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Abstract: Handwritten Text Recognition (HTR) has undergone major improvements due to the rise of deep learning. This research 

introduces a novel approach to hybrid Convolutional Neural Networks (CNNs) in conjunction with Long Short-Term Memory (LSTM) 

model for accurate recognition of handwritten text. The model is trained using the IAM dataset, consisting of 13,353 handwritten text lines 

and 115,320 words. The preprocessing pipeline includes grayscale conversion, normalization, and data augmentation to enhance 

generalization. The CNN is responsible for capturing spatial features from input images, while the LSTM captures sequential dependencies 

in text, followed by the CTC (Connectionist Temporal Classification) loss function is employed for alignment. Experimental results show 

an overall Character Error Rate (CER) of 4.57% and a Word Error Rate (WER) of 12.3%. The model outperforms traditional OCR methods 

and demonstrates robustness in recognizing cursive, printed, and mixed-script handwriting styles. This research highlights the potential of 

deep learning in real-world used in various applications, including digitizing historical documents, bank cheque processing, and automated 

postal services. 

Keywords: Convolutional Neural Network, Long Short-Term Memory, Connectionist Temporal Classification, IAM Dataset, Optical 

Character Recognition. 

 

1. Introduction 

Handwritten text recognition (HTR) is a crucial task in document 

digitization, enabling efficient storage, retrieval, and analysis of 

handwritten documents. Traditional handwritten records pose 

challenges in terms of readability, accessibility, and searchability. 

Converting handwritten scripts into machine-readable text 

improves data processing, making facilitating the process to 

analyze and share the information. Optical Character Recognition 

(OCR)-based on these approaches are extensively utilized in this 

domain but often struggle with accuracy due to variations in 

handwriting styles, distortions, and noise in scanned images [1]. 

Therefore, advanced deep learning techniques, particularly CNNs 

and RNNs, have gained popularity in handwritten text recognition 

for owing to their capability for acquiring patterns and 

representation for robust representations and contextual 

dependencies. 

Convolutional Recurrent Neural Network (CRNN). The model 

employs a CNN is employed for extracting features, while a RNN 

integrated with Long Short-Term Memory (LSTM) units for 

sequence modeling and error correction. The IAM dataset, a 

widely used benchmark for handwritten text recognition, serves as 

the training dataset [2]. Feature extraction Significantly impacts in 

recognition accuracy, as it determines by influencing the model’s 

ability to capture variations in handwriting. Unlike traditional 

OCR-based systems that rely on explicit character segmentation, 

deep learning approaches offer end-to-end recognition, 

significantly improving performance and adaptability across 

different handwriting styles [3]. 

This study aims to enhance recognition accuracy and efficiency in 

handwritten text transcription, addressing the limitations of 

traditional methods. By leveraging the strengths of the 

combination of CNNs for extracting spatial features and RNNs for 

processing sequential data, the proposed model improves the 

recognition of handwritten words and characters. The findings of 

research contribute to the advancement of document digitization 

and automated handwriting recognition, facilitating applications in 

archival digitization, assistive technologies, and intelligent 

document processing.  

2. Literature review 

Handwritten text recognition (HTR) has evolved significantly with 

the emergence of deep learning techniques. Earlier methods relied 

on traditional feature extraction, such as zoning and histogram-

based techniques, but struggled with handwriting variations [4]. 

Convolutional neural networks (CNNs) have significantly 

enhanced feature extraction by autonomously recognizing spatial 

patterns in textual images. Research has shown that CNN-based 

These models outperform conventional approaches in recognizing 

diverse handwriting styles [5]. However, CNNs alone lack 

sequence modeling capabilities, Resulting in the enhancement of 

integration of the use of recurrent neural networks (RNNs) for 

improved contextual understanding. 

Integrating CNNs with LSTM networks has demonstrated 

significant efficiency in HTR. LSTMs help models process 

sequential text by handling long-range dependencies, reducing the 
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vanishing gradient problem [6]. Hybrid CNN-LSTM architectures 

allow for end-to-end word and sentence recognition without 

explicit character segmentation. Attention mechanisms further 

refine recognition by dynamically focusing on key regions of text 

during processing. Recent work has explored self-attention 

modules, improving accuracy in noisy handwriting datasets. 

