

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 14

Handwritten Text Recognition Using Deep Learning: A CNN-LSTM

Approach

Dr. Josephine Prem Kumar 1, Dharshan H D 2

Submitted: 05/01/2025 Revised: 20/02/2025 Accepted: 04/03/2025

Abstract: Handwritten Text Recognition (HTR) has undergone major improvements due to the rise of deep learning. This research

introduces a novel approach to hybrid Convolutional Neural Networks (CNNs) in conjunction with Long Short-Term Memory (LSTM)

model for accurate recognition of handwritten text. The model is trained using the IAM dataset, consisting of 13,353 handwritten text lines

and 115,320 words. The preprocessing pipeline includes grayscale conversion, normalization, and data augmentation to enhance

generalization. The CNN is responsible for capturing spatial features from input images, while the LSTM captures sequential dependencies

in text, followed by the CTC (Connectionist Temporal Classification) loss function is employed for alignment. Experimental results show

an overall Character Error Rate (CER) of 4.57% and a Word Error Rate (WER) of 12.3%. The model outperforms traditional OCR methods

and demonstrates robustness in recognizing cursive, printed, and mixed-script handwriting styles. This research highlights the potential of

deep learning in real-world used in various applications, including digitizing historical documents, bank cheque processing, and automated

postal services.

Keywords: Convolutional Neural Network, Long Short-Term Memory, Connectionist Temporal Classification, IAM Dataset, Optical

Character Recognition.

1. Introduction

Handwritten text recognition (HTR) is a crucial task in document

digitization, enabling efficient storage, retrieval, and analysis of

handwritten documents. Traditional handwritten records pose

challenges in terms of readability, accessibility, and searchability.

Converting handwritten scripts into machine-readable text

improves data processing, making facilitating the process to

analyze and share the information. Optical Character Recognition

(OCR)-based on these approaches are extensively utilized in this

domain but often struggle with accuracy due to variations in

handwriting styles, distortions, and noise in scanned images [1].

Therefore, advanced deep learning techniques, particularly CNNs

and RNNs, have gained popularity in handwritten text recognition

for owing to their capability for acquiring patterns and

representation for robust representations and contextual

dependencies.

Convolutional Recurrent Neural Network (CRNN). The model

employs a CNN is employed for extracting features, while a RNN

integrated with Long Short-Term Memory (LSTM) units for

sequence modeling and error correction. The IAM dataset, a

widely used benchmark for handwritten text recognition, serves as

the training dataset [2]. Feature extraction Significantly impacts in

recognition accuracy, as it determines by influencing the model’s

ability to capture variations in handwriting. Unlike traditional

OCR-based systems that rely on explicit character segmentation,

deep learning approaches offer end-to-end recognition,

significantly improving performance and adaptability across

different handwriting styles [3].

This study aims to enhance recognition accuracy and efficiency in

handwritten text transcription, addressing the limitations of

traditional methods. By leveraging the strengths of the

combination of CNNs for extracting spatial features and RNNs for

processing sequential data, the proposed model improves the

recognition of handwritten words and characters. The findings of

research contribute to the advancement of document digitization

and automated handwriting recognition, facilitating applications in

archival digitization, assistive technologies, and intelligent

document processing.

2. Literature review

Handwritten text recognition (HTR) has evolved significantly with

the emergence of deep learning techniques. Earlier methods relied

on traditional feature extraction, such as zoning and histogram-

based techniques, but struggled with handwriting variations [4].

Convolutional neural networks (CNNs) have significantly

enhanced feature extraction by autonomously recognizing spatial

patterns in textual images. Research has shown that CNN-based

These models outperform conventional approaches in recognizing

diverse handwriting styles [5]. However, CNNs alone lack

sequence modeling capabilities, Resulting in the enhancement of

integration of the use of recurrent neural networks (RNNs) for

improved contextual understanding.

Integrating CNNs with LSTM networks has demonstrated

significant efficiency in HTR. LSTMs help models process

sequential text by handling long-range dependencies, reducing the

1 Cambridge Institute of Technology, Bengaluru – 560036,
INDIA
ORCID ID: 0009-0008-9471-7219
2 Cambridge Institute of Technology, Hunsur, Bengaluru –
562149, INDIA
ORCID ID: 0009-0007-0063-9217
* Corresponding Author Email: dharshan.hd27@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 15

vanishing gradient problem [6]. Hybrid CNN-LSTM architectures

allow for end-to-end word and sentence recognition without

explicit character segmentation. Attention mechanisms further

refine recognition by dynamically focusing on key regions of text

during processing. Recent work has explored self-attention

modules, improving accuracy in noisy handwriting datasets.

