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Abstract: Recent technological developments in deep learning environments have improved bone age evaluation, making it easier and 

more exact than classic methods in forensic radiology. Deep convolutional neural networks are highly effective at detecting bone age; 

however, their complexity arises from the number of parameters they need, making them resource-intensive to run on CPUs. To address 

this, the proposed work utilizes the transfer learning approach to build a two-stage deep learning model based on pelvic radiographs, 

comprising a vital bone extraction model and an age assessment model. Initially, UNet model combined with Attention Gate extracted the 

pelvic girdle bones by filtering insignificant regions from pelvis X-rays. For age assessment, a smaller classifier network was first 

developed and evaluated using K-fold cross-validation. Subsequently, the two deep networks were built by layering the new ones to the 

existing framework. To enhance performance further, the outputs of both the classifiers were stacked using a dense layer called an 

aggregator. This meta-learner combined the strength of each model to make decisions on final prediction. The whole framework was 

validated to analyse its ability to categorize human age in the range of 0–19 years using the collected pelvic radiographs and achieved an 

average classification accuracy of 97.50%, precision of 98.25%, recall of 96.65%, and F1-score of 97.20%. Thus, the proposed framework 

can increase the accuracy of multi-classification tasks while leveraging the limited computational resources. 
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1. Introduction 

Bone age is a key indicator to assess the growth and maturity of an 

individual's skeletal structure. It plays a vital role in legal 

proceedings involving minors and diagnosing growth anomalies in 

medical practices. In digital forensics, the radiography-based 

method is the simplest and most cost-effective way to ascertain 

age. While hand bones are extensively employed to measure bone 

ageing, pelvic bones can help better characterize bone maturity 

during adolescence [1]. The research conducted by [2] examined 

the pelvic computed tomography (CT) images in persons aged 8 to 

16. Their research showed that assessing human age in forensic 

radiology can be done by looking at the ischiopubic and iliopubic 

synchondrosis of the pelvis.  

In the context of bone age evaluation, plenty of studies were 

conducted to assess the different pelvic regions from the pelvic 

radiographs. The evaluation model [3] intended to analyse the 

Hounsfield Unit (HU) value from the os coxae areas of pelvic CT 

images for age determination, whereas method [4] used a grading 

system to analyse changes in the pubic symphyseal surface based 

on age, utilizing pelvic CT scans. Meanwhile, age detection 

approach [5] first classified the CT scans according to the Risser  

stages of iliac crest ossification, which ranged from 0 to 7.  

Subsequently, ten different regression models were established to 

estimate age using Risser phases. Likewise, the studies [6,7] 

explored the conventional regression approaches to predict an 

individual age based on statistical metrics of various pelvic bone 

regions. 

In our study, we opted for pelvic X-rays over CT scans because 

they are more affordable and provide a better visual representation 

of bone structures. Also, age calculation using traditional machine 

learning methods required extensive experience to derive the 

statistical features of pelvic regions from radiographs. This 

problem was eventually fixed by deep learning networks, which 

can automate the feature extraction process to distinguish across 

classes. 

In this research, we presented a deep learning-based structure for 

skeletal age determination from pelvic radiographs featuring 

segmentation and classification. We built the classification 

network architecture with the pre-trained auxiliary classifier to 

facilitate better feature acquisition. The following sums up the 

primary facets of this work: 

• We demonstrated the bone extraction network for 

segregating the hand portion from the radiographs with 

the fewest labelled X-ray images. 

• We exploited the potential of the K-fold cross-validation 

mechanism to assess the base model’s reliability with a 
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minimal amount of data. 

• We devised the two distinct classification network 

architectures utilizing pre-trained weights from the base 

model for calculating the bone age. 

• We ensembled the outcomes from both the classifiers for 

accurate age categorization. 

• We carried out experiments to establish the 

competitiveness of the proposed strategy against various 

baseline techniques. 

The format of this paper is as follows: The subsequent section 

examines the existing studies pertaining to the research topic. 

Section 3 presents the deep learning-based structure for skeletal 

age determination featuring segmentation and classification. 

Section 4 depicts the research findings to establish the 

competitiveness of the proposed strategy against various 

baseline techniques. The final section highlights the research 

findings and suggests areas for further improvement. 

