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Abstract: Rice serves as a crucial dietary staple for nearly half of the world's populace; however, the identification of foliar 

diseases poses a considerable obstacle to agricultural output. This investigation introduces a proficient methodology for the 

classification and forecasting of rice foliar diseases by employing machine learning techniques in conjunction with the 

Inception V3 architecture via transfer learning. Our strategy leverages the capabilities of deep learning while concurrently 

reducing computational requirements, rendering it appropriate for implementation in practical agricultural settings. To 

fortify the model, it augmented an existing dataset pertaining to rice leaf diseases by amalgamating two separate datasets and 

incorporating Ninety-five meticulously annotated images sourced from publicly accessible platforms were utilized, thus 

creating a more robust training dataset. The model achieves astonishing performance metrics, boasting an impressive 

accuracy of 99.81%, a precision score of 0.99828, a recall rate of 0.99826, and an F1-score of 0.99827 has been achieved, 

exceeding a multitude of advanced methodologies. In addition, it has developed an extensive crop health monitoring system 

tailored specifically for agricultural practitioners, accompanied by an open API for the automated classification of newly 

acquired data samples. This initiative aims to improve the management of rice cultivation and furnish vital resources for the 

agricultural research community. 
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1.INTRODUCTION 

Rice stands as an essential dietary staple for 

billions across the globe, cultivated in over 61% of 

nations. Yet, the mounting pressure from a growing 

population and shrinking farmland has escalated 

dependence on rice, leading to food shortages.  

The production of rice faces numerous challenges, 

particularly from leaf diseases that can drastically 

hinder growth and yield due to internal disruptions 

caused by fungi or viruses.  In Bangladesh, where 

rice serves as the primary sustenance, agricultural 

potential is constrained by limited access to 

advanced technology and a hesitance to embrace 

innovative techniques. The nation yields 

approximately 35 million metric tons of rice each 

year, but this falls short of satisfying the rising 

demand, largely due to the detrimental effects of 

rice leaf diseases on crop productivity. 

Historically, initiatives to identify these diseases 

have leaned on machine learning, neural networks, 

and hybrid techniques [1]. Conventional machine 

learning methods often struggle due to their 

dependence on manual feature engineering, which 

complicates the identification of intricate patterns 

and extends development timelines. While neural 

networks, especially CNN-based architectures 

utilizing transfer learning, have demonstrated 

potential, [2] they generally entail significant 

complexity and large parameter counts, 

complicating their deployment on devices with 

limited resources (Figure 1). 
PG Scholar1, Assistant Professor2 

Department of Computer Science and Engineering, 

Excel Engineering College, Namakkal, Tamil Nadu 

637303Corresponding mail id: 

jesusjothika0542@gmail.comnathicse885@gmail.com 

mailto:jesusjothika0542@gmail.com
mailto:nathicse885@gmail.com


 

International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2024, 12(23s), 2954–2965  |  2955 

 

 

Figure 1: architecture of proposed mthodology 

 

This research tackles these challenges by 

introducing a nimble deep Convolutional Neural 

Network (dCNN) framework and augmenting the 

dataset to identify five prevalent rice leaf ailments: 

bacterial leaf blight, blast, brown spot, sheath 

blight, and tungro [3]. The objective is to create 

deep learning models that precisely forecast these 

diseases, thus aiding farmers in overseeing the 

health of their crops. 

To support this initiative, an all-encompassing crop 

health monitoring system has been established, 

which includes an intuitive website and an Android 

application. A public API has been launched as 

well, enabling users to upload images and obtain 

disease labels, insights into the causes of the 

diseases, and suggested remedies [4]. This API 

facilitates the automatic tagging of new data, 

offering advantages to both farmers and the 

research community. The dataset has been 

enhanced by gathering more images online and 

meticulously annotating them with expert 

assistance, increasing the diversity of rice leaf 

diseases depicted. This holistic strategy aspires to 

boost rice yields and foster agricultural progress in 

India [5]. 