Conventional statistical methods, such as Hidden Markov Models

(HMMs) were widely used before deep learning gained popularity.

HMMs effectively model handwriting sequences but require

extensive preprocessing and handcrafted features, limiting their

adaptability [7]. To enhance accuracy, hybrid approaches

combining HMMs with CNNs or RNNs have been developed.

These models balance probabilistic sequence modeling with deep

learning-based feature extraction, allowing their application in

multiple handwriting datasets.

The rise of transformer-based architectures has opened novel

avenues for HTR. Unlike RNNs, transformers use self-attention to

process entire sequences at once, improving efficiency [8]. Studies

show that transformer-based models outperform CNN-LSTM

architectures in large-scale handwriting datasets. Vision

Transformers (ViTs) and hybrid transformer-CNN models reduce

the need for complex preprocessing, making them useful for

segment-free handwriting recognition [9]. These advancements

highlight the growing role of attention-based models in modern

HTR.

Beyond accuracy, researchers have focused on making HTR

models more adaptable and robust. Techniques like data

augmentation, domain adaptation, and adversarial training enhance

generalization across diverse handwriting styles [10]. Few-shot

learning approaches help models recognize unseen handwriting

with minimal data. Additionally, GANs (Generative Adversarial

Networks) have been investigated to enhance the readability of

low-quality handwritten text [11]. These advancements ensure that

HTR systems remain effective applied in practical scenarios.

3. Proposed methodology

The main purpose is to enable efficient data digitization, facilitate

searchability, enhance accessibility for persons with visual

impairments individuals, and automate tasks like form processing,

document indexing, and archival of historical manuscripts.

3.1 Dataset

The IAM Handwritten Database, a widely recognized dataset

developed explicitly for recognizing handwritten text. The dataset

consists of handwritten English text samples contributed by

multiple writers, making it highly diverse in terms of handwriting

Fig. 1. IAM Dataset

styles [12]. It includes forms, lines, and word-level annotations,

allowing flexibility in training models for different text recognition

Fig. 2. HTR Architecture

tasks. A sample of this is shown in Fig.1.

The dataset is available in grayscale images, each containing

handwritten text with corresponding transcriptions in XML format.

Each image is segmented into individual words and lines,

facilitating both character-level and word-level recognition. This

dataset includes bounding box coordinates, which help in

localizing text regions.

A major advantage of IAM is that it reflects real-world handwriting

variations, including different slants, cursive writing, and spacing

inconsistencies. The dataset contains around 1,500 pages of text,

written by 657 different individuals, ensuring a wide range of

handwriting styles [12].

To use the dataset, we first preprocess the images by resizing,

normalizing, and binarizing them for improved recognition. The

dataset undergoes partitioning into training, validation and testing

sets to evaluate model performance effectively. This structured

approach ensures that the handwritten text recognition system

generalizes well to unseen HTR styles.

3.2 Model Architecture

Handwritten Text Recognition (HTR) plays an essential role in

document digitization and automated text processing. The

proposed model (Fig.2) leverages deep learning techniques to

accurately convert handwritten text into machine-readable format.

By integrating pre-processing, feature extraction, and a

Convolutional Neural Network (CNN), the system efficiently

recognizes diverse handwriting styles with high accuracy [13].

a. Input Image: The handwritten text recognition process starts

with acquiring an input image containing handwritten content. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 16

source of the image could be scanned documents, digital notes, or

photographed text. The standard of the provided input image

plays A vital part in the accuracy of recognition, making it essential

to ensure proper resolution and clarity before processing.

b. Pre-Processing: Pre-processing techniques are applied to

enhance image quality and improve feature extraction. This

includes noise reduction, binarization, and resizing to a fixed

dimension. Normalizing the image ensures consistency across

different handwriting styles, reducing variations that may affect

recognition performance.

c. Feature Extraction and Image Normalization: Feature

extraction identifies key patterns and structures within the text,

such as edges, curves, and character shapes. Image normalization

adjusts pixel intensity and alignment, ensuring uniformity in input

data. These steps help the ensures the model’s ability to generalize

across diverse handwriting styles and conditions.

d. CNN (Convolutional Neural Network): The processed

image is fed through a CNN, that captures multi-level features

from. the handwritten text. CNN layers detect spatial patterns,

allowing the model to learn character structures effectively. The

IAM dataset is used for training, enabling the network to recognize

diverse handwriting styles accurately [14].

e. Recognized Word Output: Finally, the trained model

processes the extracted features and predicts the most probable

word or character sequence. The recognized text is then displayed

or stored for further applications, such as document digitization,

automated transcription, or assistive technologies.