2. Related Works 

Numerous deep-learning approaches have been stated to find the 

human age by evaluating skeletal maturity from pelvic imaging. 

The study by [8] experimented with the AlexNet to find out bone 

age from pelvic radiographs. It was claimed that the improved 

AlexNet outperformed the current cubic regression model. 

Similarly, deep learning framework [9] demonstrated the pre-

trained Xception model for age detection from pelvis images, 

whereas the deep CNN network [10] trained three pre-trained 

frameworks, VGG19, Inception-V3, and Inception-ResNet-V2 

for skeletal age prediction using pelvic X-rays. 

Furthermore, cross-validation (CV) is a useful technique for 

avoiding overoptimism in deep learning models. In research 

[11], the authors provided guidelines for choosing a suitable 

cross-validation strategy to process medical images. Different 

cross-validation strategies are employed to identify the top-

performing machine learning algorithms for cervical cancer 

detection [12], breast cancer classification [13], early 

intrauterine foetal death detection [14], and identification of 

maternity risk level [15]. Besides, the automated framework [16] 

adopted the 5-fold CV technique to evaluate the CNN model for 

classifying brain tumours using magnetic resonance imaging. 

Therefore, it was clear from recent studies that using the CV 

approach for evaluating deep learning models enhances the 

system's resilience. 

The deep learning framework [17] employed pre-trained CNN 

networks, which were fine-tuned by including dense layers for 

age prediction from hand radiographs. They subsequently 

experimented with different optimizers to assess each model for 

performance analysis. Besides, the research work [18] carried 

out an extensive review of various fine-tuning strategies for three 

well-known pre-trained networks: ResNet-50, DenseNet-121, 

and VGG-19, across different medical imaging fields. Their 

findings emphasized that the distinct features of medical images 

require careful consideration in architectural design and fine-

tuning methods. Therefore, we decided to deepen the model's 

comprehension of the features in the training dataset by fine-

tuning the model on the same data. 

In conclusion, the existing methodologies demonstrated that 

CNN-based approaches were widely applied to estimate skeletal 

age from pelvic radiographs. This study employed pelvic X-rays 

to estimate ages, focusing on the pelvic girdle region. The 

proposed automated skeletal age estimation framework was 

devised using Attention UNet to isolate the pelvic girdle bones 

and fed the extracted bone regions into the deep CNN model for 

bone age evaluation. The experiments were carried out to 

emphasize the importance of incorporating a small, well-trained 

classifier into the CNN structure to enhance its performance. 

3. Methodology 

The proposed work endeavours to optimize the deep learning model 

for human age categorization while leveraging the limited 

computational resources. The purpose of this paper is threefold: (1) 

to calculate skeletal age with optimal accuracy; (2) to identify the best 

CNN model that validates across various subsets of the training 

samples; and (3) to enhance the predictive ability of the CNN model 

through weight transfer for unknown samples. The structure of the 

proposed age classification framework comprised three phases, as 

shown in Fig.1: Data preparation came first, followed by area of 

interest segmentation, and age evaluation network. 

 

Fig.  1. The proposed framework for skeletal age evaluation 

3.1. Data Collection 

The dataset included 2520 conventional pelvic X-rays aged 0 to 19 

years. A pelvic X-ray revealed the following structures: iliac crests, 

pelvic girdle, pubic symphysis, and proximal femora. Merely normal 

and healthy radiographs with no pelvic trauma or injury were 

considered for further evaluation. Fig.2 depicts some pelvic 

radiographs from the collection. 

 

Fig.  2. Sample pelvic X-rays from the collected data  
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3.2. Image Preprocessing 

Image pretreatment was done as follows to standardize images across 

the data collection: Resize the x-rays with a size of 256×256 pixels; 

remove noise from the images; enhance image contrast with the 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

technique. 

3.3. Pelvic Bone Extraction Network 

The proposed bone age evaluation framework estimated skeletal 

age by focusing on the ossification and union of the three major 

pelvic bones, namely the ilium, ischium, and pubis. 

Segmentation network is to locate the pelvic bones of interest for 

further evaluation. During the training process, binary images 

known as masks that specify the area of interest in an image, 

along with actual images, were fed into the extraction network as 

input. Eventually, the segmented dataset, which represents the 

masks, were generated. 