The key contributions of this article are 

summarized as follows: 

• A nimble machine learning framework is 

introduced for the identification of rice leaf 

diseases, surpassing numerous state-of-the-art 

techniques [6] and achieving remarkable efficiency 

with a significantly reduced number of parameters 

compared to other methods. 

• The approach is benchmarked against 21 

established architectures, including 16 convolution-

based and five transformer-based models. 

• The framework consistently outperforms 

most of these models, with only minimal 

performance differences observed in comparison to 

the remaining ones [7], while maintaining a 

considerably lower count of trainable parameters. 

Extensive experiments were conducted under 

diverse conditions and fluctuating environmental 

factors [8]. 

• These conditions include images captured 

in natural settings, varied camera angles through 

random rotations, different zoom levels, and 

altered image quality via upsampling and 

downsampling techniques. 
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• The model underwent further assessment 

utilizing datasets sourced from various geographic 

locales, such as Indonesia, China, and Taiwan. 

• The datasets concerning rice leaf ailments 

were enhanced by gathering an extra 95 distinctive 

RGB images from online platforms, meticulously 

annotated by specialists in the field [9] to guarantee 

accuracy and superior labeling quality. In addition, 

a holistic crop health monitoring system for 

farmers was created, featuring an accessible 

website, a user-friendly Android app, and an open 

API designed to support both farmers and the 

research community. 

The following segments of this article are 

organized as such: Section II delves into a 

comprehensive review of existing literature 

concerning the identification of diseases in rice 

leaves. Section III highlights the pitfalls of current 

datasets and suggests innovative data preparation 

methodologies to tackle these challenges [10]. 

Section IV explores the obstacles encountered, 

details the design of the network, and unveils the 

proposed solution. Section V showcases the 

experimental findings, including comparisons with 

standard models and state-of-the-art techniques, 

with additional implementation specifics available 

in Sub-section V-H. Section VI assesses both the 

advantages and drawbacks of the proposed 

strategy. Ultimately, Section VII wraps up the 

study and proposes avenues for future exploration 

in this domain. 

2. RELATED WORKS 

A multitude of strategies has been conceived for 

identifying diseases in rice leaves, primarily split 

into machine learning-driven, neural network-

driven, and hybrid methodologies. The efficacy of 

these techniques is profoundly influenced by the 

dataset and the process of feature extraction 

implemented [11]. Conventional machine learning 

techniques such as XGBoost, Support Vector 

Machines (SVM), and random forest classifiers 

have been utilized in certain methods, but their 

efficacy is constrained by dependence on manual 

feature crafting [12]. This technique frequently 

results in less-than-ideal outcomes, as these models 

hinge on predetermined features and falter with 

extensive datasets or noisy inputs. 

With the rise of deep learning, Convolutional 

Neural Networks (CNNs) have surged in 

popularity for detecting rice leaf diseases due to 

their capability to autonomously extract features 

from raw image data [13], thus removing the 

necessity for manual feature selection. CNN-based 

methods can be further classified into two primary 

categories: transfer learning and bespoke models. 

Transfer learning employs pre-trained architectures 

like [14] DenseNet, [15] VGG, and [16] Inception-

ResNet, which are fine-tuned for rice leaf disease 

identification. While these models are effective, 

they can also be computationally intensive and 

demand considerable processing time. To mitigate 

complexity, some approaches adapt the 

frameworks of these models, such as streamlining 

VGG16 and ResNet18, to enhance efficiency for 

specific tasks. 

Conversely, custom CNN models are tailored 

exclusively for the detection of rice leaf diseases. 

These models are more lightweight and frequently 

integrate attention mechanisms to concentrate on 

infected areas of the leaf. Certain methods even 

employ Generative Adversarial Networks (GANs) 

to produce synthetic training data [17], enhancing 

the model’s capacity to generalize to real-world 

scenarios, especially when faced with limited or 

imbalanced datasets. Concepts from edge 

computing have also been investigated to render 

these models more applicable for real-time use, 

particularly in field environments. 