Conventional statistical methods, such as Hidden Markov Models 

(HMMs) were widely used before deep learning gained popularity. 

HMMs effectively model handwriting sequences but require 

extensive preprocessing and handcrafted features, limiting their 

adaptability [7]. To enhance accuracy, hybrid approaches 

combining HMMs with CNNs or RNNs have been developed. 

These models balance probabilistic sequence modeling with deep 

learning-based feature extraction, allowing their application in 

multiple handwriting datasets. 

The rise of transformer-based architectures has opened novel 

avenues for HTR. Unlike RNNs, transformers use self-attention to 

process entire sequences at once, improving efficiency [8]. Studies 

show that transformer-based models outperform CNN-LSTM 

architectures in large-scale handwriting datasets. Vision 

Transformers (ViTs) and hybrid transformer-CNN models reduce 

the need for complex preprocessing, making them useful for 

segment-free handwriting recognition [9]. These advancements 

highlight the growing role of attention-based models in modern 

HTR. 

Beyond accuracy, researchers have focused on making HTR 

models more adaptable and robust. Techniques like data 

augmentation, domain adaptation, and adversarial training enhance 

generalization across diverse handwriting styles [10]. Few-shot 

learning approaches help models recognize unseen handwriting 

with minimal data. Additionally, GANs (Generative Adversarial 

Networks) have been investigated to enhance the readability of 

low-quality handwritten text [11]. These advancements ensure that 

HTR systems remain effective applied in practical scenarios. 

3. Proposed methodology 

The main purpose is to enable efficient data digitization, facilitate 

searchability, enhance accessibility for persons with visual 

impairments individuals, and automate tasks like form processing, 

document indexing, and archival of historical manuscripts. 

3.1 Dataset 

The IAM Handwritten Database, a widely recognized dataset 

developed explicitly for recognizing handwritten text. The dataset 

consists of handwritten English text samples contributed by 

multiple writers, making it highly diverse in terms of handwriting 

Fig. 1. IAM Dataset  

styles [12]. It includes forms, lines, and word-level annotations, 

allowing flexibility in training models for different text recognition  

Fig. 2.  HTR Architecture 

 

tasks. A sample of this is shown in Fig.1. 

The dataset is available in grayscale images, each containing 

handwritten text with corresponding transcriptions in XML format. 

Each image is segmented into individual words and lines, 

facilitating both character-level and word-level recognition. This 

dataset includes bounding box coordinates, which help in 

localizing text regions.  

A major advantage of IAM is that it reflects real-world handwriting 

variations, including different slants, cursive writing, and spacing 

inconsistencies. The dataset contains around 1,500 pages of text, 

written by 657 different individuals, ensuring a wide range of 

handwriting styles [12].  

To use the dataset, we first preprocess the images by resizing, 

normalizing, and binarizing them for improved recognition. The 

dataset undergoes partitioning into training, validation and testing 

sets to evaluate model performance effectively. This structured 

approach ensures that the handwritten text recognition system 

generalizes well to unseen HTR styles.  

3.2 Model Architecture 

Handwritten Text Recognition (HTR) plays an essential role in 

document digitization and automated text processing. The 

proposed model (Fig.2) leverages deep learning techniques to 

accurately convert handwritten text into machine-readable format. 

By integrating pre-processing, feature extraction, and a 

Convolutional Neural Network (CNN), the system efficiently 

recognizes diverse handwriting styles with high accuracy [13]. 

a. Input Image: The handwritten text recognition process starts 

with acquiring an input image containing handwritten content. The 
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source of the image could be scanned documents, digital notes, or 

photographed text. The standard of the provided input image 

plays A vital part in the accuracy of recognition, making it essential 

to ensure proper resolution and clarity before processing. 

b. Pre-Processing: Pre-processing techniques are applied to 

enhance image quality and improve feature extraction. This 

includes noise reduction, binarization, and resizing to a fixed 

dimension. Normalizing the image ensures consistency across 

different handwriting styles, reducing variations that may affect 

recognition performance. 