The extraction network adopted in this work adopted a framework 

akin to UNet [19]. The contracting path of the network was made 

up of four convolutional modules, each with two convolutional 

layers. The sequence of convolutional blocks was as follows: two 

3×3 convolutions with same padding, batch normalization, and 

Rectified Linear Unit (ReLU). Following each block, a max-

pooling layer was placed to reduce the input size. Similarly, the 

bottleneck layer linking the encoding and decoding paths had two 

3×3 convolutions. 

In the decoding phase, the upsampling operation was carried out to 

double the image size. The attention module [20] was placed 

between the encoding module and the upsampling block to 

emphasis on the salient features at each scale. Next, the attention 

gate output was fused with the corresponding upsampled feature 

maps from the decoder block. Subsequently, two 3x3 convolutions 

were applied, accompanied by a ReLU function. Following a 1x1 

convolution, the final decoder produced the segmentation mask 

with the dimensions of 256x256x1. 

Table 1 provides information on the extraction model. During 

training, model's parameters were updated using Adam optimizer 

and learning rate was chosen as 0.01. The extraction model loss 

was estimated using the Dice loss function. Equation (1) represents 

the Dice loss calculation, where maskpred represents the output of 

the extraction network, and masktrue is the labelled image.  

Diceloss = 1 − 2 ×
|maskpred ⋂ masktrue|

|maskpred|+|masktrue|
                                   (1) 

              

Table 1. Structural elements of the extraction model  

 No of 

kernels 

Kernel 

size 

Strides Output 

Encoder_block-1 64 3 x 3 1 128x128 x64 

Encoder_block-2 128 3 x 3 1 64x64x128 
Encoder_block-3 256 3 x 3 1 32x32x256 

Encoder_block-4 512 3 x 3 1 16 x16x512 

Bottleneck 1024 3 x 3 1 16x16x1024 

Decoder_block-1 512 3 x 3 1 32x32x512 
Decoder_block-2 256 3 x 3 1 64x64x256 

Decoder_block-3 128 3 x 3 1 128x128x128 

Decoder_block-4 64 3 x 3 1 256x256x64 

Final_conv 64 1 x 1 1 256x256x1 

For training purposes, 1000 images were chosen for manual mask 

annotation. The rest of the images were segmented using the 

trained model. Next, we obtained the pelvic bone area by 

overlaying the extraction mask on the real image. 

3.4. Age Evaluation Network 

The segmented dataset was augmented by performing various 

transformations to enhance its diversity. Eventually, the 

transformed images were fed into the CNN-based model for 

skeletal age assessment. The supervised age classification network 

extracted the informative characteristics from the pelvic images 

and categorized them into 20 classes of age ranging from 0 to 19. 

The framework for calculating bone age was constituted by the 

following procedures: 

1. Performing iterative k-fold cross-validation to determine the 

optimal classifier network. 

2. Developing two deep CNN models and feed them the weights 

of the ideal base classifier. 

3. Stacking the output of the both the models to ensure robust 

performance. 

3.4.1. Structure of the Base CNN Model 

In this part, we strived to transfer knowledge from a small CNN to 

a larger one through weights. Typically, weight distillation 

entails gaining knowledge from the weights of a deeper network. 

However, as previously indicated, we sought to achieve efficiency 

while implementing the deep learning model on low-cost 

hardware. Besides, the k-fold cross-validation approach enabled us 

to generalize the smaller network for the validation data. 

The developed compact CNN classifier model had four 

convolutional layers, each succeeded by a max-pooling layer. In 

the initial layer, there were 16 filters, and this number doubled in 

the subsequent layers. Then came three dense layers, the last of 

which was the SoftMax layer, which divided the data into twenty 

age groups. The framework of constructed model is illustrated in 

Fig.3. To train the model, we relied on the k-fold cross-validation 

method, considering the model's size to prevent overfitting.  

 

Fig.  3. The structural diagram of proposed CNN 
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Remember that the purpose of this method is to assess the model 

architecture rather than specific training since the same model 

was re-trained using various training sets. During model 

evaluation, the given data were split into k subsets, with one of 

these subsets as a validation set and training the model on the 

remaining subsets. In each of the k iterations, a different fold 

served as the validation set. This evaluation process was iterated 

n times, with the training samples being scrambled before each 

repeat, resulting in a new split of the samples.  