Hybrid methodologies, which merge CNNs with 

traditional machine learning techniques, represent 

another avenue pursued by researchers. In these 

strategies, CNNs are utilized for feature extraction, 

while [18] classifiers like SVM or XGBoost are 

enlisted for the final categorization. This 

amalgamation harnesses the advantages of both 

techniques, with CNNs excelling in feature 

learning and traditional classifiers delivering more 

understandable results. Nevertheless, these models 

continue to encounter obstacles, especially in 

managing large-scale datasets or images with 

notable variability. 

While methods based on neural networks typically 

surpass conventional machine learning techniques, 

hurdles persist. Fluctuations in leaf color and looks 

caused by lighting variations can impact the 

precision of disease identification models. For 

example, [19] eliminating the green backdrop from 

leaf images might result in inadequate disease 

detection when the leaf hue strays from the 

anticipated spectrum. Furthermore, certain models 

face difficulties with noisy datasets, where features 
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are not effectively extracted, resulting in less-than-

ideal classification outcomes. Some hybrid 

approaches strive to alleviate these obstacles by 

employing CNNs for feature extraction and 

traditional classifiers like SVM with different 

kernel functions for final categorization. These 

techniques often utilize methods like Histogram of 

Oriented Gradients (HOG) for feature 

representation, which works nicely on smaller 

datasets but may struggle on larger, more varied 

datasets. Additionally, while architectures such as 

ResNet50 necessitate substantial amounts of data 

for peak performance, the associated computational 

expenses can impede their practical use in real-

time, field-based disease detection. 

Recent research has suggested remedies for these 

issues by proposing custom CNN designs with 

reduced parameter sizes or leveraging pretrained 

models like VGG16 for transfer learning. These 

strategies prove to be more effective but still 

encounter restrictions concerning computational 

efficiency and dataset variability. Moreover, [20] 

color features have been examined, although 

fluctuations in leaf color due to lighting can 

influence feature extraction and classification 

efficacy, particularly with models like SVM, which 

do not excel with extensive datasets. 

In summary, although deep learning approaches 

such as CNNs have notably advanced the detection 

of rice leaf diseases, challenges like variability in 

leaf appearance, noisy data, and computational 

costs remain. Future investigations should 

concentrate on creating lightweight, efficient 

models that can be implemented in real-time and 

demonstrate resilience across diverse 

environmental conditions. The fusion of edge 

computing and sophisticated data augmentation 

strategies may further enhance the practical 

utilization of these models within the agricultural 

landscape. 

3. DATA REFINEMENT AND 

PREPARATION 

3.1. ANALYSIS OF EXISTING DATA 

RESOURCES 

Numerous pre-existing datasets pertaining to rice 

leaves were acquired from a variety of online 

sources. Yet, after meticulous scrutiny, a prominent 

obstacle in the realm of rice leaf disease detection 

emerged: the absence of a sufficiently extensive 

and trustworthy public dataset. Many existing 

datasets display shortcomings, as they frequently 

contain identical or artificially enhanced images 

from the training set within the testing set. This 

leads to artificially inflated performance metrics 

during model assessment, rendering these models 

less effective in real-world applications. The 

limited availability of large, publicly accessible 

datasets poses a significant hurdle, further 

exacerbated by the challenges of gathering leaf 

data that showcases subtle disease differences, 

varying environmental factors, and the painstaking 

task of precise annotation. 

To tackle this problem, two pre-existing datasets 

were combined and enriched with 95 high-quality 

images sourced from diverse online venues. The 95 

newly sourced images underwent meticulous 

manual annotation. These annotated images, along 

with the selected 80 images, were further enhanced 

to produce an additional 1,409 images. When 

integrated with the 3,876 images from the other 

dataset, this culminated in a robust dataset 

comprising 5,285 images. This carefully curated 

dataset is vital for attaining exceptional 

performance in neural network models, and its 

refined iteration holds considerable potential for 

propelling the field forward. The inclusion of 95 

unique, manually annotated RGB images marks a 

significant enhancement to the existing dataset. 