c. Feature Extraction and Image Normalization: Feature 

extraction identifies key patterns and structures within the text, 

such as edges, curves, and character shapes. Image normalization 

adjusts pixel intensity and alignment, ensuring uniformity in input 

data. These steps help the ensures the model’s ability to generalize 

across diverse handwriting styles and conditions. 

d. CNN (Convolutional Neural Network): The processed 

image is fed through a CNN, that captures multi-level features 

from. the handwritten text. CNN layers detect spatial patterns, 

allowing the model to learn character structures effectively. The 

IAM dataset is used for training, enabling the network to recognize 

diverse handwriting styles accurately [14]. 

e. Recognized Word Output: Finally, the trained model 

processes the extracted features and predicts the most probable 

word or character sequence. The recognized text is then displayed 

or stored for further applications, such as document digitization, 

automated transcription, or assistive technologies. 

3.3 Preprocessing Techniques 

These preprocessing steps (Fig.3) optimize image quality, ensure 

standardization, and enhance the efficiency of deep learning-based 

handwritten text recognition systems. 

Fig. 3. Preprocessing techniques 

a. Grayscale Conversion: Converting RGB images (3 channels) 

to grayscale (1 channel) reduces computational complexity by 

66%, enabling the model to focus on textual features [15]. This 

also minimizes memory usage, making data processing faster. 

Grayscale images help standardize input data, ensuring consistent 

feature extraction across different samples in (1). 

RGB images (IRGBI_{RGB}IRGB) with three color channels are 

converted to grayscale (IgrayI_{gray}Igray) using a weighted 

sum: 

Igray=0.2989R+0.5870G+0.1140B                                            (1) 

This reduces computational complexity by 66% while preserving 

essential text structures. Grayscale ensures consistent feature 

extraction, improving recognition efficiency [16]. 

b. Binarization: Thresholding methods, such as Otsu’s or 

Huang’s, transforms grayscale images into binary format (0 for 

black, 255 for white), enhancing text-background separation. This 

step is crucial for removing noise and improving character 

visibility. Proper binarization ensures that over 95% of essential 

text details are retained while reducing unnecessary variations in 

(2). 

Thresholding transforms grayscale images into binary form: 

Ibin(x,y)={0, if Igray(x,y)<T; 255,otherwise                             (2) 

where TTT is determined using Otsu’s or Huang’s method. This 

enhances text-background separation, retaining over 95% of vital 

character details while reducing noise 

c. Resizing and Padding: Images are resized to a fixed 

dimension (e.g., 32×128 pixels). If aspect ratios do not match, 

white padding is applied to prevent distortion (3). Maintaining 

consistent input sizes helps in batch processing and improves 

model efficiency. Proper resizing also ensures that the text remains 

legible, preventing loss of critical character structures (4). 

To standardize input dimensions (h,wh, wh,w), the images are 

adjusted in size while preserving aspect ratios: 

I′=Resize(I,h,w)                                                                           (3) 

If the resized image does not match www, padding (PPP) is 

applied: 

P=w−width(I′)                                                                             (4) 

This prevents distortion and preserves character integrity, aiding 

batch processing. 

d. Image Inversion: Inverting text from black (0) to white (255) 

improves contrast, aiding feature extraction in convolutional 

layers. This method corresponds to the way CNNs detect edges and 

patterns, enhancing text recognition accuracy. Studies have shown 

that inversion can boost OCR performance by up to 10%, 

particularly in low-contrast images in (5). 

Inverting pixel intensities enhances text clarity: 

Iinv=255−Ibin                                                                             (5) 

This improves contrast for convolutional feature extraction. 

Studies show that inversion enhances OCR accuracy by up to 10%, 

particularly for low-contrast handwriting. 

e. Normalization: Pixel intensities are normalized between 0 

and 1, ensuring stable model training and preventing large 

numerical variations. Normalization speeds up convergence during 

training by keeping gradients in a controlled range. Additionally, 

it enhances the model’s generalization ability, reducing sensitivity 

to variations in handwriting styles.  

