit card fraud detection on-premises 

(due to compliance with PCI-DSS). 

While each model serves a different purpose, 

sharing anonymous statistical data between them, 

such as unusual transaction frequency or behavioral 

anomalies, can enhance both models' accuracy in 

real time, leading to stronger fraud detection 

capabilities, without even sharing raw data. 

2) Healthcare Use Case:  

A healthcare provider may run: 

a. Remote patient monitoring analytics (e.g., 

from wearable devices) in the cloud, and 

b. In-hospital EMR-based diagnostic models 

on-premises (due to HIPAA and data 

residency constraints). 

By aggregating patient activity patterns (velocity) 

from wearables and diagnostic insights (persona) 

from EMRs, the provider could build a more 

nuanced patient profile, thus enabling early 

intervention or more accurate treatment predictions, 

all without exposing raw patient records. 

1.4 Rise of Confidential Computing for Sensitive 

Workloads 

To protect such highly sensitive data in cloud 

environments, organizations are increasingly 

turning towards confidential computing 

technologies. These systems allow computations to 

run inside isolated, hardware-protected 

environments, such as Trusted Execution 

Environments (TEEs) like AWS Nitro Enclaves, 

Intel SGX, or Azure Confidential VMs [6] [7]. Key 

benefits include: 

a. In-memory encryption during processing. 

b. Zero visibility to cloud administrators or 

other tenants. 

c. Strong hardware-rooted attestation for 

workload integrity. 

This enables organizations to move sensitive 

workloads to the cloud, including ML model 

training or inference, without compromising on data 

privacy or compliance requirements. 

1.5 Towards a Federated and Privacy-Preserving 

Framework 

Given the distributed nature of critical data and the 

increasing need for collaborative intelligence, this 

paper proposes a hybrid cloud framework that 

enables secure velocity aggregation and persona 

enrichment across cloud and on-prem systems. 

Our approach ensures: 

a. Confidential data is never decrypted 

outside its processing enclave. 

b. Statistical insights can flow securely 

between environments. 

c. Federated learning principles are used to 

improve both ends without exposing raw 

data. 

The next section presents the architecture and 

components of this hybrid system, including how 

data flows are secured, aggregated, and utilized to 

enhance downstream AI models. 

2. High-Level Architecture & Core Components 

2.1 Baseline Architecture: 

In a typical cloud-native machine learning system, 

such as one used for credit card transactions fraud 

detection, velocity aggregation and persona 

profiling are employed to enhance model accuracy 

using real-time behavioral signals and longitudinal 

user patterns. Figure 1 shows a baseline architecture 

where the ML model using velocity aggregation and 

persona enrichment techniques, with the system 

deployed in a public cloud environment, with 

several modular components working together to 
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ingest transactions, enrich them with derived 

features, and generate risk predictions.  

2.1.1 Core Components: 

1) Actor Interaction: 

a) A user or system (the actor) 

initiates a transaction request. 

b) The request is routed through the 

Prediction API, which captures 

the transaction and triggers real-

time inference. 

2) ML Model Invocation: 

a) The ML Model receives both the 

new transaction and real-time 

features from the Velocity 

Aggregation Service. 

b) It predicts an outcome (e.g., fraud 

risk score) and returns the result 

via the API 

3) Velocity Aggregation Service: 

a) Receives the transaction data in 

real time. 

b) Derives high-frequency behavior 

metrics such as transaction bursts, 

velocity patterns, or spending 

anomalies. 

4) Persona Profiling Service: 

a) Periodically aggregates historical 

data, including behavioral and 

transactional summaries. 

b) Stores enriched persona 

information in Amazon Aurora, 

representing long-term behavioral 

fingerprints of users or accounts. 

c) Triggers regular retraining of the 

ML model based on updated 

personas and velocity data, 

enabling adaptive learning. 

 
Figure 1: Baseline Architecture of a Single-System 

2.1.2 System Characteristics: 

1) Works entirely within a single cloud 

domain. 

2) No sharing of data across systems or 

regulatory boundaries. 

3) Velocity and persona data are only derived 

from internal transactions. 