3.4.2. Iterative K-fold Cross Validation 

This section described the CNN model's training procedure as 

algorithm 1. The pelvic region extracted from the pelvis X-rays, 

measuring 224x224x3, was input into this algorithm. 

Subsequently, the training samples were segmented into k 

subsets. The model was then evaluated k times, using each fold 

as the test set once. During the iterative process, the model with 

the lowest validation loss was chosen at each iteration. The 

knowledge of this model was then passed to the next iteration 

through its weights. This procedure was continued until the 

validation loss ceased to decrease. At that point, the weights of 

the best-performing model were saved. 

Algorithm 1: Model training procedure 

1: Input: Extracted pelvic bone images X ϵ ℝL×L×C 

2: Initialization: Define k to divide the training data into     

number of subsets  

3: do: 

4: for i= 1 to k: 

5: Create model and load the pre_trained weights into it from 

the model[iteration-1] 

6: Use (k-1) folds for training 

7: Evaluate the model on validation fold 

8: if validation_loss < best_loss 

9: best_loss = validation_loss 

10: end if 

11: end for 

12: Get model with the best_loss and restore the model 

weights  

13: until best_loss [iteration] < best_loss [iteration-1] 

14: Output: Moel weights from the final iteration 

In the aforementioned cross-validation procedure, the model was 

initialized using weights from the previous iteration. The 

learning rate for the initial iteration was chosen as 0.01. 

Afterward, a meagre learning rate was applied, allowing subtle 

adjustments to the previously learned features while preventing 

the model from overfitting. 

3.4.3. knowledge transfer 

In this phase, we aimed to strengthen the age determination 

model's capacity to adapt effectively to unseen pelvis X-rays by 

refining the pre-trained model. To achieve this, we tried to 

develop two refined models and coupled them to capture various 

facets of the data, producing more accurate outcomes. In model 

1, two more blocks were incorporated into the underlying model, 

each including two convolutional layers with a depth of 256,512, 

respectively, to refine the higher-level representations of the 

model. By allowing these new layers to be trainable, the model 

excelled on new samples while leveraging the information 

gleaned from the low-level layers within a related domain. 

Model 2 had an identical structure to model 1, except for 

replacing the base model's first two earlier layers with a single 

convolutional block that had two convolutional layers, each with 

32 filters. Only the higher-level weights from the base model 

were carried over to the new model.Fig.4 describes the steps 

involved in the fine-tuning of the age determination model. 

 

Fig.  4. Fine-tuning and training of age evaluation framework 

The final step involved feeding the feature maps from the last module 

into a global average pooling layer to avoid overfitting, then into a 

SoftMax layer to categorize the data into twenty classes of age for 

both the models. Ultimately, a meta-model was established, 

comprising a fully connected layer of 32 neurons that consolidated 

the outcomes from the two base models. 

3.4.4. Training of the ensembled model 

During training, we considered the base classifier's knowledge 

because k-fold cross-validation provided reliable assessments of 

model performance. Thus, the age evaluation models utilized the 

weights from the best model of the final iteration of cross-validation.  

In the deeper models, the weights for the earlier layers from the base 

classifier were set to non-trainable to capitalize on the features taught 

from the pre-trained model. In the end, the predictions from both 

models were input to the meta-model which was then trained using 

original target values as true labels. Simultaneously, the performance 

of the meta-learner was assessed with a distinct test set. 

The proposed approach relied on iterative learning to optimize the 

model parameters. The dataset was split at random into two sections: 

80% of the radiographs were considered for training and 20% for 

validation. For parameter optimization, Adam optimizer was 

employed, and the batch size was fixed at 32. The Sparse categorical 

cross-entropy was the loss function that needs to be minimized. 

Equation (2) defines the loss function, where m is the number of 

classes, an is the bone age, and pn is the probability for nth class. 

 Loss = −Σ𝑛=0 
𝑚 an log(pn)                                                                (2)                                      

If there was no reduction in valid loss after five consecutive epochs, 

the training process was halted. The best-performing model and its 

parameters were retained.  

4. Results 

This section demonstrates the performance of a small classifier 

network using k-fold cross-validation on the pelvis X-ray dataset and 

the effectiveness of the recommended ensembled approach on test 

pelvic images while comparing it to other models. 