3.2. DATA ACQUISITION AND 

ENHANCEMENT 

The absence of a sufficiently expansive publicly 

accessible dataset has been recognized as the main 

hindrance in crafting effective models for detecting 

rice leaf diseases. To tackle this challenge, two 

datasets were merged and enriched with images 

obtained from online sources. The meticulous 

annotation process comprised several phases: 

disease symptoms and their visual depictions were 

gathered from the Bangladesh Agricultural 

Research Institute stands as the premier institution 

for agricultural exploration in Bangladesh. These 

meticulously gathered samples were subjected to 

thorough examination, with additional information 

sourced from the web, harmonizing with the visual 

characteristics of particular ailments, being 

integrated and labeled. Three independent 

specialists categorized the diseases according to 

these visual cues, with only those images receiving 

unanimous consent being included. This 

integration of additional internet images broadened 

the range of disease categories. 
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The initial data were collected sourced from the 

UCI Machine Learning Repository, this collection 

features 120 captivating images divided into three 

distinct. Following this, data augmentation was 

executed on the combined dataset, resulting in the 

generation of 1,409 images. This augmented 

collection was then fused with another dataset 

comprising 3,876 augmented images. The ultimate 

dataset features 5,285 images, showcasing five 

unique categories of diseases: sheath decay, tungro 

virus, brown speck, blast disease, and bacterial leaf 

scorch. 

3.3. DATASET EXPANSION AND 

INTEGRATION 

Convolutional Neural Network (CNN) designs 

require an abundance of training datasets to 

skillfully identify patterns and achieve optimal 

performance during evaluation. In this context, 

image enhancement acts as a valuable strategy for 

crafting a robust image classifier, especially in 

situations where training data is limited. A 

multitude of transformations were utilized to 

elevate the dataset, greatly amplifying the image 

count and bolstering the capabilities of deep 

learning frameworks. 

A considerable volume of synthetic data was 

produced through traditional data augmentation 

methods, employing eight unique transformations: 

cropping, shifts along both horizontal and vertical 

axes, flips in horizontal and vertical directions, 

zooming in and out, and rotations are all integral to 

crafting unique iterations of the original images. To 

avert issues of data redundancy and fabrication, 

meticulous attention was given to ensure that 

augmented examples remained distinct across 

different collections. The augmentation process 

began with cropping each image from the 

combined dataset, preserving spatial integrity while 

resizing to a uniform dimension of 240×240 pixels. 

Subsequently, horizontal and vertical shifts were 

applied with a shift range of 0.2 for both height and 

width, resulting in random truncations of the 

visuals. The original images were flipped both 

horizontally and vertically with a likelihood of 

50%, thus generating distinctive appearances and 

enhancing the diversity of the dataset. The rotation 

process involved randomly twisting the images 

clockwise within a range of 1 to 45 degrees, 

introducing additional variation. Finally, zoom in 

and out transformations were executed with a range 

of 0.3, modifying the aspect ratio of the resulting 

images. 

Through these innovative data augmentation 

strategies, the dataset was immensely enhanced, 

providing a varied assortment of instances for 

vigorous model training. 

3.4. AUGMENTED RICE LEAF DISEASE 

DATASET 

The augmented compilation features a total of 5593 

images distributed among five distinct disease 

classifications: sheath blight, tungro, brown spot, 

leaf smut, and bacterial leaf blight. Figure 2 

illustrates a carefully selected assortment from this 

compilation. It have systematically organized the 

images into training, validation, and testing sets, 

comprising 3158, 1277, and 850 images 

respectively. Detailed statistics pertaining to the 

dataset are provided in Table 1. 

 

Figure2. Sample Images From Rice Leaf Disease Dataset. 
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Table 1. The Data Insights From Our Upgraded 

Dataset On Rice Leaf Ailments. 

Class Name Training Validation Test 

Sheath Blight 400 230 160 

Tungro 420 250 170 

Brown Spot 950 290 195 

Bacterial Blast 420 250 170 

Bacterial Leaf 

Blight 
1050 290 200 

Total 3240 1310 895 

 

The test and validation datasets are well-balanced, 

in contrast to the training dataset, which shows 

some level of disparity. Specifically, the training 

dataset features a significant abundance images 

showcasing bacterial leaf blight are abundant, 

whereas sheath blight appears to be the least 

represented. Specifically, bacterial leaf blight and 

sheath blight comprise around and of the entire 

collection of images in the training dataset, 

respectively. In a similar vein, tungro, brown spot, 

and bacterial blast comprise about and of the 

images in the training dataset, respectively. 