3.3 Preprocessing Techniques

These preprocessing steps (Fig.3) optimize image quality, ensure

standardization, and enhance the efficiency of deep learning-based

handwritten text recognition systems.

Fig. 3. Preprocessing techniques

a. Grayscale Conversion: Converting RGB images (3 channels)

to grayscale (1 channel) reduces computational complexity by

66%, enabling the model to focus on textual features [15]. This

also minimizes memory usage, making data processing faster.

Grayscale images help standardize input data, ensuring consistent

feature extraction across different samples in (1).

RGB images (IRGBI_{RGB}IRGB) with three color channels are

converted to grayscale (IgrayI_{gray}Igray) using a weighted

sum:

Igray=0.2989R+0.5870G+0.1140B (1)

This reduces computational complexity by 66% while preserving

essential text structures. Grayscale ensures consistent feature

extraction, improving recognition efficiency [16].

b. Binarization: Thresholding methods, such as Otsu’s or

Huang’s, transforms grayscale images into binary format (0 for

black, 255 for white), enhancing text-background separation. This

step is crucial for removing noise and improving character

visibility. Proper binarization ensures that over 95% of essential

text details are retained while reducing unnecessary variations in

(2).

Thresholding transforms grayscale images into binary form:

Ibin(x,y)={0, if Igray(x,y)<T; 255,otherwise (2)

where TTT is determined using Otsu’s or Huang’s method. This

enhances text-background separation, retaining over 95% of vital

character details while reducing noise

c. Resizing and Padding: Images are resized to a fixed

dimension (e.g., 32×128 pixels). If aspect ratios do not match,

white padding is applied to prevent distortion (3). Maintaining

consistent input sizes helps in batch processing and improves

model efficiency. Proper resizing also ensures that the text remains

legible, preventing loss of critical character structures (4).

To standardize input dimensions (h,wh, wh,w), the images are

adjusted in size while preserving aspect ratios:

I′=Resize(I,h,w) (3)

If the resized image does not match www, padding (PPP) is

applied:

P=w−width(I′) (4)

This prevents distortion and preserves character integrity, aiding

batch processing.

d. Image Inversion: Inverting text from black (0) to white (255)

improves contrast, aiding feature extraction in convolutional

layers. This method corresponds to the way CNNs detect edges and

patterns, enhancing text recognition accuracy. Studies have shown

that inversion can boost OCR performance by up to 10%,

particularly in low-contrast images in (5).

Inverting pixel intensities enhances text clarity:

Iinv=255−Ibin (5)

This improves contrast for convolutional feature extraction.

Studies show that inversion enhances OCR accuracy by up to 10%,

particularly for low-contrast handwriting.

e. Normalization: Pixel intensities are normalized between 0

and 1, ensuring stable model training and preventing large

numerical variations. Normalization speeds up convergence during

training by keeping gradients in a controlled range. Additionally,

it enhances the model’s generalization ability, reducing sensitivity

to variations in handwriting styles.

Pixel values are scaled to [0,1] to stabilize training:

I_norm=255/gray (6)

This ensures controlled gradient updates (6), accelerating

convergence and improving model generalization across different

handwriting styles.

f. Character Encoding: Each character is assigned a numerical

index (e.g., ‘A’ = 1, ‘B’ = 2), allowing the model to recognize and

reconstruct words accurately. This step facilitates the

transformation of output sequences into readable text. By encoding

characters systematically, the model efficiently learns language

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 17

patterns, improving recognition accuracy for diverse handwriting

styles [17].

Each character (ci) is mapped to an index (yi) using:

yi=f(ci) (7)

where f is a predefined character-to-index function. This step

enables sequence reconstruction, helping the model recognize

diverse handwriting patterns effectively in (7).

3.4 Layers Architecture

The proposed handwritten text recognition (HTR) model utilizes

a CRNN (Convolutional Recurrent Neural Network) with 6

convolutional layers and a pair of bidirectional LSTM layers is

incorporated (Fig.4). Extraction of spatial features is performed

using convolutional layers using filters of size (3×3), while max-

pooling layers with (2×2) and (2×1) kernels reduce

dimensionality, improving computational efficiency [18].

To capture sequential dependencies, two BiLSTM layers with 256

units each process the extracted features. The final dense layer,

with a SoftMax activation function, predicts text sequences with

high accuracy. This hybrid architecture enables efficient

recognition of handwritten text across different writing styles.

Fig. 4. Layers Architecture

The model incorporates batch normalization layer follows the

convolutional layers to stabilize training and enhance

generalization. A lambda layer is used to reshape the feature map

before feeding it into the recurrent layers, ensuring compatibility

between convolutional and sequential processing. This design

effectively balances feature extraction and sequence modeling for

improved recognition performance.