4.1. Performance of the K-fold Cross-Validation 

In this subsection, we assessed the robustness of the simple CNN 

classifier by training it on different subsets of the dataset. This process 

was iterated until the validation loss showed no significant decline. 

Table 2 summarises the training configurations for the k-fold 

approach. 
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Table 2. The training configurations for iterative k-fold approach 

Parameters Value 

K 4 

Batch size 32 

Epochs 150 

Optimizer Adam 

Learning rate for the first iteration 0.001 

Learning rate for the remaining iteration 0.0001 

After the fourth iteration, our model's validation loss failed to 

improve; therefore, we selected the model with the lowest loss 

from that iteration as the final model. Table 3 compares the 

validation loss from each iteration. Every iteration witnessed a 

decrease in validation loss, which allowed the model to converge 

more quickly as the best weights were retained each time. 

Table 3. Validation loss from all the four iterations 

 Iteration  Validation loss 

1 1.17 

2 0.40 

3 0.09 

4 0.005 

4.2. Evaluation of the Ensembled Model 

The two stated deeper models, designated as model 1 and model 2, 

were trained using the same pelvis dataset. Figures 5, and 6 

demonstrate the accuracy and loss over training epochs for model 

1, and model 2, respectively. While model 2 outperformed model 

1, it took 70 epochs to converge, whereas model 1 required only 

28 epochs. Table 4 summarizes the accuracy of the proposed 

models. 

 

Fig.  5. Plot on loss over training epochs for model 1 

 

Fig.  6. Plot on loss over training epochs for model 2 

Table 4. Accuracy comparison between the three models. 

 Training accuracy Epochs taken 

Model 1 97.88 28 

Model 2 98.12 70 

Ensembled model 98.75 65 

Evaluation metrics, namely precision, recall, and F1-score, were 

employed to review the performance of the suggested models. 

Precision is the model's capacity to not misclassify negative 

samples as positive for the target class. The recall (sensitivity) 

assesses the model's ability to identify relevant samples for the 

target class. The F1-score is the harmonic mean of precision and 

sensitivity. Tables 5 and 6 display the classification metrics for 

model 1 and model 2, highlighting the classes where each model 

performed well based on the validation data. 

Table 5. Performance measures of model 1 for all 20 classes 

Class 

(age in 

years) 

Accuracy Precision Recall F1-score 

0 1.00 1.00 1.00 1.00 

1 1.00 1.00 1.00 1.00 

2 0.93 1.00 0.93 0.96 

3 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 

5 1.00 0.86 1.00 0.92 

6 1.00 1.00 1.00 1.00 

7 1.00 0.91 1.00 0.95 

8 1.00 1.00 1.00 1.00 

9 1.00 0.94 1.00 0.97 

10 0.82 1.00 0.82 0.90 
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Table 5.  (cont.) 

Class 

(age in 

years) 
Accuracy Precision Recall F1-score 

11 1.00 1.00 1.00 1.00 

12 0.60 0.75 0.60 0.67 

13 1.00 0.67 1.00 0.80 

14 0.70 1.00 0.70 0.82 

15 1.00 0.57 1.00 0.73 

16 1.00 1.00 1.00 1.00 

17 1.00 1.00 1.00 1.00 

18 1.00 1.00 1.00 1.00 

19 1.00 1.00 1.00 1.00 

Table 6. Performance measures of model 2 for all 20 classes 

Class 

(age in years) 
Accuracy Precision Recall F1-score 

0 1.00 1.00 1.00 1.00 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 0.96 

3 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 

6 0.91 0.91 0.91 0.91 

7 1.00 0.91 1.00 0.95 

8 1.00 1.00 1.00 1.00 

9 1.00 1.00 1.00 1.00 

10 0.91 1.00 0.91 0.95 

11 1.00 1.00 1.00 1.00 

12 1.00 1.00 1.00 1.00 

13 1.00 1.00 1.00 1.00 

14 0.70 1.00 0.70 0.82 

15 1.00 0.57 1.00 0.73 

16 1.00 1.00 1.00 1.00 

17 1.00 1.00 1.00 1.00 

18 1.00 1.00 1.00 1.00 

19 1.00 1.00 1.00 1.00 

Table 6 indicates that model 2 performed slightly better than model 

1, achieving an accuracy of 96.12%, precision of 97%, recall of 

98%, and F1-score of 97%. Despite the performance disparity, 

model 1 predicted class 6 with 100% accuracy against 91% for 

model 2. Thus, it can be concluded that the ensemble technique 

utilized the strengths of various models for improved 

generalization. 