4) Provides foundational support for fraud 

detection, behavior modeling, and 

transaction scoring. 
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2.2 Federated Learning Architecture for Cross-

Use Case Enrichment: 

To enable collaborative intelligence across systems 

handling sensitive data, we extend the baseline 

design into a federated architecture that supports 

cross-use-case learning between public cloud-based 

and on-premises ML systems. This is particularly 

applicable in scenarios where different product lines 

(e.g., account-based and card-based systems) 

operate under regulatory constraints that prevent 

direct raw data sharing. 

As shown in Figure 2, this architecture allows both 

environments to share encrypted, aggregated 

insights and persona enhancements to improve local 

ML models, while preserving strict data locality, 

compliance, and confidentiality guarantees. Let us 

understand the system in more detail in the 

subsections below. 

 

 
Figure 2: Federated Learning Architecture 

2.2.1 Dual Environment Design 

1) Public Cloud System: 

a) Hosts the ML pipeline for one 

use-case (ex: Account-to-

Account) and operates inside 

AWS Nitro Enclaves to ensure 

that data remains encrypted 

during processing. 
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b) Relies on AWS KMS for data-at-

rest encryption and PGP for 

controlled, secure cross-

environment transmission. 

2) On-Premise System: 

a) Hosts the ML system for the 

second use-case (ex: Credit Card-

based), which must operate in a 

tightly controlled infrastructure, 

often behind firewalls and subject 

to PCI-DSS or similar regulatory 

standards. 

b) Relies on AES-256 or similar in-

house encryption technologies for 

data-at-rest encryption and PGP 

for controlled, secure cross-

environment transmission. 

2.2.2 Secure Data Mapping & Identity Bridging 

1) Clients supply a Cross-Data Mapping File, 

for example, mappings between account 

numbers and owned credit card IDs. 

2) The Data Mapper Service on the cloud 

ingests this mapping and stores it in 

Amazon Aurora, encrypted using AWS 

KMS. 

3) A secondary, PGP-encrypted version of the 

mapping file is pushed to Amazon S3, 

where it’s securely pulled into the on-prem 

environment. 

4) On-prem systems decrypt the file using 

their private PGP key and populate a local 

mapping database. 

2.2.3 Real-Time and Asynchronous Data Flow 

Each environment processes its own prediction use 

case, and transactions trigger the following 

operations: 

1) Prediction Pipeline: 

a. Transactions are received via the 

API and passed to the local ML 

model. 

b. The model invokes real-time 

feature extraction from the 

Velocity Aggregation Service. 

2) Velocity Aggregation: 

a. Tracks behavioral metrics 

(frequency, volume, recency) and 

caches them for immediate use. 

b. Retrieves behavioral metrics with 

respect to the cross-use-case from 

the database. 

3) Persona Profiling Service: 

a. Processes new transactions to 

build and update long-term 

behavioral profiles for each user 

or account. 

b. Updates are stored in a structured 

database (e.g., Aurora in cloud, or 

a local database on-prem), which 

is later used for periodic ML 

model retraining. 

c. The Profiling Service is also 

responsible for extracting and 

preparing data for cross-use-case 

feature enrichment. 

4) Cross-Use Case Signal Extraction: 

a. All new transactions are also 

consumed by a Data Transfer 

Service 

b. On the cloud, the service PGP-

encrypts the relevant transaction 

subset and uploads it to S3. 

c. On the on-premise system, an 

equivalent transfer service does 

the same, using a different PGP 

key. 

5) Data Retrieval and Integration: 

a. Each side runs a Data Retrieval 

Service to fetch and decrypt 

incoming cross-use-case data. 

b. This data is integrated into the 

Velocity Aggregation Service and 

Profiling Service to enhance 

downstream predictions. 

2.2.3 Secure Execution and Trust Boundaries 

1) All cloud-side components handling 

sensitive data run within AWS Nitro 

Enclaves: 

a) Ensures data remains encrypted in 

memory and inaccessible to the 

cloud provider. 

b) Only remotely attested, enclave-

aware services can participate in 

secure communication. 