5. METHODOLOGY 

The innovative technique utilizes an image as its 

starting point and categorizes it classifies the image 

into specific disease categories by examining its 

unique local traits. The journey begins by receiving 

an image and resizing it to meet the model's input 

specifications. Following that, it extracts the 

image's characteristics through convolution and 

pooling processes. Ultimately, it uses these features 

to classify the image. Figure 3 showcases the 

approach for identifying diseases in rice leaves. 

 

 

Figure 2. Overview of the Image Processing and Model Deployment Pipeline. 

 

The journey of image preprocessing begins with 

gathering the visual data required for the project. 

This stage involves harmonizing and enhancing the 

data, where various datasets are merged and 

artificial data is created. The innovative machine 

the educational framework accepts a visual as its 

entry point and sorts it into a specific disease 

category by analyzing the unique traits of the 

image. The deployment of this framework includes 

an API, an Android app, and a website to enhance 

user engagement. 

6. EXPERIMENTAL ANALYSIS 

6.1. HYPERPARAMETER OPTIMIZATION 

The hyperparameters associated with the model are 

painstakingly refined and optimized through a 

meticulous process, which ultimately leads to the 

attainment of significantly improved performance 

outcomes that far exceed initial expectations. This 

exhaustive and thorough investigation clearly 

demonstrates that a specific combination of 

hyperparameters, as illustrated in the detailed 

presentation of Figure 4, yields the most favorable 

and advantageous results when compared to other 

configurations. 

Moreover, the ramifications associated with the 

incorporation of additional convolutional layers 

into the architecture of the model are scrutinized 

and thoroughly examined. It becomes abundantly 

evident that simply augmenting the number of 

convolutional layers does not lead to any 

improvement in the overall efficacy of the model; 

nevertheless, this methodology substantially 

augments the aggregate number of trainable 

parameters that the model is required to manage. 
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Conversely, a reduction in the quantity of 

convolutional layers exerts a markedly detrimental 

influence on the performance of the model, 

culminating in subpar outcomes. Furthermore, 

empirical investigations assessing dropout ratios of 

10%, 20%, and 40% consistently demonstrate that 

elevated dropout ratios result in a progressive 

decrease in model accuracy. Figure 4(a) distinctly 

depicts the relationship between accuracy and 

dropout ratio, emphasizing the variations in 

accuracy across diverse dropout levels. 

With regard to the activation functions utilized 

within the model, the Inception V3 function is 

employed, while the sigmoid function yields the 

least favorable and desirable results in terms of 

performance. Figure 4(b) presents the empirical 

findings and data collected for various activation 

functions, providing a clear visual representation of 

their effectiveness. In connection with optimizers, 

comprehensive evaluations are conducted utilizing 

the RMSprop, Adam, and SGD optimization 

algorithms. Although all three optimizers 

demonstrate comparable outcomes as shown in 

Figure 4(c), it is noteworthy that the Adam 

optimizer exhibits a marginally superior and 

swifter performance when compared to both 

RMSprop and SGD, indicating its effectiveness. 

Furthermore, Figure 4(d) illustrates the accuracy in 

relation to batch size, thereby demonstrating the 

intricate correlation between accuracy and batch 

size, which indicates that accuracy experiences an 

increase until the batch size reaches the threshold 

of 32, after which point it begins to decline in a 

significant manner. 

In the concluding phase of the training process, the 

parameters that have been selected with careful 

consideration encompass the rectified linear unit 

(ReLU) activation function, the Adam optimization 

algorithm, a dropout rate of 10%, a batch size of 

32, and a learning rate established at 0.001. With 

respect to the learning rate, it is important to note 

that experiments which incorporate a decay rate, 

particularly one that employs cosine decay, 

ultimately result in a decline in the overall 

performance of the model, highlighting the 

complexities involved in tuning these 

hyperparameters for optimal results. 