Ultimately, the predictions from both models were fed into a neural 

network, which generated the final outcome. The confusion matrix is 

a table to illustrate the classification results by comparing the actual 

label with those predicted by the model. The diagonal elements in 

confusion matrix denote the number of valid predictions for each 

class.Fig.7 depicts the confusion matrix of the ensembled model 

following the evaluation of 160 test pelvic images.  

 
Fig.  7. Confusion matrix of the ensembled model 

4.3. Discussion 

This study relied on the following anatomical structures in pelvic 

radiographs to determine age: iliac crests, ilium, ischium, pubis, and 

proximal femora. The human pelvis may continue to grow until the 

age of 21. Nevertheless, the pelvic growth pattern differs with age 

during adolescence. At first, ischium and pubis begin to fuse to 

develop the ischiopubic region between the ages of 4 and 8. 

Subsequently, between the ages of 11 and 14, the ilium unites with 

the ischiopubic region. The iliac crest is a convex curve that defines 

the upper border of the ilium. As the person reaches adulthood, it 

starts to ossify in the centre of the crest and extends to the spine. In 

females, the iliac crest merger with the ilium begins at age 15, while 

in males, it commences at age 17. 

We built a framework for assessing skeletal age by considering the 

growth pattern of the pelvic girdle and iliac crest epiphysis from 

pelvis radiographs. It had been found that the suggested ensembled 

model performed well even with a smaller dataset, with a mean 

accuracy of 97.50%.  

Furthermore, the suggested framework outperformed the current 

CNN models while predicting the bone age on the same dataset. Table 

7 compares the resultant performance of various CNN algorithms for 

age estimation.  As stated in table 7, the average accuracy, precision, 

recall, and F1-score of the given framework were 97.50%, 98.25%, 

96.65%, and 97.2%, respectively. 
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Table 7. Performance of various CNN algorithms for age evaluation 

Model name Accuracy Precision Recall F1-score 

VGG16 92.19% 90.65% 89% 89.81% 

VGG19 93.75% 93% 92% 92.50% 

DenseNet121 94.38% 94.25% 93% 93.6% 

ResNet50 96.88% 95.25% 93.5% 93.6% 

Proposed  

ensembled  

model 

97.50% 98.25% 96.65% 97.2% 

The experimental outcomes demonstrated that combining the two 

models initialized with well-trained weights can considerably 

enhance the categorization ability of the framework. It's necessary 

to know that the global age limits for criminal culpability are 

established at 12, 16, and 18 years old, which play a vital role in 

determining the case's merits and verdict. 

As such, our proposed bone age estimation system could aid in the 

accurate prediction of these threshold ages. The proposed study 

did, however, have certain shortcomings. Girls typically enter 

adulthood sooner than boys, generally between the ages of 8 and 

13. Also, several dietary and hormonal factors influence bone 

growth metrics in healthy boys and girls at various pubertal phases. 

Yet, the given framework did not take gender roles into account 

while predicting age. The further drawback of this proposed work 

is the diminutive sample size, which could impede the 

effectiveness of deep learning algorithms.  

5. Conclusion 

This research aims to enhance the ability of deep learning networks 

for age prediction tasks. To this end, we offered a two-stage deep 

learning framework that combined a bone extraction model with 

an age evaluation model. The experiment revealed that transferring 

knowledge from a small, well-trained CNN classifier into the deep 

CNN model improved multi-classification performance over the 

existing deep learning models. Besides, the K-fold cross-validation 

technique assessed the model using various subsets of sample data 

while validating its structure for resilience. Moreover, the iterative 

validation approach utilized the knowledge from previous 

iterations, enhancing findings and accelerating the model's 

convergence in each cycle. Also, the experiment proved that the 

pre-trained weights from the final iteration aided in training deep-

learning models without affecting the quality of the results. While 

the models showed varying performance levels, stacking utilized 

the strengths of each model to generate reliable age predictions. In 

future studies, it is necessary to expand the population size and the 

age group of the sample beyond 19 years old. Furthermore, the 

future framework should incorporate various biological factors 

other than radiographs for widespread application.  
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