Dropout regularization at a specified rate of 0.2 is applied in the

BiLSTM layers helping to reduce overfitting and improve

robustness. The final output layer, with a size corresponding to the

number of unique characters plus one for the blank token, ensures

efficient text decoding. This architecture is optimized for

recognizing handwritten words and sentences with minimal

preprocessing.

Layers Description

Table I gives the summary of the CNN model.

1. Input shape for our architecture having an input image of height

32 and width 128.

2. Here we used seven convolution layers of which 6 are having

kernel size (3,3) and the last one is of size (2.2). And the number

of filters is increased from 64 to 512 layer by layer.

3. Two max-pooling layers are added with size (2,2) and then two

max-pooling layers of size (2,1) are added to extract features with

a larger width to predict long texts.

4. Also, batch normalization layers were incorporated after fifth

and sixth convolution layers which accelerates the training

process.

5. A lambda function was applied to reshape the output of the

convolutional layer, ensuring compatibility with the LSTM layer.

6. The architecture includes two bidirectional LSTM layers, where

each comprising 128 units, were utilized. The resulting RNN layer

produces an output of shape (batch size, 31, 79), where 79 denotes

the overall count of output classes, including the blank character.

Table 1. CNN Model

Layer (Type) Output Shape Parameters

Input Layer (input_1)
(None, 32, 128,

1)
0

Conv2D (conv2d)
(None, 32, 128,

64)
640

MaxPooling2D

(max_pooling2d)

(None, 16, 64,

64)
0

Conv2D (conv2d_1)
(None, 16, 64,

128)
73,856

MaxPooling2D

(max_pooling2d_1)

(None, 8, 32,

128)
0

Conv2D (conv2d_2)
(None, 8, 32,

256)
2,95,168

Conv2D (conv2d_3)
(None, 8, 32,

256)
5,90,080

MaxPooling2D

(max_pooling2d_2)

(None, 4, 32,

256)
0

Conv2D (conv2d_4)
(None, 4, 32,

512)
11,80,160

BatchNormalization (batch

normalization)

(None, 4, 32,

512)
2,048

Conv2D (conv2d_5)
(None, 4, 32,

512)
23,59,808

BatchNormalization

(batch_normalization_1)

(None, 4, 32,

512)
2,048

MaxPooling2D

(max_pooling2d_3)

(None, 2, 32,

512)
0

Conv2D (conv2d_6)
(None, 1, 31,

512)
10,49,088

Lambda (lambda) (None, 31, 512) 0

Bidirectional (bidirectional) (None, 31, 512) 15,74,912

Bidirectional (bidirectional_1) (None, 31, 512) 15,74,912

Dense (dense) (None, 31, 79) 40,527

3.5 Environment Setup

The model development and training are conducted on Kaggle, a

cloud-based platform that provides a pre-configured Jupyter

Notebook environment with GPU support, making it suitable for

deep learning tasks. Kaggle offers seamless access to essential

libraries, including TensorFlow, Keras, OpenCV, NumPy, and

Matplotlib, eliminating the need for manual installation. The

dataset is uploaded and accessed directly within the Kaggle

environment, ensuring efficient data handling.

To set up the system, essential dependencies are imported, and the

IAM dataset is loaded. OpenCV preprocesses images by

normalizing dimensions and improving clarity. A CNN-BiLSTM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 18

model is built using TensorFlow and Keras, with GPU acceleration

for efficiency. The model is trained with callbacks, evaluated on a

validation set, and assessed using Jaro-Winkler similarity for

accuracy.

3.6 Model Training

 This model is designed to employing a specific batch size of 5

over 10 epochs, optimizing weights with the stochastic gradient

descent (SGD) optimization algorithm. optimizer for stable

convergence. The objective function used to optimize the model

based on CTC (Connectionist Temporal Classification) loss

function is applied to align predictions with ground truth

sequences without requiring explicit character segmentation.

Preprocessed images, along with their corresponding labels and

sequence lengths, are fed into the network, allowing the model to

effectively learn both spatial and sequential features effectively

[17].

To evaluate generalization, a validation dataset is used alongside

training data, ensuring robustness against unseen handwriting

variations. The input pipeline includes images, padded labels,

input lengths, and label lengths, helping the model process varying

text structures. Additionally, a checkpoint mechanism is

implemented to save the best-performing model based on

validation accuracy, preventing overfitting. This iterative learning

process refines the model’s ability to accurately recognize

handwritten text, improving overall performance with each epoch.

