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Abstract: The classification of arecanut maturity is essential for agricultural practices, enabling precise harvesting and 

optimizing yield. This research explores a deep learning-based approach using transfer learning to classify arecanut 

maturity levels from images captured in field conditions. Leveraging four pre-trained convolutional neural network 

(CNN) models—MobileNetV2, InceptionV3, DenseNet-121, and VGG-16—the study analyses model performance 

across three distinct color spaces (RGB, Saturation, and Grayscale). Due to the limited dataset, data augmentation 

techniques such as rotations and flips were incorporated to expand the sample size and reduce overfitting. Fine-tuning 

was applied to the final layers of each model, adapting the networks to the task of arecanut classification. Results 

demonstrate that MobileNetV2 achieved the highest classification accuracy of 86.07% on RGB images, with accuracy 

metrics for each model showing that RGB space consistently outperformed Saturation and Grayscale spaces in this 

application. The findings suggest that combining fine-tuning and data augmentation optimizes model performance, 

providing a feasible solution for arecanut maturity classification in resource-limited agricultural settings. 

Keywords:  Arecanut, MobileNetV2, Classification, Convolution Neural Network, data-augmentation, fine-tuning and 

Transfer learning. 

 

1. INTRODUCTION 

 Agriculture plays a pivotal role in 

driving the GDP of many developing nations, 

including India, where commercial crops greatly 

support economic growth and farmer livelihoods. 

One such valuable crop, arecanut (Areca 

catechu), widely known as betel nut, is heavily 

cultivated in India [1]. Arecanut serves various 

purposes in products like medicines, tea powder, 

and soaps, making it a vital commercial crop for 

the Indian economy [2]. 

 A key step in arecanut farming is 

accurately assessing the maturity level of the 

arecanut bunches to classify them as either 

"Mature," which are ripened and ready for 

harvest, or "Immature," indicating they are 

unsuitable for immediate harvesting. Precise 

maturity identification is essential to ensure 

product quality and avoid premature harvesting, 

which can cause significant economic losses for 

farmers [3]. Traditionally, maturity assessment is 

conducted through visual inspection, which can 

be challenging due to the height of areca trees, as 

well as variations in maturity indicators such as 

color, shape, and texture that differ based on soil 

and environmental conditions. Additionally, 

skilled labour for this task is often scarce. 

 In the view of helping the farmers, 

few works has been done on arecanut maturity 

level identification using image processing 

techniques. Segmentation and classification 

method for raw arecanuts using three-sigma 
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control limits has proposed in [4]. The method 

utilized color features of raw arecanuts, focusing 

on segmentation accuracy to assess the maturity 

and quality of the arecanuts.  This approach 

demonstrated how statistical modeling can aid 

agricultural classification by capturing variations 

within acceptable ranges, enhancing the 

consistency of arecanut quality assessment 

processe. Texture-based classification techniques 

for unharvested arecanuts have been proposed in 

[5]. Using texture features, the study applied 

pattern recognition methods to categorize 

arecanuts, emphasizing the importance of texture in 

identifying maturity levels. HSV color model for 

segmenting arecanut bunches, focusing on color 

attributes to distinguish maturity levels is 

presented in [6]. The HSV model allowed for 

effective separation of arecanut bunches from the 

background based on hue and saturation 

components, improving segmentation accuracy for 

further classification tasks. From this work, it is 

concluded that segmented images give better 

result for further analysis. To remove the 

unwanted background in the unharvested 

arecanut bunch image using YCgCr color model 

which helps to find the crop’s maturity 

effectively has been done by [7]. A four class 

classification of harvested raw arecanuts into four 

groups:  Minne, Ape, Bette and Gorabalu based 

on different color attributes using a K-NN 

classifier has been done in [8].  

 Current literature on arecanut 

classification primarily focuses on traditional 

segmentation and classification methods, relying on 

features like color and texture in post-harvest 

images. This post-harvest approach, however, 

doesn't address the difficulties faced by farmers in 

assessing arecanut maturity at the time of harvest. 