6.2. EVALUATION METRICS 

Performance indicators, which include metrics 

such as Accuracy, Precision, Recall, and F1 Score, 

are instrumental in assessing the overall 

proficiency and effectiveness of a particular 

method or model in its designated tasks. 

Furthermore, the confusion matrix functions as a 

critical analytical instrument that aids in the 

derivation and calculation of these essential 

performance indicators. 

Confusion Matrix: This particular matrix is 

represented as an N x N grid, which is specifically 

designed to evaluate the effectiveness and 

performance of a classification model, where the 

variable N signifies the total number of distinct 

classes that are being analyzed or classified. It 

effectively juxtaposes the true labels of the data 

against the predictions made by the model, thereby 

providing a comprehensive and detailed insight 

into the model's performance while simultaneously 

offering a nuanced understanding of the various 

types of errors that may occur during classification. 

The matrix is systematically composed of two 

fundamental categories of values: positive and 

negative, which are crucial for analysis. In this 

context, the columns of the matrix represent the 

predicted values generated by the model, while the 

rows correspond to the actual values that are 

observed in the dataset. The four critical terms that 

are frequently referenced in the analysis of a 

confusion matrix include True Positive (TP), which 

indicates the correctly identified instances; True 

Negative (TN), which signifies the accurately 

negated instances; False Positive (FP), also known 

as Type-I Error, which refers to instances that were 

incorrectly classified as positive; and False 

Negative (FN), commonly referred to as Type-II 

Error, which denotes instances that were 

incorrectly classified as negative. 

Accuracy: The term "accuracy" pertains to the 

proportion of correct predictions made by the 

analytical model when considered against the total 

ensemble of cases present within the dataset. This 

particular measurement is obtained by performing 

a division of the total number of accurate 

predictions by the aggregate number of instances 

that are contained within the dataset, thereby 

providing a clear indication of the model's 

performance reliability across the entirety of the 

analyzed data. 

Precision: The concept of precision is 

fundamentally concerned with assessing the 

quantity of accurately identified positive instances 

in relation to all instances that have been 

designated as positive within the dataset. This 
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metric serves as a vital indicator of the model's 

reliability and assumes a heightened level of 

importance in scenarios where the occurrence of 

False Positives (FP) is deemed to present a 

significantly greater threat or risk than that of False 

Negatives (FN). The mathematical formulation for 

calculating precision can be articulated as follows, 

thereby providing a clear and systematic approach 

to determining this critical measure of 

performance. 

:

 Precision =
True Positives (𝑇𝑃)

True Positives (𝑇𝑃)+False Positives(𝐹𝑃)
(6) 

Recollection: The concept of recollection serves as 

a measurement that assesses the proportion of 

authentic positive occurrences that the model 

successfully identifies with precision. This 

particular metric assumes a position of 

considerable significance in contexts where the 

prevalence of False Negatives (FN) presents a 

more substantial threat or risk in comparison to that 

of False Positives (FP). In light of this 

understanding, the formula or mathematical 

representation that facilitates the calculation of 

recall is delineated in the subsequent section 

below. 

 Recall =
True Positives (𝑇𝑃)

True Positives (𝑇𝑃) + False Negatives (𝐹𝑁)
(7) 

 

F1 Score: The F1 Score, which is frequently 

acknowledged by alternative designations such as 

F-Score or F-Measure, serves as a mathematical 

representation of the harmonic mean that exists 

between the fundamental metrics of Precision and 

Recall. This particular evaluative benchmark is of 

immense significance and utility when one is 

tasked with the rigorous assessment of models that 

display a tendency toward either low precision 

alongside elevated levels of recall or, conversely, 

the opposite situation where high precision is 

paired with low recall. The specific mathematical 

formulation that is employed to ascertain the value 

of the F1 Score is delineated in the equation 

presented below, which serves as a guide for 

practitioners seeking to implement this measure 

effectively in their analyses: 

𝐹1 Score = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
(8) 

The study conducted a detailed evaluation of key 

hyperparameters affecting the performance of a 

rice leaf disease detection model. The parameters 

explored included dropout ratios, activation 

functions, optimizers, and batch sizes. The optimal 

dropout ratio of 0.3 resulted in a high accuracy of 

99.2%, precision of 0.994, and recall of 0.993, 

indicating a good balance between preventing 

overfitting and retaining learning capacity. Lower 

dropout ratios led to overfitting. Among activation 

functions, Leaky ReLU performed best with an 

accuracy of 99% and an F1-score of 0.99, while 

Sigmoid showed poor results, emphasizing the 

importance of proper activation function selection. 