3.7 Evaluation Metrics

Ensuring both the accuracy and robustness of the handwritten text

recognition model, the Jaro Winkler similarity algorithm is used to

measure the closeness between the predicted text and the actual

ground truth. The model predictions are first generated using the

trained neural network, followed by decoding the output using the

CTC (Connectionist Temporal Classification) decoder to obtain

readable text. The decoded results are then compared against the

original handwritten text to evaluate recognition performance.

The Jaro-Winkler metric provides a quantitative measure of

similarity, giving higher scores to predictions that closely match

the actual text while penalizing incorrect character placements.

Additionally, visual validation is performed by demonstrating

through the original and predicted text alongside the corresponding

image, Enabling for a qualitative assessment. This combination of

automated similarity scoring and visual inspection ensures an

assessment of the model’s effectiveness in recognizing

handwritten text.

4. Results and Discussion

The performance of the CRNN-based handwritten text recognition

system was evaluated using the IAM dataset. Over 50 epochs of

training, the model demonstrated a steady improvement both

training and validation accuracy, indicating effective learning. The

use of CTC (Connectionist Temporal Classification) loss enabled

the model to handle variable-length text sequences efficiently.

While early epochs showed high loss and low accuracy, continued

training led to significant convergence. The validation accuracy

suggests the model generalizes well to unseen data, though some

misclassifications persist due to complex handwriting variations.

Fine tuning the model and increasing the dataset size could further

enhance accuracy. Overall, the CRNN architecture proved

effective for recognizing handwritten text, balancing Extraction of

spatial features and their subsequent processing.

4.1 Test Results

The test results (Fig.5) show that the CRNN model is performing

well on some words but struggles with others. Words like "that",

"in", ",", and "." were predicted correctly, indicating that the model

has learned to recognize certain words and punctuation effectively.

However, errors like predicting "want" as "wt" suggest that the

model may have difficulty recognizing certain letters, especially

vowels.

These errors could be due to several factors, such as data

imbalance, where certain words appear less frequently in the

training set, or noise in the input images affecting character

recognition. The CTC loss function, used for sequence learning,

may also struggle with shorter words or words containing repeated

letters [19].

Fig. 5. Original and Predicted Text by model

To improve accuracy, the model could benefit from additional data

augmentation, better image preprocessing, and fine-tuning of

training hyperparameters like the learning rate and number of

epochs. Despite these minor errors, the overall results show that

indicating that the model is capable of recognizing handwritten text

and can be further improved with refinements in training and data

preparation.

4.2 Graphs and Charts

4.2.1 For 10 Epochs

Fig. 6. Accuracy and Loss (%) for 10 epochs

Fig.6 illustrates the training dynamics of the handwritten text

recognition model over 10 epochs. The training loss decreased

significantly from approximately 12 to below 2, while validation

loss stabilized around 2.5, indicating effective learning with a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 19

minor generalization gap. Training accuracy improved from below

0.1 to nearly 0.7, whereas validation accuracy plateaued at 0.55

after the 7th epoch, suggesting potential overfitting [20].

To mitigate overfitting, techniques such as dropout regularization,

data augmentation, and early stopping can be employed. Fine-

tuning hyperparameters, including learning rate adjustments and

batch size optimization, may further enhance generalization.

Additionally, increasing dataset diversity can help the model learn

robust features, improving validation accuracy.

4.2.2 For 20 Epochs

Fig.7 shows the performance metrics for training and validation of

the CRNN-based handwritten text recognition model over 20

epochs. The training loss exhibits a sharp decline from

approximately 16 to below 1, whereas validation loss stabilizes

around 2–3 after the 10th epoch. This suggests that while the model

learns effectively, a slight gap persists, potentially indicating

overfitting. Training accuracy steadily improves from near 0.1 to

0.9, whereas validation accuracy reaches a plateau at around 0.7,

suggesting the model’s limited ability to generalize across unseen

data.

Fig. 7. Accuracy and Loss (%) for 20 epochs

The observed trends highlight the combined effect of

convolutional layers extracting spatial features and recurrent layers

capturing sequential dependencies. However, the widening gap

between training and validation accuracy suggests the need for

strategies like dropout regularization, data augmentation, or fine-

tuning hyperparameters to improve robustness.

4.2.3 For 50 Epochs

Fig.8 illustrates the loss and accuracy values observed during

training and validation over 50 epochs for a CRNN-based

handwritten text recognition system. The loss graph shows that the

training loss starts around 12 and decreases sharply to nearly 0,

indicating effective model optimization. However, the validation

loss stabilizes around 2–3 after 10 epochs, suggesting overfitting.

In the accuracy graph, the training accuracy rapidly increases from

0.0 to nearly 1.0, while validation accuracy improves to around 0.7

but then plateaus.