An automated method for in-field maturity 

classification could greatly benefit farmers by 

facilitating real-time decisions. Recent advances in 

computer vision and image classification offer 

promising solutions, with many image 

classification models and algorithms delivering 

high accuracy in various applications [9-10].  

 Transfer learning has become a 

prominent technique in image classification, 

especially when applied to agricultural datasets 

where large labeled datasets are limited. By 

leveraging pre-trained models from extensive 

datasets like ImageNet[11], researchers can achieve 

high accuracy with less labeled data, making it 

ideal for tasks like crop maturity assessment. 

Studies have shown that transfer learning improves 

the classification of crops and plants by allowing 

pre-trained models to adapt to specific tasks 

through fine-tuning [12-14]. In arecanut maturity 

classification, transfer learning with models like 

MobileNetV2, DenseNet-121, and InceptionV3 

allows the models to apply learned visual patterns 

to identify mature and immature arecanut bunches 

accurately. 

 MobileNetV2 is valued for its efficient 

design, utilizing inverted residuals and depthwise 

separable convolutions to achieve lightweight, low-

power processing, making it ideal for real-time, 

field-based applications in agriculture, like disease 

detection and crop classification [15-16]. This 

model's efficiency makes it suitable for assessing 

arecanut maturity in resource-limited settings. 

DenseNet-121, recognized for its dense 

connectivity that reuses features across layers, 

excels in fine-detail tasks, such as identifying 

texture and color changes, which are key indicators 

in crop maturity detection [17]. In agriculture, 

DenseNet-121 has been effective in distinguishing 

subtle texture differences, which is directly relevant 

to assessing arecanut maturity [18]. 

 InceptionV3 is known for its multi-scale 

feature extraction, employing parallel 

convolutional layers to capture different spatial 

resolutions within an image. This model performs 

well in complex recognition tasks where both large 

and small visual cues matter, making it suitable for 

tasks requiring subtle feature recognition, such as 

arecanut maturity identification [19]. It has been 

applied to tasks requiring multi-scale processing, 

such as plant disease detection, where its ability to 

focus on various spatial features aids in recognizing 

nuanced visual indicators [20]. Lastly, VGGNet-

19’s deep architecture and small convolutional 

filters enable robust spatial feature extraction, 

yielding high accuracy in complex classification 

tasks, though it is computationally demanding. This 

network is effective in environments with adequate 

resources and is useful for precise maturity 

classification tasks in agriculture [21]. 

 This paper presents an automated 

approach for assessing arecanut maturity by 

categorizing bunches into “Mature” and 

“Immature.” Key contributions include utilizing 

transfer learning for unharvested arecanut 

classification and analyzing performance across 
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different color spaces (RGB, HSV, and 

Grayscale) using four pre-trained models: 

MobileNetV2, DenseNet-121, InceptionV3, and 

VGGNet-19. 

 In section 2, the materials and 

procedures used in this work are detailed, in 

section 3, the conducted experiments are 

detailed. Results of the study are explained in 

section 4, finally i n  section 5, the conclusion is 

drawn and several recommendations for future 

work are indicated. 

  

 2. METHODOLOGY  

 The proposed method involves 

collecting arecanut images from fields and pre-

processing them for model compatibility. Once pre-

processed, the images are fed into deep learning 

models to classify the maturity level of the 

arecanuts. The complete methodology is outlined 

below. 

2.1 Dataset Description 

 This study utilizes a dataset from [22] to 

evaluate the proposed method. The dataset 

comprises 1,017 images of arecanut bunches, with 

629 immature and 388 mature bunches, providing a 

balanced set for training and validation. The images 

were captured using an OPPO F3 smartphone with 

a 16-megapixel camera, mounted on a selfie stick 

at an angle of 45 degrees, approximately 50 cm 

from the bunches. This setup was used to capture 

images of 7–9-year-old areca palms, typically 12–

14 feet tall, between 9 AM and 1 PM, aligning with 

standard harvesting hours. To ensure consistent 

resolution, all images were resized to 256 × 256 

pixels and saved in JPEG format. 