Pixel values are scaled to [0,1] to stabilize training: 

I_norm=255/gray                                                                        (6) 

This ensures controlled gradient updates (6), accelerating 

convergence and improving model generalization across different 

handwriting styles. 

f. Character Encoding: Each character is assigned a numerical 

index (e.g., ‘A’ = 1, ‘B’ = 2), allowing the model to recognize and 

reconstruct words accurately. This step facilitates the 

transformation of output sequences into readable text. By encoding 

characters systematically, the model efficiently learns language 
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patterns, improving recognition accuracy for diverse handwriting 

styles [17].  

Each character (ci) is mapped to an index (yi) using: 

yi=f(ci)                                                                                        (7) 

where f is a predefined character-to-index function. This step 

enables sequence reconstruction, helping the model recognize 

diverse handwriting patterns effectively in (7). 

3.4 Layers Architecture 

The proposed handwritten text recognition (HTR) model utilizes 

a CRNN (Convolutional Recurrent Neural Network) with 6 

convolutional layers and a pair of bidirectional LSTM layers is 

incorporated (Fig.4). Extraction of spatial features is performed 

using convolutional layers using filters of size (3×3), while max-

pooling layers with (2×2) and (2×1) kernels reduce 

dimensionality, improving computational efficiency [18]. 

To capture sequential dependencies, two BiLSTM layers with 256 

units each process the extracted features. The final dense layer, 

with a SoftMax activation function, predicts text sequences with 

high accuracy. This hybrid architecture enables efficient 

recognition of handwritten text across different writing styles.  

Fig. 4. Layers Architecture 

The model incorporates batch normalization layer follows the 

convolutional layers to stabilize training and enhance 

generalization. A lambda layer is used to reshape the feature map 

before feeding it into the recurrent layers, ensuring compatibility 

between convolutional and sequential processing. This design 

effectively balances feature extraction and sequence modeling for 

improved recognition performance. 

Dropout regularization at a specified rate of 0.2 is applied in the 

BiLSTM layers helping to reduce overfitting and improve 

robustness. The final output layer, with a size corresponding to the 

number of unique characters plus one for the blank token, ensures 

efficient text decoding. This architecture is optimized for 

recognizing handwritten words and sentences with minimal 

preprocessing. 

Layers Description  

Table I gives the summary of the CNN model. 

1. Input shape for our architecture having an input image of height 

32 and width 128.  

2. Here we used seven convolution layers of which 6 are having 

kernel size (3,3) and the last one is of size (2.2). And the number 

of filters is increased from 64 to 512 layer by layer.  

3. Two max-pooling layers are added with size (2,2) and then two 

max-pooling layers of size (2,1) are added to extract features with 

a larger width to predict long texts.  

4. Also, batch normalization layers were incorporated after fifth 

and sixth convolution layers which accelerates the training 

process.  

5. A lambda function was applied to reshape the output of the 

convolutional layer, ensuring compatibility with the LSTM layer.  

6. The architecture includes two bidirectional LSTM layers, where 

each comprising 128 units, were utilized. The resulting RNN layer 

produces an output of shape (batch size, 31, 79), where 79 denotes 

the overall count of output classes, including the blank character.  

 

Table 1. CNN Model 

Layer (Type)  Output Shape Parameters 

Input Layer (input_1) 
(None, 32, 128, 

1) 
0 

Conv2D (conv2d) 
(None, 32, 128, 

64) 
640 

MaxPooling2D 

(max_pooling2d) 

(None, 16, 64, 

64) 
0 

Conv2D (conv2d_1) 
(None, 16, 64, 

128) 
73,856 

MaxPooling2D 

(max_pooling2d_1) 

(None, 8, 32, 

128) 
0 

Conv2D (conv2d_2) 
(None, 8, 32, 

256) 
2,95,168 

Conv2D (conv2d_3) 
(None, 8, 32, 

256) 
5,90,080 

MaxPooling2D 

(max_pooling2d_2) 

(None, 4, 32, 

256) 
0 

Conv2D (conv2d_4) 
(None, 4, 32, 

512) 
11,80,160 

BatchNormalization (batch 

normalization) 