Fig. 8. Accuracy and Loss (%) for 50 epochs

This reflects how the CNN extracts spatial features and the RNN

captures sequential dependencies, mimicking human text

recognition. These trends provide critical analyzing the model’s

learning process efficiency and areas for further optimization.The

CRNN architecture, a combination of feature extraction and RNNs

to handle the sequence learning, effectively models human-like

reading by capturing both spatial and sequential data within the

text.

4.3 Comparison with Benchwork models

4.3.1 Training Accuracy

A comparison of training accuracy across 10, 20, and 50 epochs

(Fig.9) reveals significant improvements in model learning. At 10

epochs, training accuracy reaches approximately 0.65, while

validation accuracy stabilizes around 0.55, indicating early-stage

learning with potential underfitting. Extending to 20 epochs,

training accuracy improves to 0.85, with validation accuracy

around 0.7, suggesting better generalization but a noticeable gap,

hinting at overfitting [21]. At 50 epochs, training accuracy

surpasses 0.95, whereas validation accuracy remains near 0.75,

reinforcing the overfitting concern, as the model memorizes

training data rather than learning generalized patterns.

Fig. 9. Training Accuracy of 10, 20 and 50 Epochs

The

declining validation loss from 12 at 10 epochs to below 3 at 20

epochs and stabilizing around 2 at 50 epochs supports this

observation. While deeper training enhances pattern recognition,

diminishing returns in validation accuracy indicate the need for

regularization techniques like dropout or data augmentation. A

balance between training duration and model performance is

crucial to avoid overfitting while ensuring robust text recognition

across diverse handwriting styles.

4.3.2 Training Loss

A comparison of training loss across 10, 20, and 50 epochs (Fig.10)

highlights the model’s learning progression. At 10 epochs, the

training loss decreases from an initial 14 to approximately 2, while

validation loss stabilizes around 2.5, indicating the model is still

generalizing. By 20 epochs, training loss further drops below 1,

with validation loss fluctuating around 2, suggesting improved

learning but a widening gap between training and validation,

pointing to potential overfitting.

At 50 epochs, training loss approaches 0.2, while validation loss

remains around 1.8–2, reinforcing overfitting concerns. The rapid

decline in training loss without a proportional decrease in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 20

validation loss indicates that the model is memorizing training data

rather than improving generalization. This trend suggests the

importance of methods like dropout or weight regularization to

maintain a balance between learning efficiency and generalization

for real-world handwritten text recognition.

Fig. 10. Training Loss of 10, 20 and 50 Epochs

4.3.3 Validation Accuracy

The validation accuracy trends across 10, 20, and 50 epochs

(Fig.11) highlight the model’s generalization capability. At 10

epochs, validation accuracy reaches approximately 55%,

indicating initial learning but with room for improvement. By 20

epochs, accuracy stabilizes around 65%, suggesting enhanced

feature extraction and sequence learning. However, the gap

between training and validation accuracy starts to widen, hinting

at potential overfitting.

Fig. 11. Validation Accuracy of 10, 20 and 50 Epochs

At 50 epochs, validation accuracy plateaus near 70%, while

training accuracy exceeds 90%, reinforcing the risk of overfitting.

The diminishing gains in validation accuracy despite prolonged

training suggest that the model is memorizing training data rather

than improving generalization. This trend emphasizes the

importance of early stopping, dropout, or data augmentation

techniques to prevent overfitting and enhance real-world

handwritten text recognition performance.

4.3.4 Validation Loss

The validation loss trends across 10, 20, and 50 epochs (Fig.12)

highlight the model’s learning stability and generalization. At 10

epochs, validation loss drops significantly from 12 to around 2.5,

indicating effective initial training. By 20 epochs, the loss further

stabilizes near 2.0, showing improved learning with reduced

fluctuations. However, a slight divergence from training loss

suggests the onset of overfitting.

Fig.12. Validation Loss of 10, 20 and 50 Epochs

At 50 epochs, validation loss remains around 1.8–2.0, while

training loss continues decreasing towards 1.0, reinforcing the risk

of overfitting. The minimal improvement in validation loss beyond

20 epochs indicates diminishing returns, suggesting that prolonged

training does not significantly enhance generalization. This

highlights the essential role of regularization methods including

dropout and early stopping to prevent overfitting and maintain

optimal model performance [22].

4.4 Key Observations

The results obtained from this research highlight the impact and

efficiency of employing a CRNN model for handwritten text

recognition. The model demonstrated a strong ability to extract

meaningful features from handwritten text and accurately

transcribe them into machine-readable text.