2.2 Image Pre-processing 

 The original high-resolution images 

were resized to 224 × 224 pixels for optimal 

memory use and efficient processing. Given that 

the color of the arecanut fruit indicates maturity, 

we transformed the RGB images to grayscale and 

HSV saturation images, facilitating analysis across 

multiple color spaces. 

2.2.1 RGB Color Space 

 The RGB color space, widely used in 

digital imaging, represents colours by combining 

red, green, and blue channels, making it ideal when 

color details are crucial [23-24]. This dataset 

originally stores arecanut images in RGB format, 

capturing all color information needed for 

classification tasks. 

2.2.2 Grayscale Color Space 

 Grayscale conversion reduces images to 

shades of gray, with each pixel represented by an 

intensity value from black (0) to white (maximum 

intensity). This reduction simplifies computations 

and highlights intensity-based features, which are 

valuable for texture and edge analysis [23-24]. A 

common formula for this conversion is given in 

Eq.1.  

𝐺𝑟𝑎𝑦 = (0.2989 × 𝑅) + (0.5870 × 𝐺) +

(𝐵 × 0.1140)             (1) 

This formula reflects human color sensitivity, 

enhancing green, red, and blue channels according 

to perceptual importance. Grayscale images derived 

from RGB are stored separately for further 

analysis. 

2.2.3 Saturation Component in HSV Color 

Space 

 The HSV color space, often more intuitive 

for image processing than RGB, represents colors 

through Hue, Saturation, and Value components. 

Saturation measures color intensity, with high 

saturation indicating vivid colors and low 

saturation indicating faded, grayish tones. This 

attribute is useful for distinguishing between 

mature and immature arecanut bunches [25].  

Saturation component can be computed from 

RGB image using Eq-2 , 

Saturation = 1 −
3

(𝑅+𝐺+𝐵)
[min (𝑅, 𝐺, 𝐵)]          

     

  (2) 

Where R, G, B, are primary color components 

blue, red and green respectively.  

2.3 Dataset Partitioning 

 The images are partitioned into training 

(70%), validation (20%), and testing (10%) datasets 

for each color space (RGB, grayscale, and 

saturation). This partitioning strategy ensures 

adequate data for model training, validation, and 

evaluation. Table 2 summarizes the distribution 

across the color spaces, providing a balanced 

dataset for comprehensive model assessment. The 

sample images in Figure 1 illustrate the variations 
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in RGB, grayscale, and saturation datasets, 

showcasing the diversity of color spaces used in 

this study. This methodology, utilizing different 

color spaces, enables a robust evaluation of the 

proposed approach in distinguishing maturity levels 

in arecanut bunches. 

 

 

 

Fig 1: Sample images in the used dataset. 

(a)  Saturation component images b) RGB images (c) Grayscale images 

Table 1. Description of d a t a s e t  used in the proposed work datasets. 

Color space Training   dataset 
Validation 

dataset 
Test dataset Total 

RGB Images 712 203 102 1017 

Saturation Images 712 203 102 1017 

Gray Scale 712 203 102 1017 

 

2.4. Classification: Transfer Learning 

Technique.  

 In this research, we employ transfer 

learning techniques to classify arecanut bunch 

images into maturity categories. Building and 

training a deep neural network (DNN) from scratch 

can be time-intensive and resource-demanding, 

requiring significant expertise and computational 

power [26]. To overcome these challenges, transfer 

learning is utilized; allowing us to leverage pre-

trained models developed for large datasets and 

adapts them to our smaller dataset. 

 Transfer learning involves taking a pre-

trained model, originally trained on a large dataset 

(e.g., ImageNet), and modifying it to suit a new, 

related task, such as arecanut maturity 

classification. This approach provides several 

advantages, including faster training and reduced 

need for extensive data, making it particularly 

valuable for agricultural datasets where labeled 

images are often limited. In this study, we use pre-

trained models such as MobileNetV2, InceptionV3, 

DenseNet-121, and VGG-16, fine-tuning each 

model to optimize classification accuracy for 

arecanut images. 