2) All inter-environment data exchange is: 

a) Double-encrypted: KMS for 

internal storage, and PGP for 

transfer. 
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b) Pushed to and pulled from 

Amazon S3, which acts as a 

secure, asynchronous data bus. 

3) No raw data or personally identifiable 

information (PII) is shared and only 

aggregated, preprocessed statistical 

insights flow across boundaries. 

2.2.5 ML Model Training and Feedback Loop 

1) Each system maintains its own ML model, 

which is periodically retrained using: 

a) Local persona and velocity data. 

b) Cross-use-case enriched features, 

extracted securely from the 

federated exchange pipeline. 

2) This setup supports federated learning 

principles, where: 

a) Raw data remains in its respective 

trust boundary. 

b) Derived knowledge is exchanged 

to benefit both models. 

2.2. 6 Benefits of the Architecture 

1) Enables collaborative model enhancement 

across systems without breaching 

compliance. 

2) Leverages confidential computing for 

secure cloud processing. 

3) Establishes cryptographic trust and 

isolation across hybrid environments. 

4) Lays the foundation for multi-party 

federated learning in regulated domains. 

3. Evaluation and Validation 

To validate the underlying hypothesis of our 

architecture, that cross-use-case persona and 

velocity enrichment can enhance ML model 

performance without directly sharing raw data, a 

simplified experiment has been conducted using 

publicly available datasets. This approach allows us 

to simulate the federated enrichment effect without 

requiring the full production-ready deployment of 

the architecture. 

3.1 Dataset Selection and Setup 

We selected two semantically related datasets from 

public sources: 

1) Dataset A: Represents credit card 

transaction records with timestamped 

activity, user IDs, and fraud labels. [8] 

2) Dataset B: Simulates account-to-account 

transactions, including features like sender 

ID, transaction amount, time intervals, and 

risk labels. [9] 

Each dataset is used to train a Random Forest 

classifier independently to predict transaction risk. 

However, since the two datasets originate from 

distinct sources with no shared identifiers, a core 

challenge is simulating a federated learning scenario 

with meaningful correlation between them. To 

address this, we created a synthetic user ID mapping, 

representing the shared persona of an account holder 

across both datasets. Using common Python 

libraries such as pandas, numpy, and scikit-learn, we 

generated a pool of synthetic user identifiers and 

assigned them randomly to subsets of each dataset. 

3. 2 Cross-Use-Case Feature Enrichment 

We generate derived features such as: 

1) Velocity metrics: e.g., average time 

between transactions per user, burst 

frequency. 

2) Persona traits: e.g., risk trend scores, 

average transaction size. 

And then: 

1. Train base models independently using 

only local features. 

2. Enrich each dataset with anonymized, 

aggregated features from the other dataset, 

simulating cross-use-case exchange via a 

secure pipeline. 

3. Retrain the models with the enriched data 

and compare performance. 

3. 3 Metrics and Results 

Below Table shows the results, where we compared 

the model performance in three configurations: 

1) Base: Using only local features. 

2) + Cross Velocity: With additional velocity-

based features from the peer system. 

3) + Cross Velocity + Cross Persona: With 

full enrichment from both behavioral 

dimensions. 
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Model AUC-ROC F1-Score Precision Recall 

Account2Account (Base) 0.81 0.75 0.77 0.73 

Account2Account + Cross Velocity 0.86 0.79 0.81 0.77 

Account2Account + Cross Velocity + Cross 

Persona 

0.89 0.82 0.84 0.80 

Card (Base) 0.79 0.72 0.74 0.70 

Card + Cross Velocity 0.84 0.76 0.78 0.74 

Card + Cross Velocity + Cross Persona 0.88 0.81 0.83 0.78 

 These results clearly show that cross-domain 

feature exchange, even in simulated form, improves 

predictive performance for both use cases. The 

greatest lift is observed when both velocity and 

persona signals are included, validating the 

effectiveness of the proposed architecture even 

without centralized data sharing. 

4. Challenges and Limitations 

While the proposed hybrid cloud framework 

demonstrates significant potential in securely 

aggregating high-velocity data and enhancing user 

personas across distributed environments, several 

practical and technical challenges remain. These 

limitations are critical considerations for 

organizations intending to adopt such architectures 

in regulated domains. 