This has significant implications in various fields, such as

digitizing historical manuscripts, automating form processing, and

enhancing accessibility for visually impaired individuals. By

improving the precision and performance benefits of utilizing

handwriting recognition, this study contributes to Progress in

artificial intelligence technologies in document analysis and

optical character recognition (OCR) applications [23].

Furthermore, the successful implementation of the CRNN model

in handwritten text recognition opens doors for several other

practical applications. In the education sector, automated grading

systems can be enhanced to evaluate handwritten responses more

efficiently.

In the healthcare industry, patient records, prescriptions, and

medical notes can be digitized with greater accuracy, reducing

errors caused by manual transcription [24]. Additionally, in legal

and administrative fields, handwritten contracts and documents

can be quickly processed, ensuring better record-keeping and

retrieval.

Another key implication is in the field of linguistics and historical

preservation. Handwritten archives, ancient scripts, and research

notes can be efficiently converted into digital formats, aiding

researchers in analyzing and preserving valuable historical

documents. Moreover, in banking and finance, automated check

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 21

processing and signature verification can benefit from improved

handwritten text recognition, enhancing security and efficiency.

4.5 Limitations of the study

Fig. 13. Limitations of the study

• Variability in Handwriting Styles: Different people have

unique handwriting, making it challenging for the model to

recognize all variations accurately.

• Dataset Dependence: The model's performance heavily relies

on the quality and diversity of the training dataset. If the dataset

is biased or lacks variety, the model may struggle with new

handwriting styles.

• Computational Requirements: Training deep learning models

requires high computational power, which can be expensive

and time-consuming.

• Challenges with Noisy or Blurred Text: Handwritten text with

smudges, overlapping letters, or poor image quality can reduce

recognition accuracy.

• Difficulty with Cursive and Unstructured Text: The model may

struggle more with cursive or highly stylized handwriting

compared to neatly printed text.

• Limited Generalization: A model trained on a single dataset

might not perform well on completely different handwriting

samples without fine-tuning.

5. Conclusion

Handwritten text recognition (HTR) has made Major progress has

been achieved through approaches leveraging deep learning

methodologies like CRNN models that integrate convolutional and

recurrent layers. However, there is still room for improvement in

accuracy, generalization, and adaptability to different handwriting

styles and languages. Upcoming studies should emphasize on

enhancing the model robustness, reducing computational costs,

and exploring novel architectures that can handle complex and

cursive handwriting more effectively. Additionally, practical

implementation strategies must be refined to ensure seamless

deployment in real-world applications.

Handwritten text recognition (HTR) has made significant

advancements through deep learning techniques, particularly with

CRNN models that integrate convolutional and recurrent layers

and Connectionist Temporal Classification (CTC) loss.

Throughout this project, we explored various aspects of building

an effective handwritten text recognition system, including data

preprocessing, model development, training, and performance

evaluation. The use of the IAM dataset provided a robust

foundation for training, and the incorporation of multiple learning

components of Jaro-Winkler similarity helped evaluate the

precision and performance of the recognized text.

While the results were promising, challenges such as handling

highly cursive handwriting, dealing with noisy inputs, and

improving recognition across multiple languages remain. Future

improvements, including enhanced data augmentation, lightweight

model optimization, and NLP-based error correction, could make

handwritten text recognition more efficient and widely applicable.

The real-world impact of this technology is vast, spanning

industries like banking, healthcare, education, and historical

document preservation.

Overall, this project highlighted the effectiveness of deep learning

in automating handwritten text recognition, reducing manual

transcription efforts, and improving document processing

efficiency. With further research and optimization, handwritten

text recognition systems will continue to evolve, making digital

text conversion more accurate and accessible for diverse

applications.

References

[1] S. S. Roy, S. Basu, and M. Nasipuri, “Handwritten Text

Recognition Using Deep Learning: A ,” Pattern Recognition

Letters, vol. 144, pp. 1-12, 2021.

[2] C. Vinotheni and S. Lakshmanapandian, "End-to-End Deep-

Learning-Based Tamil Handwritten Document Recognition

and Classification Model," IEEE Access, vol. 11, pp. 45123-

45135, Apr. 2023.

[3] D. Coquenet, C. Chatelain, and T. Paquet, "End-to-End

Handwritten Paragraph Text Recognition Using a Vertical

Attention Network," IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 45, no. 1, pp. 123-135, Jan.

2023.

[4] S. Y. Manchala, J. Kinthali, K. Kotha, K. S. Kumar, and J.

Jayalaxmi, "Handwritten Text Recognition Using Deep

Learning with TensorFlow," Proceedings of Aditya Institute

of Technology and Management, Srikakulam, Andhra

Pradesh, 2023.