2.4.1 Fine-Tuning and data augmentation in 

Transfer Learning 

 Fine-tuning is a crucial part of transfer 

learning, where adjustments are made to specific 

layers of a pre-trained network to better align with 

a new classification task [27]. In this work, fine-

tuning involved attaching a fully connected layer to 

the pre-trained base models, set to classify images 

into two categories: "Mature" and "Immature." 

During the training process, this fully connected 

layer, along with select layers in the deeper 

sections of the base model, is trained on our 

dataset. This approach allows the model to "learn" 

task-specific features while retaining the general, 

robust patterns learned from the original large 

dataset. 

 To address potential overfitting due to 

the small size of the training set, several data 

augmentation techniques [28], such as rotation and 
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flipping, are applied. This expands the effective 

dataset size and introduces more variety, helping 

the model generalize better to unseen images. 

Additionally, fine-tuning reduces overfitting by 

refining the model on arecanut-specific features 

while maintaining the benefits of transfer learning. 

 

3. EXPERIMENTAL SETUP 

 The experimental setup for this study 

was conducted on Google Colab[29] using Python, 

TensorFlow [30] , and Keras[31] , enabling the 

implementation and fine-tuning of deep learning 

models for classifying arecanut maturity. Four pre-

trained models—MobileNetV2, InceptionV3, 

DenseNet-121, and VGG-16—were trained across 

three color spaces (RGB, Saturation, and 

Grayscale) to assess classification performance 

under varying conditions, focusing on data 

augmentation, fine-tuning, and dropout 

regularization. To optimize training, the Adam 

optimizer [32] was used with a learning rate of 

0.0001, while a dropout rate of 0.5 was 

implemented to reduce model variance by 

randomly deactivating neurons, thus enhancing 

model generalization. Each model was trained for 

20 epochs to stabilize and refine the learning 

process. 

 The experiment analyzed three 

configurations, each assessing the impact of fine-

tuning and data augmentation on classification 

accuracy using the MobileNetV2 model as a 

baseline: 

1. Baseline Model without Fine-Tuning or Data 

Augmentation: Initially, MobileNetV2 was trained 

on the dataset without applying fine-tuning or data 

augmentation, resulting in a modest classification 

accuracy of around 62%, highlighting the model's 

limited adaptability due to insufficient data. 

2. Model with Fine-Tuning Only: In this 

configuration, MobileNetV2 was fine-tuned on the 

arecanut dataset without any data augmentation. 

This led to a marked improvement in accuracy, 

achieving a validation accuracy of 94.33%, but 

signs of overfitting were evident, as training 

accuracy surpassed validation accuracy. This 

overfitting effect is common in transfer learning 

with small datasets when fine-tuning alone is 

applied without additional augmentation. 

3. Model with Fine-Tuning and Data 

Augmentation: The final configuration combined 

both data augmentation and fine-tuning, resulting 

in enhanced accuracy without overfitting, as 

MobileNetV2 demonstrated robust classification 

performance. This finding aligns with studies that 

show combining fine-tuning with data 

augmentation helps improve model 

generalizability, especially in deep learning 

applications with limited training data. 

Table 2 and Figure 2 provide a comparison of 

results across these configurations, indicating that 

the third configuration—combining fine-tuning 

with data augmentation—achieved the best 

classification accuracy and generalizability. Due to 

these advantages, this third method was adopted to 

train all four models in this study, enhancing 

performance across RGB, Saturation, and 

Grayscale color spaces. 

Table 2: Comparison of the effect of fine-tuning and data augmentation technique for the 

MobileNetV2 model on classification of   RGB images. 