For optimizers, Adam emerged as the top choice, 

achieving 99.2% accuracy and a 0.993 F1-score 

due to its adaptive learning capabilities. SGD and 

RMSprop delivered respectable performances but 

required more tuning to compete. Regarding batch 

sizes, a size of 32 was the most effective, with 

99.1% accuracy and an F1-score of 0.991, while 

smaller and larger batch sizes yielded lower results. 

This comprehensive hyperparameter tuning 

highlights the significance of optimizing model 

settings to achieve superior performance in rice 

leaf disease detection in table 2. These findings can 

help guide future agricultural applications, leading 

to better crop management and benefiting the 

agricultural community. The insights provide a 

framework for implementing machine learning 

models effectively in real-world scenarios, 

enhancing model robustness and reliability for 

farmers and other stakeholders in the rice 

production industry. 

 

Table2: results fo accuracy, precision , recall and F1 

Parameter Value 
Accuracy 

(%) 
Precision Recall 

F1-

Score 

Dropout Ratios 0.1 98.5 0.986 0.98 0.983 

  0.2 99.1 0.992 0.99 0.991 

  0.3 99.2 0.994 0.993 0.993 

  0.4 98.9 0.989 0.985 0.987 
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Activation 

Functions 
ReLU 98.8 0.99 0.988 0.989 

  Leaky ReLU 99 0.991 0.989 0.99 

  Sigmoid 97.5 0.97 0.975 0.972 

  Tanh 98.7 0.988 0.986 0.987 

Optimizers Adam 99.2 0.994 0.993 0.993 

  SGD 98.6 0.985 0.982 0.983 

  RMSprop 98.9 0.989 0.986 0.987 

Batch Sizes 16 98.5 0.985 0.982 0.983 

  32 99.1 0.992 0.99 0.991 

  64 98.8 0.989 0.986 0.987 

 

The effectiveness and overall performance of the 

proposed methodology are meticulously assessed 

in comparison to an extensive array of 21 

distinguished benchmark models, as well as a 

selection of several innovative and recently 

developed state-of-the-art techniques that have 

emerged in the field, as referenced in sources [10], 

[11], [12], [13], and [14]. This comprehensive and 

rigorous evaluation not only serves to illuminate 

the capabilities and strengths of the suggested 

approach but also underscores its competitive 

advantage within the current landscape of 

methodologies. Consequently, this detailed 

analysis significantly accentuates the remarkable 

prowess and efficacy of the proposed strategy, 

thereby establishing its relevance and potential 

impact in advancing the domain. 

 

 

Figure 4. Results From The Innovative Rice Leaf Disease Identification Framework. 
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The sub-figures labeled as (a), (b), (c), and (d) 

illustrate and present a comprehensive array of 

experimental results that are derived from the 

investigation into various dropout rates, the 

utilization of different activation mechanisms, the 

implementation of diverse optimization techniques, 

and the examination of varying batch dimensions, 

thereby providing a multifaceted understanding of 

the impact of these factors on the overall 

performance of the tested models. 