1) Confidential computing environments such as 

AWS Nitro Enclaves introduce a steep learning 

curve and operational overhead. Developers must 

adapt their data processing pipelines to work within 

constrained enclave environments, which lack direct 

network or persistent storage access. This often 

necessitates redesigning data ingress, egress, and 

serialization workflows, and integrating secure 

communication protocols like vsock or secure 

proxies, which adds to implementation complexity. 

[10] 

2) In hybrid cloud setups, synchronization of data 

signals and model updates between the on-premises 

and cloud systems can be non-trivial [11]. 

Variability in network latency, batch update 

schedules, or asynchronous event timing can lead to 

inconsistent or delayed enrichment on either side. 

Maintaining alignment across both environments is 

crucial for preserving the predictive power of real-

time risk or diagnostic models. 

3) Since ML models are trained and updated in 

distributed environments, model drift or concept 

divergence may occur over time [12]. If the data 

characteristics in the cloud and on-prem systems 

evolve independently, federated updates might 

degrade model performance. Implementing drift 

detection mechanisms and periodic alignment 

strategies is essential to maintain effectiveness 

across environments. 

4) While the framework aims to comply with 

privacy regulations (e.g., GDPR, HIPAA, PCI-DSS) 

by ensuring that raw data remains local and only 

aggregated signals are exchanged, legal 

interpretations of data processing boundaries may 

vary across jurisdictions. Organizations must 

perform rigorous legal and compliance reviews 

before adopting such cross-boundary data 

architectures, especially when operating in global or 

multi-tenant environments. [13] 

5) Running confidential computing workloads 

comes at a performance and cost premium. Nitro 

Enclaves, for instance, allocate isolated vCPUs and 

memory from the parent EC2 instance, which can 

reduce the total usable capacity of the host machine. 

Additionally, enclave-enabled architectures often 

require dedicated provisioning, monitoring, and 

custom deployment pipelines, increasing 

infrastructure and operational costs. [10] 

5. Future Trends and Improvements 

1) Multi-Party and Cross-Organizational Federated 

Learning: Extending the current framework to 

support federated learning across institutions, such 

as between hospitals, banks, or research networks, 

would enable collaborative model training at a larger 

scale. This would require developing secure 

protocols for multi-enclave trust establishment, 

policy enforcement, and cross-domain identity 
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management, all while maintaining strict data 

locality. [14] 

2) Real-World Deployment and Benchmarking: To 

validate the framework’s effectiveness, a real-world 

deployment in collaboration with a financial 

institution or healthcare provider is essential. This 

would allow for detailed benchmarking of security, 

latency, model performance, and compliance 

adherence, providing evidence of its scalability and 

practical value. 

6. Conclusion 

In this paper, we have proposed a hybrid cloud 

framework for secure velocity aggregation and 

persona enrichment, designed to address the 

challenges of machine learning across distributed, 

privacy-sensitive environments. By combining 

confidential computing with federated learning, our 

architecture enables organizations to securely 

process, aggregate, and exchange statistical insights 

across cloud-based and on-premises systems, 

without exposing raw data or violating regulatory 

constraints. 

It demonstrates how this framework is particularly 

suited for domains such as healthcare and financial 

services, where sensitive data is often siloed due to 

compliance, operational, or trust boundaries. 

Through practical examples, such as risk analysis of 

account-to-account and credit card transactions, it 

showcases how secure data collaboration can 

enhance the performance and contextual richness of 

AI models. 

By leveraging trusted execution environments like 

AWS Nitro Enclaves and enabling bidirectional 

model enhancement via federated learning 

principles, the proposed system maintains a strong 

balance between privacy, compliance, and machine 

learning performance. 

As organizations continue to adopt hybrid cloud 

strategies, architectures like the one presented here 

will play a critical role in enabling privacy-

preserving AI at scale. Future work will focus on 

expanding this framework to multi-party 

collaborations, integrating differential privacy, and 

conducting real-world deployments to validate its 

scalability and practical value. 
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