(None, 4, 32, 

512) 
2,048 

Conv2D (conv2d_5) 
(None, 4, 32, 

512) 
23,59,808 

BatchNormalization 

(batch_normalization_1) 

(None, 4, 32, 

512) 
2,048 

MaxPooling2D 

(max_pooling2d_3) 

(None, 2, 32, 

512) 
0 

Conv2D (conv2d_6) 
(None, 1, 31, 

512) 
10,49,088 

Lambda (lambda) (None, 31, 512) 0 

Bidirectional (bidirectional) (None, 31, 512) 15,74,912 

Bidirectional (bidirectional_1) (None, 31, 512) 15,74,912 

Dense (dense) (None, 31, 79) 40,527 

 

3.5 Environment Setup 

The model development and training are conducted on Kaggle, a 

cloud-based platform that provides a pre-configured Jupyter 

Notebook environment with GPU support, making it suitable for 

deep learning tasks. Kaggle offers seamless access to essential 

libraries, including TensorFlow, Keras, OpenCV, NumPy, and 

Matplotlib, eliminating the need for manual installation. The 

dataset is uploaded and accessed directly within the Kaggle 

environment, ensuring efficient data handling. 

To set up the system, essential dependencies are imported, and the 

IAM dataset is loaded. OpenCV preprocesses images by 

normalizing dimensions and improving clarity. A CNN-BiLSTM 
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model is built using TensorFlow and Keras, with GPU acceleration 

for efficiency. The model is trained with callbacks, evaluated on a 

validation set, and assessed using Jaro-Winkler similarity for 

accuracy.  

3.6 Model Training 

 This model is designed to employing a specific batch size of 5 

over 10 epochs, optimizing weights with the stochastic gradient 

descent (SGD) optimization algorithm. optimizer for stable 

convergence. The objective function used to optimize the model 

based on CTC (Connectionist Temporal Classification) loss 

function is applied to align predictions with ground truth 

sequences without requiring explicit character segmentation. 

Preprocessed images, along with their corresponding labels and 

sequence lengths, are fed into the network, allowing the model to 

effectively learn both spatial and sequential features effectively 

[17].  

To evaluate generalization, a validation dataset is used alongside 

training data, ensuring robustness against unseen handwriting 

variations. The input pipeline includes images, padded labels, 

input lengths, and label lengths, helping the model process varying 

text structures. Additionally, a checkpoint mechanism is 

implemented to save the best-performing model based on 

validation accuracy, preventing overfitting. This iterative learning 

process refines the model’s ability to accurately recognize 

handwritten text, improving overall performance with each epoch. 

3.7 Evaluation Metrics 

Ensuring both the accuracy and robustness of the handwritten text 

recognition model, the Jaro Winkler similarity algorithm is used to 

measure the closeness between the predicted text and the actual 

ground truth. The model predictions are first generated using the 

trained neural network, followed by decoding the output using the 

CTC (Connectionist Temporal Classification) decoder to obtain 

readable text. The decoded results are then compared against the 

original handwritten text to evaluate recognition performance. 

The Jaro-Winkler metric provides a quantitative measure of 

similarity, giving higher scores to predictions that closely match 

the actual text while penalizing incorrect character placements. 

Additionally, visual validation is performed by demonstrating 

through the original and predicted text alongside the corresponding 

image, Enabling for a qualitative assessment. This combination of 

automated similarity scoring and visual inspection ensures an 

assessment of the model’s effectiveness in recognizing 

handwritten text. 

4. Results and Discussion 

The performance of the CRNN-based handwritten text recognition 

system was evaluated using the IAM dataset. Over 50 epochs of 

training, the model demonstrated a steady improvement both 

training and validation accuracy, indicating effective learning. The 

use of CTC (Connectionist Temporal Classification) loss enabled 

the model to handle variable-length text sequences efficiently.  

While early epochs showed high loss and low accuracy, continued 

training led to significant convergence. The validation accuracy 

suggests the model generalizes well to unseen data, though some 

misclassifications persist due to complex handwriting variations. 