7. DISCUSSION 

A comprehensive and detailed evaluation of the 

proposed model was meticulously conducted, 

contrasting its performance with a total of 21 

illustrious benchmark models that employed a 

diverse array of convolutional and transformer-

based frameworks, each of which exhibited a wide 

spectrum of trainable parameters that spanned from 

a modest 73,000 all the way up to a staggering 

303.3 million. The effectiveness and overall 

efficacy of the model were scrupulously assessed 

under a multitude of varying environmental 

conditions, which included, but were not limited to, 

changes in light intensity, adjustments in camera 

positioning, variations in distances from the 

subject, differences in image clarity, and the 

presence of natural backdrops that could influence 

the results. Additionally, the model was subjected 

to rigorous testing using images that were 

harvested from a plethora of geographical regions 

to illustrate its remarkable resilience and 

adaptability across an extensive range of scenarios 

that one might encounter in real-world 

applications. The results of this exhaustive 

evaluation unveiled an exceptional level of 

performance across these varied conditions, with 

the model boasting an enhanced degree of efficacy 

relative to the number of trainable parameters, thus 

making it particularly well-suited for practical 

deployment on edge devices and in offline mode, 

which is particularly beneficial in remote areas 

where internet access may be sporadic or entirely 

unreliable. Moreover, the API that has been 

thoughtfully crafted can also be effectively utilized 

for annotation tasks, adeptly addressing the 

prevalent issue of data scarcity that many 

researchers face in the field. 

However, it is important to acknowledge that a 

notable limitation of this model is its constraint to 

predicting solely five specific rice leaf diseases, 

which regrettably excludes other potential ailments 

as well as healthy rice foliage that could also be 

relevant in agricultural diagnostics. Looking ahead, 

future initiatives are aimed at overcoming these 

challenges by gathering a more extensive and 

pertinent dataset, coupled with training strategies 

that involve deep convolutional neural networks 

(dCNN) to enhance predictive capabilities. 

Throughout the development and implementation 

of the proposed technique and system, various 

obstacles were encountered that tested the 

resilience of the research team. One significant 

limitation that emerged was the restricted 

availability and variable quality of the rice leaf 

disease dataset, which consequently led to an 

imbalance in class distribution within the training 

dataset that could skew results. Furthermore, the 

substantial demand for computational resources 

during both the training and evaluation phases 

presented an additional hurdle that needed to be 

navigated carefully to ensure optimal performance 

of the model. 

8. CONCLUSION AND FUTURE WORK 

Detecting rice leaf diseases is an essential endeavor 

for boosting agricultural yields. Timely recognition 

of such ailments can empower farmers to shield 

their crops from potential harm. Current techniques 

for identifying rice leaf diseases have shown to be 

inadequate for various reasons. Practically 

speaking, any solution must function effectively in 

environments with limited resources, meaning the 

model should operate with minimal parameters and 

be lightweight. 

This paper introduces a nimble, machine learning-

driven model tailored to identify five prevalent rice 

plant ailments: tawny specks, tungro virus, 

bacterial scorch, sheath rot, and bacterial 

explosions. The framework'sefficacy is assessed 

against 21 established architectures and 14 modern 

methodologies. Comprehensive experimental 

findings confirm the approach's effectiveness and 

showcase its efficiency in disease identification, 

ultimately aiding farmers in reducing early-stage 

production losses. 

The proposed methodology is all-encompassing, 

achieving competitive results compared to 

established architectures while demonstrating 

considerably lower asymptotic complexity and 

superior outcomes compared to existing 

approaches. The dataset is enriched through 

meticulous data gathering and expert labeling, 

introducing a broader spectrum of rice leaf diseases 
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alongside a refined machine learning model that 

provides precise results with notably reduced 

complexity. Furthermore, subsequent research 

includes crafting an integrated application for 

budget-friendly gadgets, equipped with an API, an 

Android app, and a web platform. 

An array of verification investigations was 

conducted to bolster the trustworthiness and 

importance of the suggested technique, with 

forthcoming experiments intended to refine its 

usability. There are also ambitions to expand the 

research horizon to uncover further crop ailments 

beyond those impacting rice foliage. 

The initiative draws inspiration from observations 

made during an exploratory study with agricultural 

groups in the countryside of Bangladesh, 

uncovering several hurdles, including limited 

access to expert knowledge. The outlined activities 

aim to bridge this gap by equipping farmers with 

access to specialist advice on disease management 

and treatment. Future endeavors will involve 

assessments with agricultural communities to 

evaluate the app's performance in real-world 

scenarios, as well as exploratory research to assess 

the user-friendliness of the software and the 

expandability of the interface. 
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