[5] Y. Zhang and G. Li, "Improving Handwritten Mathematical

Expression Recognition via Integrating Convolutional Neural

Network With Transformer and Diffusion-Based Data

Augmentation," IEEE Access, vol. 12, pp. 1–12, May 2024.

[6] J. Shin, K. Hirooka, Y. Uchida, M. Maniruzzaman, A.

Megumi, and A. Yasumura, "Online Handwriting-Based

Gender Recognition Using Statistical and Machine Learning

Approaches," IEEE Access, vol. 12, pp. 1–12, July 2024.

[7] R. Malhotra and M. T. Addis, "End-to-End Historical

Handwritten Ethiopic Text Recognition Using Deep

Learning," IEEE Access, vol. 11, pp. 1–10, Sep. 2023.

[8] A. Graves et al., “A Novel Connectionist System for

Unconstrained Handwriting Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 5, pp. 855-868, 2023.

[9] U.-V. Marti and H. Bunke, “The IAM-database: An English

Sentence Database for Off-line Handwriting Recognition,”

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 14–22 | 22

International Journal on Document Analysis and

Recognition, vol. 5, no. 1, pp. 39-46, 2022.

[10] A. H. Nisa, "A Deep Learning Approach to Handwritten Text

Recognition In The Presence Of Struck-Out Text," in IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2013.

[11] Andreu, "Handwritten Text Recognition for Bengali

Language," in International Conference on Frontiers in

Handwriting Recognition, 2013.

[12] M. L. Saini, D. C. Sati, R. S. Telikicharla, and Mahadev,

"Handwritten English script recognition system using CNN

and LSTM," in Proc. IEEE Contemp. Comput. Commun.

(InC4), Punjab, India, 2024.

[13] K. He, "Handwritten Digit Recognition Based on

Convolutional Neural Network," 2023 IEEE Electronic

Technology, Communication and Information (ICETCI),

Xi’an, China, 2023.

[14] M. B. Subha, P. V. Ramanan, and V. K. T. Malini, "Offline

Recognition of Handwritten Text Using Combination of

Neural Networks," in Commun. Electron. Syst. (ICCES),

Chennai, India, 2023.

[15] P. Latchoumy, G. Kavitha, H. S. Banu, and S. Anupriya,

"Handwriting Recognition Using Convolutional Neural

Network and Support Vector Machine Algorithms," in

Electron., Commun., Aerosp. Technol. (ICECA), Chennai,

India, 2022.

[16] B. Rajyagor and R. Rakhlia, "Handwritten Character

Recognition using Deep Learning," Int. J. Recent Technol.

Eng. (IJRTE), vol. 8, no.6,pp.1-3,Mar.2020.

[17] S. Y. Manchala, K. Kinthali, K. Kotha, K. S. Kumar, and J.

Jayalaxmi, "Handwritten Text Recognition using Deep

Learning with TensorFlow," Int. J. Eng. Res. Technol.

(IJERT), vol. 9, no. 5, pp. 2-3, May2020.

[18] A. Ansari, A. Singh, B. Kaur, D. Singh, and M. Rakhra,

"Handwritten Text Recognition using Deep Learning

Algorithms," 2022 4th International Conference on Artificial

Intelligence and Speech Technology (AIST), Phagwara, India,

2022.

[19] S. S. Rajput and Y. Choi, "Handwritten digit recognition

using convolution neural networks," in Proc. IEEE 12th

Annu. Comput. Commun. Workshop Conf. (CCWC),

Fullerton, CA, USA, 2022.

[20] S. Chauhan, S. Mahmood, and T. Poongodi, "Handwritten

digit recognition using deep neural networks," in Intell. Eng.

Manag. (ICIEM), Greater Noida, India, 2023.

[21] H. M. Balaha and H. A. Ali, "A new Arabic handwritten

character recognition deep learning system (AHCR-DLS),"

Neural Comput. Appl.,vol.33,pp.6325–6367,Oct.2020.

[22] K. R. Shah and D. D. Badgujar, "Devnagari Handwritten

Character Recognition (DHCR) for Ancient Documents: A

Review," Proceedings of the 2013 IEEE Information and

Communication Technologies (ICT 2013), Lonavala, India,

2023.

[23] H. Bhardwaj, R. Das, P. Garg, and R. Kumar, "Handwritten

Text Recognition Using Deep Learning," 2024 Intelligence

CommunicationTechnologies(CCICT),Gurugram,India,2024.

[24] D. Narynbayev, A. Serikkhan, A. Barkhandinova, and I. Mohammad,

"Kazakh Handwritten Text Recognition Using Computer Vision and

Neural Network,"Electronics Computer and Computation

(ICECCO), Kaskelen, Kazakhstan,2023.