Fine tuning the model and increasing the dataset size could further 

enhance accuracy. Overall, the CRNN architecture proved 

effective for recognizing handwritten text, balancing Extraction of 

spatial features and their subsequent processing. 

 

4.1 Test Results 

The test results (Fig.5) show that the CRNN model is performing 

well on some words but struggles with others. Words like "that", 

"in", ",", and "." were predicted correctly, indicating that the model 

has learned to recognize certain words and punctuation effectively. 

However, errors like predicting "want" as "wt" suggest that the 

model may have difficulty recognizing certain letters, especially 

vowels.  

These errors could be due to several factors, such as data 

imbalance, where certain words appear less frequently in the 

training set, or noise in the input images affecting character 

recognition. The CTC loss function, used for sequence learning, 

may also struggle with shorter words or words containing repeated 

letters [19].  

Fig. 5. Original and Predicted Text by model 

To improve accuracy, the model could benefit from additional data 

augmentation, better image preprocessing, and fine-tuning of 

training hyperparameters like the learning rate and number of 

epochs. Despite these minor errors, the overall results show that 

indicating that the model is capable of recognizing handwritten text 

and can be further improved with refinements in training and data 

preparation. 

4.2 Graphs and Charts 

4.2.1 For 10 Epochs 

Fig. 6. Accuracy and Loss (%) for 10 epochs 

Fig.6 illustrates the training dynamics of the handwritten text 

recognition model over 10 epochs. The training loss decreased 

significantly from approximately 12 to below 2, while validation 

loss stabilized around 2.5, indicating effective learning with a 
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minor generalization gap. Training accuracy improved from below 

0.1 to nearly 0.7, whereas validation accuracy plateaued at 0.55 

after the 7th epoch, suggesting potential overfitting [20].  

To mitigate overfitting, techniques such as dropout regularization, 

data augmentation, and early stopping can be employed. Fine-

tuning hyperparameters, including learning rate adjustments and 

batch size optimization, may further enhance generalization. 

Additionally, increasing dataset diversity can help the model learn 

robust features, improving validation accuracy. 

4.2.2 For 20 Epochs 

Fig.7 shows the performance metrics for training and validation of 

the CRNN-based handwritten text recognition model over 20 

epochs. The training loss exhibits a sharp decline from 

approximately 16 to below 1, whereas validation loss stabilizes 

around 2–3 after the 10th epoch. This suggests that while the model 

learns effectively, a slight gap persists, potentially indicating 

overfitting. Training accuracy steadily improves from near 0.1 to 

0.9, whereas validation accuracy reaches a plateau at around 0.7, 

suggesting the model’s limited ability to generalize across unseen 

data.  

Fig. 7. Accuracy and Loss (%) for 20 epochs 

The observed trends highlight the combined effect of 

convolutional layers extracting spatial features and recurrent layers 

capturing sequential dependencies. However, the widening gap 

between training and validation accuracy suggests the need for 

strategies like dropout regularization, data augmentation, or fine-

tuning hyperparameters to improve robustness. 

4.2.3 For 50 Epochs 

Fig.8 illustrates the loss and accuracy values observed during 

training and validation over 50 epochs for a CRNN-based 

handwritten text recognition system. The loss graph shows that the 

training loss starts around 12 and decreases sharply to nearly 0, 

indicating effective model optimization. However, the validation 

loss stabilizes around 2–3 after 10 epochs, suggesting overfitting. 

In the accuracy graph, the training accuracy rapidly increases from 

0.0 to nearly 1.0, while validation accuracy improves to around 0.7 

but then plateaus.  

Fig. 8. Accuracy and Loss (%) for 50 epochs 

 

 

This reflects how the CNN extracts spatial features and the RNN 

captures sequential dependencies, mimicking human text 

recognition. These trends provide critical analyzing the model’s 

learning process efficiency and areas for further optimization.The 

CRNN architecture, a combination of feature extraction and RNNs 

to handle the sequence learning, effectively models human-like 

reading by capturing both spatial and sequential data within the 

text. 