 

 Baseline Model without 

Fine-Tuning or Data 

Augmentation 

Model with Fine-Tuning 

Only 

Model with Fine-Tuning 

and data agumentation 

Training 

Accuracy 
 

61.66% 99.92% 96.33% 

Validation 

Accuracy 
62.37% 94.33% 94.85% 
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Figure 2. Accuracy versus epoch graph for the MobileNetV2 model on classification of RGB 

images. (a) : Baseline Model without Fine-Tuning or Data Augmentation , (b): Model with 

Fine-Tuning Only and (c): Model with Fine-Tuning and data augmentation 

4. RESULTS AND DISCUSSION 

 The experimental results from this 

study reveal the performance of four fine-

tuned deep learning models—MobileNetV2, 

InceptionV3, DenseNet-121, and VGG-16—

across three color spaces (RGB, Saturation, 

and Grayscale) for classifying arecanut 

maturity. Table 3 provides a comparison of 

classification accuracies for each model on 

the three test datasets, highlighting the 

efficiency and limitations of each model 

under different color representations. 

4.1 Performance Analysis 

 The MobileNetV2 model achieved 

the highest classification accuracy at 86.07% 

when tested on RGB images, indicating a 

strong capability to differentiate between 

mature and immature arecanut bunches in 

this color space. Figure 3 illustrates 

MobileNetV2’s classification performance, 

showing its ability to correctly label images 

with associated confidence percentages. The 

bar graph alongside each image displays the 

prediction probabilities for the two classes 

(Mature and Immature), which further 

highlights the model's confidence in its 

predictions. The results indicate that 

MobileNetV2’s lightweight architecture, 

combined with data augmentation and fine-

tuning, allows it to deliver accurate and 

efficient classification.  

 For the Saturation image dataset, 

MobileNetV2 again performed best with an 

accuracy of 85.25%, slightly lower than its 

RGB performance, while VGG-16 

performed similarly (84.43%). The 

saturation component in HSV images helps 

distinguish color intensity, which can aid in 

maturity detection. However, its 

performance, while robust, generally lagged 

behind RGB images, suggesting that full 

color information provided by RGB might 

offer richer feature representation for this 

classification task. 

4.2 Color Space Impact on Classification 

 The grayscale dataset yielded the 

lowest classification accuracies across all 

models, with DenseNet-121 reaching the 

highest at 66.67% accuracy, while 

MobileNetV2 performed at 60.78%. 

Grayscale's limited intensity-based 

representation may be insufficient for 

capturing color-based maturity features 

essential in arecanut classification. These 

findings align with other studies, which 

report that RGB and saturation channels 

often perform better than grayscale in tasks 

that rely heavily on color cues. 

 

Table 3. Performance comparison of fine-tuned CNN models across different color spaces for arecanut 

maturity classification 

Dataset name Mobile NetV2 Inception-V3 DenseNet-121 VGG-16 

RGB-Images 86.07 80.39 85.25 84.43 

Saturation Images 85.25 80.33 82.79 84.43 

Grayscale-Images 60.78 64.71 66.67 58.62 
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5. CONCLUSION 

 This study successfully applied fine-

tuned CNN models to classify arecanut maturity 

levels, achieving promising results on a small, 

field-captured dataset. Among the tested models, 

MobileNetV2 demonstrated the best accuracy on 

RGB images, indicating that RGB color space 

captures critical maturity-related features more 

effectively than Saturation and Grayscale spaces 

for arecanut classification. Through careful 

experimentation, it was observed that combining 

fine-tuning and data augmentation effectively 

reduces overfitting, improving model 

generalization. The study underscores the 

effectiveness of transfer learning and data 

augmentation techniques for agricultural image 

classification tasks, especially when datasets are 

limited. Future work could explore further 

refinements such as hyperparameter tuning, 

additional data augmentation techniques, or the 

integration of multi-spectral data to enhance 

classification accuracy further. This research 

contributes valuable insights to the development 

of automated arecanut maturity classification 

tools, potentially aiding farmers in optimizing 

harvest timing and improving crop quality. 

 

 

Figure 6 : Prediction of MobileNetV2 model on RGB test dataset. 
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