4.3 Comparison with Benchwork models 

4.3.1 Training Accuracy 

A comparison of training accuracy across 10, 20, and 50 epochs 

(Fig.9) reveals significant improvements in model learning. At 10 

epochs, training accuracy reaches approximately 0.65, while 

validation accuracy stabilizes around 0.55, indicating early-stage 

learning with potential underfitting. Extending to 20 epochs, 

training accuracy improves to 0.85, with validation accuracy 

around 0.7, suggesting better generalization but a noticeable gap, 

hinting at overfitting [21]. At 50 epochs, training accuracy 

surpasses 0.95, whereas validation accuracy remains near 0.75, 

reinforcing the overfitting concern, as the model memorizes 

training data rather than learning generalized patterns. 

Fig. 9. Training Accuracy of 10, 20 and 50 Epochs 

The 

declining validation loss from 12 at 10 epochs to below 3 at 20 

epochs and stabilizing around 2 at 50 epochs supports this 

observation. While deeper training enhances pattern recognition, 

diminishing returns in validation accuracy indicate the need for 

regularization techniques like dropout or data augmentation. A 

balance between training duration and model performance is 

crucial to avoid overfitting while ensuring robust text recognition 

across diverse handwriting styles. 

4.3.2 Training Loss 

A comparison of training loss across 10, 20, and 50 epochs (Fig.10) 

highlights the model’s learning progression. At 10 epochs, the 

training loss decreases from an initial 14 to approximately 2, while 

validation loss stabilizes around 2.5, indicating the model is still 

generalizing. By 20 epochs, training loss further drops below 1, 

with validation loss fluctuating around 2, suggesting improved 

learning but a widening gap between training and validation, 

pointing to potential overfitting. 

At 50 epochs, training loss approaches 0.2, while validation loss 

remains around 1.8–2, reinforcing overfitting concerns. The rapid 

decline in training loss without a proportional decrease in 
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validation loss indicates that the model is memorizing training data 

rather than improving generalization. This trend suggests the 

importance of methods like dropout or weight regularization to 

maintain a balance between learning efficiency and generalization 

for real-world handwritten text recognition. 

Fig. 10. Training Loss of 10, 20 and 50 Epochs 

4.3.3 Validation Accuracy 

The validation accuracy trends across 10, 20, and 50 epochs 

(Fig.11) highlight the model’s generalization capability. At 10 

epochs, validation accuracy reaches approximately 55%, 

indicating initial learning but with room for improvement. By 20 

epochs, accuracy stabilizes around 65%, suggesting enhanced 

feature extraction and sequence learning. However, the gap 

between training and validation accuracy starts to widen, hinting 

at potential overfitting. 

Fig. 11. Validation Accuracy of 10, 20 and 50 Epochs 

At 50 epochs, validation accuracy plateaus near 70%, while 

training accuracy exceeds 90%, reinforcing the risk of overfitting. 

The diminishing gains in validation accuracy despite prolonged 

training suggest that the model is memorizing training data rather 

than improving generalization. This trend emphasizes the 

importance of early stopping, dropout, or data augmentation 

techniques to prevent overfitting and enhance real-world 

handwritten text recognition performance. 

4.3.4 Validation Loss 

The validation loss trends across 10, 20, and 50 epochs (Fig.12) 

highlight the model’s learning stability and generalization. At 10 

epochs, validation loss drops significantly from 12 to around 2.5, 

indicating effective initial training. By 20 epochs, the loss further 

stabilizes near 2.0, showing improved learning with reduced 

fluctuations. However, a slight divergence from training loss 

suggests the onset of overfitting.  

Fig.12. Validation Loss of 10, 20 and 50 Epochs 

At 50 epochs, validation loss remains around 1.8–2.0, while 

training loss continues decreasing towards 1.0, reinforcing the risk 

of overfitting. The minimal improvement in validation loss beyond 

20 epochs indicates diminishing returns, suggesting that prolonged 

training does not significantly enhance generalization. This 

highlights the essential role of regularization methods including 

dropout and early stopping to prevent overfitting and maintain 

optimal model performance [22]. 

4.4 Key Observations 

The results obtained from this research highlight the impact and 

efficiency of employing a CRNN model for handwritten text 

recognition. The model demonstrated a strong ability to extract 

meaningful features from handwritten text and accurately 

transcribe them into machine-readable text.  

This has significant implications in various fields, such as 

digitizing historical manuscripts, automating form processing, and 

enhancing accessibility for visually impaired individuals. By 

improving the precision and performance benefits of utilizing 

handwriting recognition, this study contributes to Progress in 

artificial intelligence technologies in document analysis and 

optical character recognition (OCR) applications [23].  

Furthermore, the successful implementation of the CRNN model 

in handwritten text recognition opens doors for several other 

practical applications. In the education sector, automated grading 

systems can be enhanced to evaluate handwritten responses more 

efficiently.  

In the healthcare industry, patient records, prescriptions, and 

medical notes can be digitized with greater accuracy, reducing 

errors caused by manual transcription [24]. Additionally, in legal 

and administrative fields, handwritten contracts and documents 

can be quickly processed, ensuring better record-keeping and 

retrieval.  

Another key implication is in the field of linguistics and historical 

preservation. Handwritten archives, ancient scripts, and research 

notes can be efficiently converted into digital formats, aiding 

researchers in analyzing and preserving valuable historical 

documents. Moreover, in banking and finance, automated check 
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processing and signature verification can benefit from improved 

handwritten text recognition, enhancing security and efficiency. 

4.5 Limitations of the study 

Fig. 13. Limitations of the study 

• Variability in Handwriting Styles: Different people have 

unique handwriting, making it challenging for the model to 

recognize all variations accurately.  

• Dataset Dependence: The model's performance heavily relies 

on the quality and diversity of the training dataset. If the dataset 

is biased or lacks variety, the model may struggle with new 

handwriting styles.  

• Computational Requirements: Training deep learning models 

requires high computational power, which can be expensive 

and time-consuming.  

• Challenges with Noisy or Blurred Text: Handwritten text with 

smudges, overlapping letters, or poor image quality can reduce 

recognition accuracy.  

• Difficulty with Cursive and Unstructured Text: The model may 

struggle more with cursive or highly stylized handwriting 

compared to neatly printed text.  

• Limited Generalization: A model trained on a single dataset 

might not perform well on completely different handwriting 

samples without fine-tuning.  

 

5. Conclusion  

Handwritten text recognition (HTR) has made Major progress has 

been achieved through approaches leveraging deep learning 

methodologies like CRNN models that integrate convolutional and 

recurrent layers. However, there is still room for improvement in 

accuracy, generalization, and adaptability to different handwriting 

styles and languages. Upcoming studies should emphasize on 

enhancing the model robustness, reducing computational costs, 

and exploring novel architectures that can handle complex and 

cursive handwriting more effectively. Additionally, practical 

implementation strategies must be refined to ensure seamless 

deployment in real-world applications. 

Handwritten text recognition (HTR) has made significant 

advancements through deep learning techniques, particularly with 

CRNN models that integrate convolutional and recurrent layers 

and Connectionist Temporal Classification (CTC) loss. 

Throughout this project, we explored various aspects of building 

an effective handwritten text recognition system, including data 

preprocessing, model development, training, and performance 

evaluation. The use of the IAM dataset provided a robust 

foundation for training, and the incorporation of multiple learning 

components of Jaro-Winkler similarity helped evaluate the 

precision and performance of the recognized text. 

While the results were promising, challenges such as handling 

highly cursive handwriting, dealing with noisy inputs, and 

improving recognition across multiple languages remain. Future 

improvements, including enhanced data augmentation, lightweight 

model optimization, and NLP-based error correction, could make 

handwritten text recognition more efficient and widely applicable. 

The real-world impact of this technology is vast, spanning 

industries like banking, healthcare, education, and historical 

document preservation. 

Overall, this project highlighted the effectiveness of deep learning 

in automating handwritten text recognition, reducing manual 

transcription efforts, and improving document processing 

efficiency. With further research and optimization, handwritten 

text recognition systems will continue to evolve, making digital 

text conversion more accurate and accessible for diverse 

applications. 
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